Package ‘BaBooN’

June 15, 2015

Version 0.2-0
Date 2015-06-15
Title Bayesian Bootstrap Predictive Mean Matching - Multiple and Single Imputation for Discrete Data
Author Florian Meinfelder [aut, cre], Thorsten Schnapp [aut]
Maintainer Florian Meinfelder <florian.meinfelder@uni-bamberg.de>
Description Included are two variants of Bayesian Bootstrap Predictive Mean Matching to multiply impute missing data. The first variant is a variable-by-variable imputation combining sequential regression and Predictive Mean Matching (PMM) that has been extended for unordered categorical data. The Bayesian Bootstrap allows for generating approximately proper multiple imputations. The second variant is also based on PMM, but the focus is on imputing several variables at the same time. The suggestion is to use this variant, if the missing-data pattern resembles a data fusion situation, or any other missing-by-design pattern, where several variables have identical missing-data patterns. Both variants can be run as 'single imputation' versions, in case the analysis objective is of a purely descriptive nature.
License GPL (>= 2)
Depends R (>= 3.1.0), Rcpp (>= 0.11.2)
Imports Hmisc, MASS, nnet, coda
Suggests mice, lattice, norm
LinkingTo Rcpp, RcppArmadillo
ByteCompile true
URL http://www.r-project.org
Repository CRAN
Date/Publication 2015-06-15 17:30:31
NeedsCompilation yes
R topics documented:

BaBooN-package ... 2
BBPMM ... 4
BBPMM.row ... 7
dmi ... 10
impdiagnosticconversion .. 11
MI.inference ... 14
rowimpPrep .. 17
summary.imp ... 18
summary.impprep ... 19

Index 21

BaBooN-package Package for multiple imputation of missing values based on Bayesian Bootstrap with Predictive Mean Matching.

Description

Included are two variants of Bayesian Bootstrap Predictive Mean Matching to multiply impute missing data. The first variant is a variable-by-variable imputation combining sequential regression and Predictive Mean Matching (PMM) that has been extended for unordered categorical data. The Bayesian Bootstrap allows for generating approximately proper multiple imputations. The second variant is also based on PMM, but the focus is on imputing several variables at the same time. The suggestion is to use this variant, if the missing-data pattern resembles a data fusion situation, or any other missing-by-design pattern, where several variables have identical missing-data patterns. Both variants can be run as 'single imputation' versions, in case the analysis objective is of a purely descriptive nature.

Details

Package: BaBooN
Type: Package
Version: 0.2-0
Date: 2015-06-15
License: GPL (>= 2)

Author(s)

Florian Meinfelder [aut, cre] <florian.meinfelder[AT]uni-bamberg.de>
Thorsten Schnapp [aut] <thorsten.schnapp[AT]uni-bamberg.de>
Maintainer: Florian Meinfelder <florian.meinfelder[AT]uni-bamberg.de>
References

(Multiple) Imputation through Bayesian Bootstrap Predictive Mean Matching (BBPMM)

Description

‘BBPMM’ performs single and multiple imputation (MI) of mixed-scale variables using a chained equations approach and (Bayesian Bootstrap) Predictive Mean Matching.

Usage

BBPMM(data, M=10, nIter=10, outfile=NULL, ignore=NULL, vartype=NULL, stepmod="stepAIC", maxit.multi=3, maxit(glm)=25, maxperc = 0.98, verbose=TRUE, setSeed, chainDiagnostics=TRUE, ...)

Arguments

Data: A partially incomplete data frame or matrix.

M: Number of multiple imputations. If M=1, no Bayesian Bootstrap step is carried out. Default=10.

nIter: Number of iterations of the chained equations algorithm before the data set is stored as an 'imputed data set'. If set to "autolin", the numbers of iterations will be selected using a data monotonicity index (based on dmi). Default=10.

outfile: A character string that specifies the path and file name for the imputed data sets. If outfile=NULL (default), no data set is stored.

ignore: A character or numerical vector that specifies either column positions or variable names that are to be excluded from the imputation model and process, e.g. an ID variable. If ignore=NULL (default), all variables in Data are used in the imputation model.

