Package ‘Bessel’

February 19, 2015

Version 0.5-5
Date 2013-12-10
Title Bessel -- Bessel Functions Computations and Approximations
Author Martin Maechler
Maintainer Martin Maechler <maechler@stat.math.ethz.ch>
Depends Rmpfr
Suggests gsl
Description Bessel Function Computations for complex and real numbers; notably interfacing TOMS 644; approximations for large arguments, experiments, etc.
License GPL (>= 2)
URL http://specfun.r-forge.r-project.org/
NeedsCompilation yes
Repository CRAN
Date/Publication 2013-12-10 10:36:57

R topics documented:

Airy ... 2
Bessel .. 3
BesselH .. 4
bessell.nuAsym .. 6
bessellasym .. 7
bi .. 9

Index 10
Description

Compute the Airy functions Ai or Bi or their first derivatives, $\frac{d}{dz}Ai(z)$ and $\frac{d}{dz}Bi(z)$.

Usage

AiryA(z, deriv = 0, expon.scaled = FALSE)
AiryB(z, deriv = 0, expon.scaled = FALSE)

Arguments

z complex or numeric vector.
deriv order of derivative; must be 0 or 1.
expon.scaled logical indicating if the result should be scaled by an exponential factor (typically to avoid under- or over-flow).

Details

By default, when expon.scaled is false, AiryA() computes the complex Airy function $Ai(z)$ or its derivative $\frac{d}{dz}Ai(z)$ on deriv=0 or deriv=1 respectively.
When expon.scaled is true, it returns $exp(\zeta)Ai(z)$ or $exp(\zeta)\frac{d}{dz}Ai(z)$, effectively removing the exponential decay in $-\pi/3 < \arg(z) < \pi/3$ and the exponential growth in $\pi/3 < |\arg(z)| < \pi$, where $\zeta = \frac{2}{3}z\sqrt{z}$.

While the Airy functions $Ai(z)$ and $d/dzAi(z)$ are analytic in the whole z plane, the corresponding scaled functions (for expon.scaled=TRUE) have a cut along the negative real axis.

By default, when expon.scaled is false, AiryB() computes the complex Airy function $Bi(z)$ or its derivative $\frac{d}{dz}Bi(z)$ on deriv=0 or deriv=1 respectively.
When expon.scaled is true, it returns $exp(-|\Re(\zeta)|)Bi(z)$ or $exp(-|\Re(\zeta)|)\frac{d}{dz}Bi(z)$, to remove the exponential behavior in both the left and right half planes where, as above, $\zeta = \frac{2}{3}z\sqrt{z}$.

Value

a complex or numeric vector of the same length (and class) as z.

Author(s)

Donald E. Amos, Sandia National Laboratories, wrote the original fortran code. Martin Maechler did the R interface.

References

see BesselI.
Bessel Functions of Complex Arguments $I()$, $J()$, $K()$, and $Y()$

Description

Compute the Bessel functions $I()$, $J()$, $K()$, and $Y()$, of complex arguments z and real ν.

Usage

- `BesselI(z, nu, expon.scaled = FALSE, nSeq = 1)`
- `BesselJ(z, nu, expon.scaled = FALSE, nSeq = 1)`
- `BesselK(z, nu, expon.scaled = FALSE, nSeq = 1)`
- `BesselY(z, nu, expon.scaled = FALSE, nSeq = 1)`

Arguments

- z: complex or numeric vector.
- nu: numeric (scalar).
- `expon.scaled`: logical indicating if the result should be scaled by an exponential factor (typically to avoid under- or over-flow).
- `nSeq`: positive integer; if > 1, computes the result for a whole sequence of nu values; if $nu \geq 0$, nu, $nu+1$, ..., $nu+nSeq-1$; if $nu < 0$, nu, $nu-1$, ..., $nu-nSeq+1$.

Details

The case $nu < 0$ is handled by using simple formula from Abramowitz and Stegun.

