Package ‘BNPTSclust’

April 19, 2015

Type Package
Title A Bayesian Nonparametric Algorithm for Time Series Clustering
Version 1.1
Date 2015-04-19
Author Martell-Juarez, D.A. & Nieto-Barajas, L.E.
Maintainer David Alejandro Martell Juarez <alex91599@gmail.com>
Depends R(>= 3.1.2), mvtnorm, MASS
Description Performs the algorithm for time series clustering described in Nieto-Barajas and Contreras-Cristan (2014).
NeedsCompilation no
Repository CRAN
License GPL (>= 2)
Date/Publication 2015-04-19 22:19:50

R topics documented:

BNPTSclust-package ... 2
clusterplots ... 2
comp11 ... 3
designmatrices .. 4
diagplots .. 5
gdp ... 6
houses .. 6
scaleandperiods .. 7
stocks .. 8
tseriesca .. 8
tseriesca.out ... 11
tseriescm ... 12
tseriescm.out ... 14
tseriescq .. 15
tseriescq.out ... 17

Index 19
A Bayesian Nonparametric Algorithm for Time Series Clustering

Description

This package performs the algorithm for time series clustering described in Nieto-Barajas and Contreras-Cristan (2014). The package contains functions to work with annual, monthly and quarterly time series data.

The main functions to accomplish the above are:

1) tseriesca
2) tseriescm
3) tseriescq

Details

Package: BNPSTSclust
Type: Package
Version: 1.1
Date: 2015-04-19
License: GPL2, GPL3

For a comprehensive guide on how to use the package, refer to the vignette attached to the package.

Author(s)

Martell-Juarez, D.A. and Nieto-Barajas, L.E.

Maintainer: David Alejandro Martell Juarez <alex91599@gmail.com>

References

Description

Function that plots the time series clusters generated by either of the functions: "tseriesca", "tseriescm" or "tseriescq".

clusterplots

Cluster groups plotting function.
usage
clusterplots(L, data)

arguments
L output list from the functions: "tseriesca", "tseriescm" or "tseriescq".
data Data frame with the time series information.

details
See the examples in the documentation files of "tseriesca", "tseriescm" or "tseriescq" for an example of this function's usage.

value
The function returns the plots of the time series clusters directly.

author(s)
Martell-Juarez, D.A.

description
Computes the distinct observations and frequencies in a numeric vector.

usage
comp11(y)

arguments
y Numeric vector.

details
The code of the function is the same as the "comp1" function from the "BNPdensity" package. The change is in the output of the function. This function is for internal use.

value
jstar variable that rearranges "y" into a vector with its unique values.
nstar frequency of each distinct observation in "y".
rstar number of distinct observations in "y".
gn variable that indicates the group number to which every entry in "y" belongs.
Note

For internal use.

Author(s)

Martell-Juarez, D.A., Barrios, E., Nieto-Barajas, L. and Pruenster, I.

designmatrices

Function that creates the design matrices necessary for the clustering algorithm to work.

Description

Function that generates the design matrices of the clustering algorithm based on the parameters that the user wants to consider, i.e. level, polynomial trend and/or seasonal components. It also returns the number of parameters that are considered and not considered for clustering.

Usage

designmatrices(level, trend, seasonality, deg, T, n, fun)

Arguments

level Variable that indicates if the level of the time series will be considered for clustering. If level = 0, then it is omitted. If level = 1, then it is taken into account.

trend Variable that indicates if the polynomial trend of the model will be considered for clustering. If trend = 0, then it is omitted. If trend = 1, then it is taken into account.

seasonality Variable that indicates if the seasonal components of the model will be considered for clustering. If seasonality = 0, then they are omitted. If seasonality = 1, then they are taken into account.

deg Degree of the polynomial trend of the model.

T Number of periods of the time series.

n Number of time series.

fun Clustering function being used.

Value

Z Design matrix of the parameters not considered for clustering.