vartype: A character vector that flags the class of each variable in Data (without the variables defined by the ignore argument), with either 'M' for metric-scale or 'C' for categorical. The default (NULL) takes over the classes of Data. Overruling these classes can sometimes make sense: e.g., an ordinal-scale variable is originally classified as ‘factor’, but treating it as metric-scale variable within the imputation process might still be a better choice (considering the robust properties of predictive mean matching to model misspecification).

stepmod: Performs variable selection for each imputation model based on the either on Schwarz (Bayes) Information criterion (backward). Default="stepAIC".

maxit.multi: Imported argument from the nnet package that specifies the maximum number of iterations for the multinomial logit model estimation. Default=3.

maxit.glm: Argument for specification of the maximum number of iterations for the binomial logit model estimation (i.e., glm). Default=25.
maxPerc The maximum percentage the mode category of a variable is allowed to have in order to try `regular` imputation. If a variable is approximately Dirac distributed, i.e. if it has (almost) no variance, imputation is carried out by simple hot deck imputation. Default = 0.98.

verbose The algorithm prints information on imputation and iteration numbers. Default = TRUE.

setSeed Optional argument to fix the pseudo-random number generator in order to allow for reproducible results.

chainDiagnostics Argument specifying if Monte Carlo chains for further diagnostics should be returned as well. Default=TRUE.

... Further arguments passed to or from other functions.

Details

BBPMM is based on a chained equations approach that is using a Bayesian Bootstrap approach and Predictive Mean Matching (PMM) variants for metric-scale, binary, and multi-categorical variables to generate multiple imputations. In order to emulate a monotone missing-data pattern as well as possible, variables are sorted by rate of missingness (in ascending order). If no complete variables exist, the least incomplete variable is imputed via hot-deck. The starting solution then builds the imputation model using the observed values of a particular y variable, and the corresponding observed or already imputed values of the x variables (i.e., all variables with fewer missing values than y). Due to the PMM element in the algorithm, auto-correlation of subsequent iterations is virtually zero. Therefore, a burn-in period is not required, and there is no need to administer `high` values (> 20) to `nIter` either.

If M=1, no Bayesian Bootstrap step is carried out for the chained equations. Note that in this case the algorithm is still unlikely to converge to a stable solution, because of the Predictive Mean Matching step.

Value

call The call of BBPMM.

mis.num Vector containing the numbers of missing values per column.

modelselection Chosen model selection method for the function call.

seed Chosen seed value for the function call.

imputedata The imputed data set, if M=1, or a list containing M imputed data sets.

misOverview The percentage of missing values per incomplete variable.

indMatrix A matrix with the same dimensions as Data minus ignore containing flags for missing values.

M Number of (multiple) imputations.

nIter Number of iterations between two imputations.

Chains List containing the the Gibbs sampler sequences for every variable of every imputation for every iteration.

FirstSeed First .Random.Seed before imputation starts.
LastSeed Last .Random.Seed after function is done.

ignoredvariables
TRUE / FALSE indicator whether variables were ignored during imputation.

Author(s)
Florian Meinfelder, Thorsten Schnapp [ctb]

References

See Also
BBPMM.row, dmi

Examples

```r
### sample data set with non-normal variables
set.seed(1000)
n <- 50
x1 <- round(rnorm(n, 0.5, 3.5))
x2 <- as.factor(c(rep(1,10),rep(2,25),rep(3,15)))
x3 <- round(rnorm(n, 0, 3))
y1 <- round(x1-0.25*(x2==2)+0.5*x3+rnorm(n, 0, 1))
y1 <- ifelse(y1<1L, 1L, y1)
y1 <- as.factor(ifelse(y1>4, 5, y1))
y2 <- x1+rnorm(n, 0, 0.5)
y3 <- round(x3+rnorm(n, 0, 2))
data1 <- as.data.frame(cbind(x1,x2,x3,y1,y2,y3))
misrow1 <- sample(n, 20)
```
BBPMM.row

misrow2 <- sample(n,15)
misrow3 <- sample(n,10)
is.na(data1[misrow1, 4]) <- TRUE
is.na(data1[misrow2, 5]) <- TRUE
is.na(data1[misrow2, 6]) <- TRUE

imputation
imputed.data <- BBPMM(data1, nIter=5, M=5)

Description

‘BBPMM.row’ performs single and multiple imputation (MI) of metric scale variable vectors. For MI, parameter draws from a posterior distribution are replaced by a Bayesian Bootstrap step. Imputations are generated using Predictive Mean Matching (PMM) as described in Little (1988).