See Also

- `BesselI` etc; the Hankel functions `Hankel`.

Examples

```r
### The AiryA() := Ai() function
curve(AiryA, -20, 100, n=1001)
curve(AiryA, -1, 100, n=1001, log="y")
curve(AiryA(x, expon.scaled=TRUE), -1, 50, n=1001)
curve(AiryA(x, expon.scaled=TRUE), 1, 10000, n=1001, log="xy")

### The AiryB() := Bi() function
curve(AiryB, -20, 2, n=1001); abline(h=0,v=0, col="gray", lty=2)
curve(AiryB, -1, 20, n=1001, log="y") # exponential growth (x > 0)
curve(AiryB(x, expon.scaled=TRUE), -1, 20, n=1001)
curve(AiryB(x, expon.scaled=TRUE), 1, 10000, n=1001, log="x")
```
BesselH

Value

A complex or numeric vector (or matrix with nSeq columns if nSeq > 1) of the same length (or nrow when nSeq > 1) and mode as z.

Author(s)

Donald E. Amos, Sandia National Laboratories, wrote the original fortran code. Martin Maechler did the R interface.

References

See Also

The base R functions besseli, etc.

Examples

```r
## For real small arguments, BesselI() gives the same as base::besseli() :
set.seed(47); x <- sort(round(rlnorm(20), 2))
M <- cbind(x, b = besseli(x, 3), B = BesselI(x, 3))
stopifnot(all.equal(M[,"b"], M[,"B"]))
M
```

BesselH

Hankel (H-Bessel) Function (of Complex Argument)

Description

Compute the Hankel functions $H(1, \ast)$ and $H(2, \ast)$, also called ‘H-Bessel’ function (of the third kind), of complex arguments.

Usage

```r
BesselH(m, z, nu, expon.scaled = FALSE, nSeq = 1)
```
Arguments

- **m**: integer, either 1 or 2, indicating the kind of Hankel function.
- **z**: complex or numeric vector of values **different from 0**.
- **nu**: numeric, must currently be non-negative.
- **expon.scaled**: logical indicating if the result should be scaled by an exponential factor (typically to avoid under- or over-flow).
- **nSeq**: positive integer, ...

Details

By default (when `expon.scaled` is false), the resulting sequence (of length `nSeq`) is

\[y_j = H(m, \nu + j - 1, z), \]

computed for \(j = 1, \ldots, nSeq \).

If `expon.scaled` is true, the sequence is

\[y_j = \exp(-\tilde{m}zi) \cdot H(m, \nu + j - 1, z), \]

where \(\tilde{m} = 3 - 2m \) (and \(i^2 = -1 \)), for \(j = 1, \ldots, nSeq \).

Value

A complex or numeric vector (or matrix if \(nSeq > 1 \)) of the same length and mode as \(z \).

Author(s)

Donald E. Amos, Sandia National Laboratories, wrote the original fortran code. Martin Maechler did the R interface.

References

see `besseli`.

See Also

`BesselI` etc; the Airy function `Airy`.

Examples

```r
#----------------------- H(1, x) -----------------------
nus <- c(1, 2, 5, 10)
for(i in seq_along(nus))
  curve(BesselH(1, x, nu=nus[i]), -10, 10, add= i > 1, col=i, n=1000)
legend("topleft", paste("nu = ", format(nus)), col = seq_along(nus), lty=1)

# nu = 10 looks a bit "special": hmm...
curve(BesselH(1, x, nu=10), -.3, .3, col=4,
    ylim = c(-10,10), n=1000)
```
besselI.nuAsym

Asymptotic Expansion of Bessel I(x,nu) and K(x,nu) for Large nu (and x)

Description

Compute Bessel functions I_\nu(x) and K_\nu(x) for large \nu and possibly large x, using asymptotic expansions in Debye polynomials.