X Design matrix of the parameters considered for clustering.

p Number of parameters not considered for clustering.

d Number of parameters considered for clustering.
diagplots

Note

For internal use.

Author(s)

Martell-Juarez, D.A.

Description

Function that produces the diagnostic plots to assess the convergence of the Markov Chains generated by either of the functions: "tseriesca", "tseriescm" or "tseriescq".

Usage

```r
diagplots(L)
```

Arguments

- `L` output list from the functions: "tseriesca", "tseriescm" or "tseriescq".

Details

See the examples in the documentation files of "tseriesca", "tseriescm" or "tseriescq" for an example of this function’s usage.

Value

The function returns three different kinds of plots to assess convergence of the generated Markov Chain: trace plots, histograms and ergodic mean plots.

Author(s)

Martell-Juarez, D.A.
gdp

GDP per person employed from 1990 to 2012

Description

This data set contains the yearly GDP per person employed from 1990 to 2012 for 121 countries.

Usage

```r
data(gdp)
```

Format

Data frame with 20 rows and 121 columns.

Source

http://data.worldbank.org/indicator/SL.GDP.PCAP.EM.KD

houses

House price statistics in Scotland from 2004 to 2014.

Description

This data set contains the average price of houses from the 1st quarter of 2004 to the 4th quarter of 2014 by the local authority areas of Scotland.

Usage

```r
data(houses)
```

Format

Data frame with 44 rows and 33 columns.

Source

References

scaleandperiods

Scaling data function.

Description

This function scales the time series data in the interval [0,1] as deemed necessary in Nieto-Barajas and Contreras-Cristan (2014) for the time series clustering algorithm. It also obtains the time periods of the data set provided.

Usage

scaleandperiods(data)

Arguments

data Data frame with the time series information.

Details

The function considers that the time periods of the data appear as row names.

Value

periods array with the time periods of the data.
mydata data frame with the time series data scaled in [0,1].
t time variable that indicates if some time series were removed because they were constant in time. If no time series were removed, cts = 0. If there were time series removed, cts indicates the column of such time series.

Note

For internal use.

Author(s)

Martell-Juarez, D.A.
stocks

Mexican stock exchange market prices

Description

This data set contains the monthly adjusted closing prices of 58 shares of the mexican stock exchange market from September 2006 to August 2011.

Usage

`data(stocks)`

Format

Data frame with 60 rows and 58 columns.

Source

http://www.dowjones.com/factiva/

References

This is the data set used by Nieto-Barajas, L.E. & Contreras-Cristan, A. (2014) as application for their paper.

tseriesca

Function for annual time series clustering.

Description

Function that performs the time series clustering algorithm described in Nieto-Barajas and Contreras-Cristan (2014) for annual time series data.

Usage

`tseriesca(data, maxiter = 1000, burnin = floor(0.1 * maxiter),
 thinning = 5, level = FALSE, trend = TRUE, deg = 2, c0eps = 2,
 c1eps = 1, c0beta = 2, c1beta = 1, c0alpha = 2, c1alpha = 1,
 priora = FALSE, pia = 0.5, q0a = 1, q1a = 1, priorb = FALSE,
 q0b = 1, q1b = 1, a = 0.25, b = 0, indlpm = FALSE)"
Arguments