Usage

BBPMM.row(misDataPat, blockImp=length(misDataPat$blocks),
M=10, outfile=NULL, manWeights=NULL, stepmod="stepAIC", verbose=TRUE,
tol=0.25, setSeed=NULL, ...)

Arguments

misDataPat | An object created by rowimpPrep that contains information on all identified missing-data patterns.
blockImp | A scalar or vector containing the number(s) of the block(s) considered for imputation. Per default only the last block is imputed.
M | Number of multiple imputations. If M=1, no Bayesian Bootstrap step is carried out.
outfile | A character string that specifies the path and file name for the imputed data sets. If outfile=NULL (default), no data set is stored.
manWeights | Optional argument containing manual (non-negative) weights for the PMM step. manWeights can either be a list containing a vector for each missingness pattern, or just a vector, if only one missingness pattern/block exists. In either case, the number of elements in the vector(s) must match the number of variables in the corresponding block. Note that the higher the weight the higher the importance of a good match for the corresponding variable’s predictive means.
stepmod | Performs variable selection for each imputation model based on the either on Schwarz (Bayes) Information criterion (backward). Default="stepAIC".
verbose | The algorithm prints information on weighting matrices and imputation numbers. Default=TRUE.
tol | Imported argument from function qr that specifies the tolerance level for linear dependencies among the complete variables and defaults to 0.25.
Optional argument to fix the pseudo-random number generator in order to allow for reproducible results.

Further arguments passed to or from other functions.

Details

The simultaneous imputation of several variables is useful for missing-by-design patterns, such as data fusion or split questionnaire designs. The predictive means of the imputation variables are weighted by the inverse of the covariance matrix of the residuals from the regression of these variables on the complete variables. The intuitive idea behind is that distances between predictive means should be punished more severely, if the particular variable can be explained well by the (completely observed) imputation model variables. Through partialization and subsequent usage of the residuals the weight matrix is transformed into a diagonal matrix. The calculated weights can be adjusted by manual weights. Since the weight matrix is a Mahalanobis type of distance matrix, the weights are in the denominator and therefore the lower the weight, the higher the influence. As this is somewhat counterintuitive, the reciprocal of the manual weights is taken. Therefore, the higher the manual weight the higher in the influence of the corresponding variable’s predictor on the overall distance. To identify the missing-by-design patterns it is necessary to transform the raw data set via `rowimpPrep`. The donor/recipient ID pairlist for each imputation and identified pattern (‘block’) is stored. In general, `weightMatrix`, `model` and `pairlist` are list objects named ‘M1’ to ‘M<length(blockImp)>’, and each in return is a list object named ‘block1’ to ‘block<length(blockImp)>’. `model` contains another list object with `lm`-objects for all variables in a particular block. Unlike BBPMM this algorithm is not based on sequential regression. Therefore, imputed variables are conditionally independent given the completely observed variables (of which at least one must exist).

Value

- **call**
 The call of BBPMM.row

- **mis.num**
 Vector containing the numbers of missing values per column.

- **modelselection**
 Chosen model selection method for the function call.

- **seed**
 Chosen seed value for the function call.

- **impdata**
 A list containing M completed data sets.

- **weightMatrix**
 A list containing weight matrices for all imputations and blocks.

- **model**
 A list containing the `lm`-objects for all imputations and blocks.

- **pairlist**
 A list containing the donor/recipient pairlist data frames for all imputations and blocks.

- **indMatrix**
 A matrix with the same dimensions as the incomplete data containing flags for missing values.

- **FirstSeed**
 First `.Random.Seed` before imputation starts.

- **LastSeed**
 Last `.Random.Seed` after function is done.

- **ignoredvariables**
 TRUE / FALSE indicator whether variables were ignored during imputation.

Author(s)

Florian Meinfelder, Thorsten Schnapp [ctb]
References

See Also

`rowimpprep`, `BBPMM`

Examples

```r
### sample data set with non-normal variables and a single
### missingness pattern
set.seed(1000)
n <- 50
x1 <- round(runif(n,0.5,3.5))
x2 <- as.factor(c(rep(1,10),rep(2,25),rep(3,15)))
x3 <- round(rnorm(n,0,3))
y1 <- round(x1-0.25*(x2==2)+0.5*x3+rnorm(n,0,1))
y1 <- ifelse(y1<1.1,y1)
y1 <- ifelse(y1>4.5,y1)
y2 <- y1+rnorm(n,0,0.5)
y3 <- round(x3+rnorm(n,0,2))
data <- as.data.frame(cbind(x1,x2,x3,y1,y2,y3))
misrow1 <- sample(n,20)
data[misrow1, c(4:6)] <- NA
```
Description

'dmi' calculates a monotonicity index for data with missing values.

Usage

```r
dmi(data)
```

Arguments

- `data` A data frame containing missing values.

Details

The data monotonicity index examines the ratio of missing values with non-monotonicity and complete monotonicity in all variables. To denote full monotonicity with 1 and no monotonicity with 0 this ratio is subtracted from 1.

\[
dmi = 1 - \frac{\sum_{j=1}^{p} \sum_{i=1}^{n-h} I(r_{hj} = 0) \sum_{h=1}^{n} I(r_{hi} = 0)}{\sum_{h=1}^{n} \sum_{j=1}^{p} I(r_{hj} = 0)}
\]

Value

Returns a value between 1 (fully monotone) and 0 (no monotonicity).

Author(s)

Florian Meinfelder, Thorsten Schnapp

References

impdiagnosticconversion

See Also

BBPMM, prelim.norm

Examples

if(!require(MASS)) install.packages("MASS")
library(MASS) ## see references
data(survey)

Sorting via 'norm's prelim.norm
if(!require(Hmisc)) install.packages("Hmisc")
library(Hmisc) ## see references
survey.numeric <- as NumericMatrix(survey)

if(!require(norm)) install.packages("norm")
library(norm) ## see references
su.sort <- prelim.norm(survey.numeric)
new.survey <- survey[order(su.sort$ro),
 sort(su.sort$nmis, index.return=TRUE)]$ix

Comparison
dmi(survey) # original
dmi(new.survey) # sorted
Details

To provide a wider variety of analysis and diagnostic tools and facilitate the collaboration between different imputation packages, we started to create a conversion tool. At the moment it is possible to transform an output created by BaBoN’s BBPM function into a mids-like object returned from mice (van Buuren, Groothuis-Oudshoorn 2011). For diagnostics with the help of the functions provided by the package coda (Plummer et al. 2006), this function prepares the output. It returns a list, that isn’t directly of the desired class, but results in a list with four elements, containing the chains for the means, variances, medians and standard deviations of the imputed values transformed to the specified type respectively. Hence, accessing the first element of the list returns actual the converted means, the second element contains the converted variances and so on.

We hope it is somehow an impulse for future standardisation or interchangeability of outputs generated by different multiple imputation routines and analysing the imputed values.

Value

See for details mcmc, mcmc.list or mids. Remark: Converting to mcmc or mcmc.list results in a list with four elements (medians, vars, medians, sds), containing the chains for the means, variances, medians and standard deviations of the imputed values transformed to the specified type. See the examples.

Author(s)

Thorsten Schnapp, Florian Meinfelder [ctb]

References

See Also

mcmc, mcmc.list, mids, mids-class, mice, plot.mids, BBPM

Examples

```r
## Not run:
#### sample data set with non-normal variables
set.seed(1000)
n <- 50
```
x1 <- round(runif(n,0.5,3.5))
x2 <- as.factor(c(rep(1,10),rep(2,25),rep(3,15)))
x3 <- round(rnorm(n,0,3))
y1 <- round(x1-0.25*(x2==2)+0.5*x3+rnorm(n,0,1))
y1 <- ifelse(y1<1.1,y1)
y1 <- as.factor(ifelse(y1>4.5,y1))
y2 <- x1+rnorm(n,0,0.5)
y3 <- round(x3+rnorm(n,0,2))
data1 <- as.data.frame(cbind(x1,x2,x3,y1,y2,y3))
misrow1 <- sample(n,20)
misrow2 <- sample(n,15)
misrow3 <- sample(n,10)
is.na(data1[misrow1,4]) <- TRUE
is.na(data1[misrow2,5]) <- TRUE
is.na(data1[misrow2,6]) <- TRUE

imputation
imputed.data <- BBPMM(data1, nIter=3, M=3)