data Data frame with the time series information.
maxiter Maximum number of iterations for Gibbs sampling.
burnin Burn-in period of the Markov Chain generated by Gibbs sampling.
thinning Number that indicates how many Gibbs sampling simulations should be skipped to form the Markov Chain.
level Flag that indicates if the level of the time series will be considered for clustering. If TRUE, then it is taken into account.
trend Flag that indicates if the polynomial trend of the model will be considered for clustering. If TRUE, then it is taken into account.
deg Degree of the polynomial trend of the model.
c0eps Shape parameter of the hyper-prior distribution on sig2eps.
c1eps Rate parameter of the hyper-prior distribution on sig2eps.
c0beta Shape parameter of the hyper-prior distribution on sig2beta.
c1beta Rate parameter of the hyper-prior distribution on sig2beta.
c0alpha Shape parameter of the hyper-prior distribution on sig2alpha.
c1alpha Rate parameter of the hyper-prior distribution on sig2alpha.
priora Flag that indicates if a prior on parameter "a" is to be assigned. If TRUE, a prior on "a" is assigned.
pia Mixing proportion of the prior distribution on parameter "a".
q0a Shape parameter of the continuous part of the prior distribution on parameter "a".
q1a Shape parameter of the continuous part of the prior distribution on parameter "a".
priorb Flag that indicates if a prior on parameter "b" is to be assigned. If TRUE, a prior on "b" is assigned.
q0b Shape parameter of the prior distribution on parameter "b".
q1b Shape parameter of the prior distribution on parameter "b".
a Initial/fixed value of parameter "a".
b Initial/fixed value of parameter "b".
indlpml Flag that indicates if the LPML is to be calculated. If TRUE, LPML is calculated.

Details

It is assumed that the time series data is organized into a data frame with the time periods included as its row names.
Value

- **mstar**: Number of groups of the chosen cluster configuration.
- **gnstar**: Array that contains the group number to which each time series belongs.
- **HM**: Heterogeneity Measure of the chosen cluster configuration.
- **arrho**: Acceptance rate of the parameter "rho".
- **ara**: Acceptance rate of the parameter "a".
- **arb**: Acceptance rate of the parameter "b".
- **sig2epssample**: Matrix that in its columns contains the sample of each sig2eps_i’s posterior distribution after Gibbs sampling.
- **sig2alphasample**: Matrix that in its columns contains the sample of each sig2alpha_i’s posterior distribution after Gibbs sampling.
- **sig2betasample**: Matrix that in its columns contains the sample of each sig2beta_i’s posterior distribution after Gibbs sampling.
- **sig2thesample**: Vector that contains the sample of sig2the’s posterior distribution after Gibbs sampling.
- **rhosample**: Vector that contains the sample of rho’s posterior distribution after Gibbs sampling.
- **asample**: Vector that contains the sample of a’s posterior distribution after Gibbs sampling.
- **bsample**: Vector that contains the sample of b’s posterior distribution after Gibbs sampling.
- **msample**: Vector that contains the sample of the number of groups at each Gibbs sampling iteration.
- **lpml**: If indlpml = TRUE, lpml contains the value of the LPML of the chosen model.

Author(s)

Martell-Juarez, D.A. and Nieto-Barajas, L.E.

Examples

```r
## do not run
# data(gdp)
# tseriesca.out <- tseriesca(gdp,maxiter = 4000,level=FALSE,trend=TRUE,
# c0eps = 0.001,c1eps = 0.001,c0beta = 0.001,
# c1beta = 0.001,c0alpha = 0.001,
# c1alpha= 0.001,priorb = TRUE,a = 0,b = 0.1)
#
# The console output of the above example is:
#
# Number of groups of the chosen cluster configuration : 13
# Time series in group 1 : 1 1 1 1
# Time series in group 2 : 2 8
```
Time series in group 3 : 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21
22 24 25 26 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 49
50 51 52 55 56 57 58 59 61 62 63 65 67 68 69 70 71 74 75 76 77 78 79 80
81 82 83 84 85 86 89 92 93 94 95 96 97 100 101 102 103 104 105 106
107 108 109 110 113 114 117 118 120
Time series in group 4 : 9 23 48 54 60 87
Time series in group 5 : 27
Time series in group 6 : 39
Time series in group 7 : 53 73 88
Time series in group 8 : 64
Time series in group 9 : 66 98 112
Time series in group 10 : 72
Time series in group 11 : 90 116 119 121
Time series in group 12 : 99
Time series in group 13 : 115
HM Measure : 99.50627
#
Make sure that chain convergence is always assessed. Run the following
code to show the cluster and diagnostic plots:

data(gdp)
data(tseriesca.out)
attach(tseriesca.out)

clusterplots(tseriesca.out,gdp)
diagplots(tseriesca.out)
tseriescm

Function for monthly time series clustering.

Description

Function that performs the time series clustering algorithm described in Nieto-Barajas and Contreras-Cristan (2014) for monthly time series data.

Usage

tseriescm(data, maxiter = 1000, burnin = floor(0.1 * maxiter),
 thinning = 5, level = FALSE, trend = TRUE, seasonality = TRUE,
 deg = 2, c0eps = 2, c1eps = 1, c0beta = 2, c1beta = 1,
 c0alpha = 2, c1alpha = 1, priora = FALSE, pia = 0.5, q0a = 1,
 q1a = 1, priorb = FALSE, q0b = 1, q1b = 1, a = 0.25, b = 0,
 indlpml = FALSE)

Arguments

data Data frame with the time series information.
maxiter Maximum number of iterations for Gibbs sampling.
burnin Burn-in period of the Markov Chain generated by Gibbs sampling.
thinning Number that indicates how many Gibbs sampling simulations should be skipped to form the Markov Chain.
level Flag that indicates if the level of the time series will be considered for clustering. If TRUE, then it is taken into account.
trend Flag that indicates if the polynomial trend of the model will be considered for clustering. If TRUE, then it is taken into account.
seasonality Flag that indicates if the seasonal components of the model will be considered for clustering. If TRUE, then they are taken into account.
deg Degree of the polynomial trend of the model.
c0eps Shape parameter of the hyper-prior distribution on sig2eps.
c1eps Rate parameter of the hyper-prior distribution on sig2eps.
c0beta Shape parameter of the hyper-prior distribution on sig2beta.
c1beta Rate parameter of the hyper-prior distribution on sig2beta.
c0alpha Shape parameter of the hyper-prior distribution on sig2alpha.
c1alpha Rate parameter of the hyper-prior distribution on sig2alpha.
priora Flag that indicates if a prior on parameter "a" is to be assigned. If TRUE, a prior on "a" is assigned.
pia Mixing proportion of the prior distribution on parameter "a".
q0a Shape parameter of the continuous part of the prior distribution on parameter "a".
q1a Shape parameter of the continuous part of the prior distribution on parameter "a".

priorb Flag that indicates if a prior on parameter "b" is to be assigned. If TRUE, a prior on "b" is assigned.

q0b Shape parameter of the prior distribution on parameter "b".

q1b Shape parameter of the prior distribution on parameter "b".

a Initial/fixed value of parameter "a".

b Initial/fixed value of parameter "b".

indlpml Flag that indicates if the LPML is to be calculated. If TRUE, LPML is calculated.

Details

It is assumed that the time series data is organized into a data frame with the time periods included as its row names.

Value

mstar Number of groups of the chosen cluster configuration.

gnstar Array that contains the group number to which each time series belongs.

H Heterogeneity Measure of the chosen cluster configuration.

arrho Acceptance rate of the parameter "rho".

ara Acceptance rate of the parameter "a".

arb Acceptance rate of the parameter "b".

sig2epssample Matrix that in its columns contains the sample of each sig2eps_i’s posterior distribution after Gibbs sampling.

sig2alphasample Matrix that in its columns contains the sample of each sig2alpha_i’s posterior distribution after Gibbs sampling.

sig2betasample Matrix that in its columns contains the sample of each sig2beta_i’s posterior distribution after Gibbs sampling.

sig2thesample Vector that contains the sample of sig2the’s posterior distribution after Gibbs sampling.

rhosample Vector that contains the sample of rho’s posterior distribution after Gibbs sampling.

asample Vector that contains the sample of a’s posterior distribution after Gibbs sampling.

bsample Vector that contains the sample of b’s posterior distribution after Gibbs sampling.

msample Vector that contains the sample of the number of groups at each Gibbs sampling iteration.

lpml If indlpml = TRUE, lpml contains the value of the LPML of the chosen model.
Author(s)

Martell-Juarez, D.A. and Nieto-Barajas, L.E.