Test Conversion
if(!require(coda)) install.packages("coda")
if(!require(mice)) install.packages("mice")

require(coda) ## see references
require(mice) ## see references
require(lattice) ## see references

conversion to mcmc
imp.to.mcmc <- impdiagnosticconversion(imputed.data, type="mcmc")

conversion to mcmc.list
imp.to.mcmc.list <- impdiagnosticconversion(imputed.data, type="mcmc.list")

conversion to mids
imp.to.mids <- impdiagnosticconversion(imputed.data, type="mids")

Test

mcmc:
plot(imp.to.mcmc$means[[1]])
acfplot(imp.to.mcmc$vars[[1]])
plot(imp.to.mcmc$medians[[1]])
acfplot(imp.to.mcmc$sds[[1]])

mcmc.list:
xyplot(imp.to.mcmc.list[[1]]) ## Mean
qqmath(imp.to.mcmc.list[[2]]) ## Variance
xyplot(imp.to.mcmc.list[[3]]) ## Median
qqmath(imp.to.mcmc.list[[4]]) ## Std.dev.
MI.inference

Description

`MI.inference` applies Rubin’s combining rules to estimated quantities of interest that are based on multiply imputed data sets. The function requires as input two vectors of length M for the estimate and its variance.

Usage

```
MI.inference(thetahat, varhat.thetahat, alpha=0.05)
```

Arguments

- **thetahat**: A vector of length M containing estimates of the quantity of interest based on multiply imputed data sets.
- **varhat.thetahat**: A vector of length M containing the corresponding variances of `thetahat`.
- **alpha**: The significance level at which lower and upper bound are calculated. DEFAULT=0.05

Details

Multiple Imputation (Rubin, 1987) of missing data is a generally accepted way to get correct variance estimates for a particular quantity of interest in the presence of missing data. `MI.inference` estimates the **within variance** W and **between variance** B, and combines them to the **total variance** T. Based on the output, further analysis figures, such as the **fraction of missing information** can be calculated.

Value

- **MI.Est**: A scalar containing the MI estimate of the quantity of interest (i.e. an estimator averaged over all M data sets).
- **MI.Var**: The Multiple Imputation variance.
- **CI.low**: The lower bound of the MI confidence interval.
- **CI.up**: The upper bound of the MI confidence interval.
- **BVar**: The estimated between variance.
- **WVar**: The estimated within variance.
References

Examples

Not run:
example 1
n <- 100
x1 <- round(runif(n,0.5,3.5))
x2 <- round(runif(n,0.5,4.5))
x3 <- runif(n,1,6)
y1 <- round(x1-0.25*x2+0.5*x3+rnorm(n,0,1))
y1 <- ifelse(y1<2.2,y1)
y1 <- as.factor(ifelse(y1>4.5,y1))
y2 <- x3+rnorm(n,0,2)
y3 <- as.factor(ifelse(x2+rnorm(n,0,2)>2.1,0))
mis1 <- sample(100,20)
mis2 <- sample(100,30)
mis3 <- sample(100,25)
data1 <- data.frame("x1"=x1,"x2"=x2,"x3"=x3,
"y1"=y1,"y2"=y2,"y3"=y3)
is.na(data1$y1[mis1]) <- TRUE
is.na(data1$y2[mis2]) <- TRUE
is.na(data1$y3[mis3]) <- TRUE
imputed.data <- BBPMM(data1, M=5, nIter=5)

MI.m.meany2.hat <- sapply(imputed.data$impdata,
FUN=function(x) mean(x$y2))

MI.v.meany2.hat <- sapply(imputed.data$impdata,
FUN=function(x) var(x$y2)/length(x$y2))

MI inference
MI.y2 <- MI.inference(MI.m.meany2.hat,
MI.v.meany2.hat, alpha=0.05)

MI.y2$MI.Est
MI.y2$MI.Var

example 2: a small simulation example

simple additional function to calculate coverages:

coverage <- function(value, bounds) {
 ifelse(min(bounds) <= value & max(bounds) >= value, 1, 0)
}

value : true value
bounds : vector with two elements (upper and lower bound of the CI)
sample size
n <- 100

true value for the mean of y2
m.y2 <- 3.5
y2.cover <- vector(length=n)
set.seed(1000)