Examples

```r
## Do not run
#
# data(stocks)
# tseriescm.out <- tseriescm(stocks,maxiter=4000,level=FALSE,trend=TRUE,
#                            seasonality=TRUE,a=0,b=1)
#
# The console output of the above example is:
#
# Number of groups of the chosen cluster configuration: 9
# Time series in group 1: 1 2 4 5 7 10 12 13 19 21 22 25 29 30 31 33 34
# 40 41 42 43 44 46 47 48 49 52 57 58
# Time series in group 2: 3 6 8 9 11 14 15 17 18 26 27 28 32 35 36 37 38
# 45 50 51 53 56
# Time series in group 3: 16
# Time series in group 4: 20
# Time series in group 5: 23
# Time series in group 6: 24
# Time series in group 7: 39
# Time series in group 8: 54
# Time series in group 9: 55
# HM Measure: 199.2226
#
# Make sure that chain convergence is always assessed. Run the following
# code to show the cluster and diagnostic plots:

data(stocks)
data(tseriescm.out)
attach(tseriescm.out)

clusterplots(tseriescm.out,stocks)
diagplots(tseriescm.out)
```

<table>
<thead>
<tr>
<th>tseriescm.out</th>
<th>Output of tseriescm function for the Mexican stock exchange market prices dataset</th>
</tr>
</thead>
</table>

Description

This object contains the output of the function tseriescm for the example described in its documentation file.

Usage

`data(tseriescm.out)`
Details

See function tseriescm for an explanation of how the output was obtained.

Examples

```r
data(tseriescm.out)
```

tseriescq
Function for quarterly time series clustering.

Description

Function that performs the time series clustering algorithm described in Nieto-Barajas and Contreras-Cristan (2014) for quarterly time series data.

Usage

```r
tseriescq(data, maxiter = 1000, burnin = floor(0.1 * maxiter),
  thinning = 5, level = FALSE, trend = TRUE, seasonality = TRUE,
  deg = 2, c0eps = 2, c1eps = 1, c0beta = 2, c1beta = 1,
  c0alpha = 2, c1alpha = 1, priora = FALSE, pia = 0.5, q0a = 1,
  q1a = 1, priorb = FALSE, q0b = 1, q1b = 1, a = 0.25, b = 0,
  indlpml = FALSE)
```

Arguments

- **data**: Data frame with the time series information.
- **maxiter**: Maximum number of iterations for Gibbs sampling.
- **burnin**: Burn-in period of the Markov Chain generated by Gibbs sampling.
- **thinning**: Number that indicates how many Gibbs sampling simulations should be skipped to form the Markov Chain.
- **level**: Flag that indicates if the level of the time series will be considered for clustering. If TRUE, then it is taken into account.
- **trend**: Flag that indicates if the polynomial trend of the model will be considered for clustering. If TRUE, then it is taken into account.
- **seasonality**: Flag that indicates if the seasonal components of the model will be considered for clustering. If TRUE, then they are taken into account.
- **deg**: Degree of the polynomial trend of the model.
- **c0eps**: Shape parameter of the hyper-prior distribution on sig2eps.
- **c1eps**: Rate parameter of the hyper-prior distribution on sig2eps.
- **c0beta**: Shape parameter of the hyper-prior distribution on sig2beta.
- **c1beta**: Rate parameter of the hyper-prior distribution on sig2beta.
- **c0alpha**: Shape parameter of the hyper-prior distribution on sig2alpha.
c1alpha Rate parameter of the hyper-prior distribution on sig2alpha.
priora Flag that indicates if a prior on parameter "a" is to be assigned. If TRUE, a prior on "a" is assigned.
pia Mixing proportion of the prior distribution on parameter "a".
q0a Shape parameter of the continuous part of the prior distribution on parameter "a".
q1a Shape parameter of the continuous part of the prior distribution on parameter "a".
priorb Flag that indicates if a prior on parameter "b" is to be assigned. If TRUE, a prior on "b" is assigned.
q0b Shape parameter of the prior distribution on parameter "b".
q1b Shape parameter of the prior distribution on parameter "b".
a Initial/fixed value of parameter "a".
b Initial/fixed value of parameter "b".
indlpml Flag that indicates if the LPML is to be calculated. If TRUE, LPML is calculated.