100 data generations
time1 <- Sys.time()
for (i in 1:100) {
 x1 <- round(runif(n, 0.5, 3.5))
 x2 <- round(runif(n, 0.5, 4.5))
 x3 <- runif(n, 1, 6)
 y1 <- round(x1-0.25*x2+0.5*x3+rnorm(n, 0, 1))
 y2 <- ifelse(y1<2, 2, y1)
 y1 <- as.factor(ifelse(y1>4, 5, y1))
 y2 <- x3+rnorm(n, 0, 2)
 y3 <- as.factor(ifelse(y2+rnorm(n, 0, 2)>2, 1, 0))
 mis1 <- sample(n, 20)
 mis2 <- sample(n, 30)
 mis3 <- sample(n, 25)
 data1 <- data.frame("x1"=x1,"x2"=x2,"x3"=x3,
 "y1"=y1,"y2"=y2,"y3"=y3)
 is.na(data1$y1[mis1]) <- TRUE
 is.na(data1$y2[mis2]) <- TRUE
 is.na(data1$y3[mis3]) <- TRUE

 sim.imp <- BBPMM(data1, M=3, nIter=2,
 stepmod="", verbose=FALSE)

 MI.m.meany2.hat <- sapply(sim.imp$impdata,
 FUN=function(x) mean(x$y2))
 MI.v.meany2.hat <- sapply(sim.imp$impdata,
 FUN=function(x)
 var(x$y2)/length(x$y2))

MI inference
MI.y2 <- MI.inference(MI.m.meany2.hat, MI.v.meany2.hat,
 alpha=0.05)

 y2.cover[i] <- coverage(m.y2, c(MI.y2$CI.low, MI.y2$CI.up))
}
time2 <- Sys.time()
diff(time2, time1, unit="secs")

coverage estimator (alpha=0.05):
 mean(y2.cover)

End (Not run)
rowimpPrep

Missing-data pattern identifier

Description
‘rowimpPrep’ identifies all missingness patterns within an incomplete data set. Running rowimpPrep is a prerequisite for BBPM.\texttt{row}.

Usage
rowimpPrep(data, ID=NULL, verbose=TRUE)

Arguments
data Either a data frame or matrix with missing values.
ID A numeric or character string vector indicating the column positions or names of the ID variable (if two data sets were stacked that have a joint subset of variables). The first element refers to the ‘donor ID’, the second element refers to the ‘recipient ID’. This distinction is only of relevance, if the data set is ‘L-shaped’, i.e. if the data contains only one missing-data pattern (where incomplete cases are ‘recipients’). If ID has only one element, The function assumes that the identifier variables of the two data sets are packed into a single variable. Default=NULL is used, if no ID variable is specified.
verbose Prints information on identified missing-data patterns. Default=TRUE.

Details
rowimpPrep identifies all patterns, and allows to decide, whether to impute all missing-data patterns with BBPM.\texttt{row} or just some of them. This comes in handy if variables that were assumed to be completely observed have missing values. These variables are then likely to define an unexpected ’block’ of their own. Of course, BBPM.\texttt{row} can be used to impute missing data that are not missing-by-design as well, but BBPM would probably be the better option. Note that all variables listed in \texttt{compNames} are used for the imputation model in BBPM.\texttt{row}, i.e. completely observed variables (ID variables aside) which are not to be used in the imputation model, have to be removed from the data set beforehand.

Value
data The original data set minus the ID variable(s).
key The ID variable(s) from the original data set.
blocks A list containing the column positions of all identified missing-data patterns.
blockNames A list containing the variable names corresponding to object blocks.
compNames A character vector containing the variable names of the (completely observed) imputation model variables.
ignore Contains positions of ignored variables.
summary.imp

summary.imp

Summary method for objects of class ‘imp’

Description

Returns some information about the incomplete data set and the imputation process.

Usage

S3 method for class ‘imp’
summary(object,...)

Arguments

object Either with BBPMM or BBPMM.row generated object.
... Arguments to be passed to or from other functions.

Author(s)

Florian Meinfelder, Thorsten Schnapp [ctb]

Examples

```r
### sample data set with non-normal variables and a single
### missingness pattern
set.seed(1000)
n <- 50
x1 <- round(runif(n,0.5,3.5))
x2 <- as.factor(c(rep(1,10),rep(2,25),rep(3,15)))
x3 <- round(rnorm(n,0,3))
y1 <- round(x1-0.25*(x2==2)+0.5*x3+rnorm(n,0,1))
y1 <- ifelse(y1<1.1,y1)
y1 <- ifelse(y1>4.5,y1)
y2 <- y1+rnorm(n,0,0.5)
y3 <- round(x3+rnorm(n,0,2))
data1 <- as.data.frame(cbind(x1,x2,x3,y1,y2,y3))
misrow1 <- sample(n,20)
is.na(data1[misrow1, 4:6]) <- TRUE

### preparation step
impblock <- rowimpPrep(data1)
impblock$blockNames
```
Details

Returns information about the percentage of missing data as well as about the imputation variant, the number of (multiple) imputations and the number of iterations between two imputations.

Author(s)

Florian Meinfelder

See Also

BBPMM, BBPMM.row

Examples

```r
# sample data set with non-normal variables and two different missingness patterns
n <- 50
x1 <- round(runif(n,0.5,3.5))
x2 <- as.factor(c(rep(1,10),rep(2,25),rep(3,15)))
x3 <- round(rnorm(n,0,3))
y1 <- round(x1-0.25*(x2==2)+0.5*x3+rnorm(n,0,1))
y1 <- ifelse(y1<1,1,y1)
y1 <- as.factor(ifelse(y1>4,5,y1))
y2 <- x1+rnorm(n,0,0.5)
y3 <- round(x3+rnorm(n,0,2))
data1 <- as.data.frame(cbind(x1,x2,x3,y1,y2,y3))
misrow1 <- sample(n,20)
misrow2 <- sample(n,15)
misrow3 <- sample(n,10)
is.na(data1[misrow1, 4]) <- TRUE
is.na(data1[misrow2, 5]) <- TRUE
is.na(data1[misrow2, 6]) <- TRUE

# imputation
imputed.data <- BBPMM(data1, nIter=5, M=5)
summary(imputed.data)
```
Arguments

object An object generated by rowimpPrep.
nNames Number of variable names per block to be printed (Default = 10).
... Arguments to be passed to or from other functions.

Details

Returns the number of identified missing-data patterns, the first nNames variable names per block and the names of the completely observed variables.

Author(s)

Florian Meinfelder

See Also

rowimpPrep

Examples

sample data set with non-normal variables and a single missingness pattern
set.seed(1000)
n <- 50
x1 <- round(runif(n,0.5,3.5))
x2 <- as.factor(c(rep(1,10),rep(2,25),rep(3,15)))
x3 <- round(rnorm(n,0,3))
y1 <- round(x1-0.25*(x2==2)+0.5*x3+rnorm(n,0,1))
y1 <- ifelse(y1<1.1,y1)
y1 <- ifelse(y1>4.5,y1)
y2 <- y1+rnorm(n,0,0.5)
y3 <- round(x3+rnorm(n,0,2))
data1 <- as.data.frame(cbind(x1,x2,x3,y1,y2,y3))
misrow1 <- sample(n,20)
is.na(data1[misrow1, c(4:6)]) <- TRUE

preparation step
impblock <- rowimpPrep(data1)

summary(impblock)
Index

*Topic conversion
 impdiagnosticconversion, 11
*Topic datagen
 BBPM, 4
 BBPM.row, 7
*Topic monotone data pattern
 dmi, 10
*Topic package
 BaBooN-package, 2
*Topic robust
 BBPM, 4
 BBPM.row, 7
 .Random.Seed, 5, 6, 8
BaBooN-package, 2
BBPM, 4, 9, 11, 12, 17, 19
BBPM.row, 6, 7, 17, 19
BBPMMcol (BBPM), 4
BBPMMrow (BBPM.row), 7
dmi, 4, 6, 10
glm, 4
impdiagnosticconversion, 11
lm, 8
mcmc, 11, 12
mcmc.list, 11, 12
MI.inference, 14
mice, 12
mids, 11, 12
plot.mids, 12
prelim.norm, 11
qr, 7
rowimpPrep, 7–9, 17, 20
summary.imp, 18
summary.impprep, 19