Details
It is assumed that the time series data is organized into a data frame with the time periods included as its row names.

Value
mstar Number of groups of the chosen cluster configuration.
gnstar Array that contains the group number to which each time series belongs.
HM Heterogeneity Measure of the chosen cluster configuration.
arho Acceptance rate of the parameter "rho".
ara Acceptance rate of the parameter "a".
arb Acceptance rate of the parameter "b".
sig2epssample Matrix that in its columns contains the sample of each sig2eps_i's posterior distribution after Gibbs sampling.
sig2alphasample Matrix that in its columns contains the sample of each sig2alpha_i's posterior distribution after Gibbs sampling.
sig2betasample Matrix that in its columns contains the sample of each sig2beta_i's posterior distribution after Gibbs sampling.
sig2thesample Vector that contains the sample of sig2the's posterior distribution after Gibbs sampling.
rhosample Vector that contains the sample of rho's posterior distribution after Gibbs sampling.
asample Vector that contains the sample of a's posterior distribution after Gibbs sampling.
bsample Vector that contains the sample of b’s posterior distribution after Gibbs sampling.

msample Vector that contains the sample of the number of groups at each Gibbs sampling iteration.

lpml If indlpml = TRUE, lpml contains the value of the LPML of the chosen model.

Author(s)
Martell-Juarez, D.A. and Nieto-Barajas, L.E.

Examples
do not run
#
data(houses)
tseriescq.out <- tseriescq(houses,maxiter=4000,level=FALSE,trend=TRUE,
seasonality=TRUE,priora=TRUE)
#
The console output of the above example is:
#
Number of groups of the chosen cluster configuration : 9
Time series in group 1 : 1
Time series in group 2 : 2 3 4 5 6 7 9 10 11 12 13 15 16 17 18 19 20 21 # 25 26
Time series in group 3 : 8 23
Time series in group 4 : 14
Time series in group 5 : 22
Time series in group 6 : 24
Time series in group 7 : 28
Time series in group 8 : 32
Time series in group 9 : 34
HM Measure : 126.9543
#
Make sure that chain convergence is always assessed. Run the following
code to show the cluster and diagnostic plots:

data(houses)
data(tseriescq.out)
attach(tseriescq.out)

clusterplots(tseriescq.out,houses)
diagplots(tseriescq.out)

Description
This object contains the output of the function tseriescq for the example described in its documentation file.
Usage

data(tseriescq.out)

Details

See function tseriescq for an explanation of how the output was obtained.

Examples

data(tseriescq.out)
Index

*Topic datasets
 gdp, 6
 houses, 6
 stocks, 8
 tseriesca.out, 11
 tseriescm.out, 14
 tseriescq.out, 17

*Topic package
 BNPTSclust-package, 2
 BNPTSclust (BNPTSclust-package), 2
 BNPTSclust-package, 2

 clusterplots, 2
 comp11, 3

 designmatrices, 4
 diagplots, 5

 gdp, 6

 houses, 6

 scaleandperiods, 7
 stocks, 8

 tseriesca, 8
 tseriesca.out, 11
 tseriescm, 12
 tseriescm.out, 14
 tseriescq, 15
 tseriescq.out, 17