Usage

\[
\text{besselI.nuAsym}(x, \text{nu}, k.\text{max}, \text{expon.scaled} = \text{FALSE}, \text{log} = \text{FALSE})
\]

\[
\text{besselK.nuAsym}(x, \text{nu}, k.\text{max}, \text{expon.scaled} = \text{FALSE}, \text{log} = \text{FALSE})
\]

Arguments

x numeric, \geq 0.

nu numeric; The order (maybe fractional!) of the corresponding Bessel function.

k.max integer number of terms in the expansion. Must be in 0:4, currently.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow (I_\nu) or underflow (K_\nu), respectively.

log logical; if TRUE, log(f(.)) is returned instead of f.

Details

Abramowitz & Stegun, page 378, has formula 9.7.7 and 9.7.8 for the asymptotic expansions of I_\nu(x) and K_\nu(x), respectively.

The Debye polynomials u_k(x) are defined in 9.3.9 and 9.3.10 (page 366).

Value

a numeric vector of the same length as the long of x and nu. (usual argument recycling is applied implicitly.)

Author(s)

Martin Maechler
besseliasym

References

See Also

From this package Bessel BesselI(); further, besseliasym() for the case when \(x \) is large and \(\nu \) is small or moderate; further base besseli, etc

Examples

```r
x <- c(1:10, 20, 50, 100, 10000)
nu <- c(1, 10, 20, 50, 10^2:10))

sapply(0:4, function(k.)
sapply(nu, function(n.)
  besseli.nuAsym(x, nu=n., k.max = k., log = TRUE))
sapply(0:4, function(k.)
sapply(nu, function(n.)
  besselK.nuAsym(x, nu=n., k.max = k., log = TRUE))
```

besseliasym

Asymptotic Expansion of besselI(x,\(\nu \)) For Large \(x \)

Description

Compute Bessel function \(I_\nu(x) \) and \(K_\nu(x) \) for large \(x \) and small or moderate \(\nu \), using the asymptotic expansion (9.7.1), p.377 of Abramowitz & Stegun, for \(x \rightarrow \infty \), even valid for complex \(x \),

\[
I_\nu(x) = \frac{\exp(x)}{\sqrt{2\pi x}} \cdot f(x, a),
\]

where

\[
f(x, a) = 1 - \frac{\mu - 1}{8x} + \frac{(\mu - 1)(\mu - 9)}{2!(8x)^2} - \ldots,
\]

and \(\mu = 4a^2 \) and \(|arg(x)| < \pi/2 \).

Whereas besseliasym(x, a) computes \(I_\nu(x) \), besseli.ftrms returns the corresponding terms in the series expansion of \(f(x, a) \) above.

Usage

```r
besseliasym (x, nu, k.max = 10, expon.scaled = FALSE, log = FALSE)
besseli.ftrms(x, nu, K = 20)
```
Arguments

- **x** numeric, \(\geq 0 \).
- **nu** numeric; The order (maybe fractional!) of the corresponding Bessel function.
- **k.max, K** integer number of terms in the expansion.
- **expon.scaled** logical; if TRUE, the results are exponentially scaled in order to avoid overflow.
- **log** logical; if TRUE, \(\log(f(.)) \) is returned instead of \(f \).

Details

\[\ldots \quad \text{FIXME} \quad \ldots \]

Value

a numeric vector of the same length as \(x \).

Author(s)

Martin Maechler

References

See Also

From this package **Bessel()** **Besseli()**; further, **besseli.nuAsym()** which is useful when \(\nu \) is large (as well); further **base** **besseli**, etc.

Examples

```r
x <- c(1:10, 20, 50, 100*2:10))
nu <- c(1, 10, 20, 50, 100)

r <- lapply(c(0:4,10,20), function(k.)
   sapply(nu, function(n.)
      besseli asym(x, nu=n., k.max = k., log = TRUE)))

warnings()
```
bI

Bessel I() function Simple Series Representation

Description

Computes the modified Bessel I function, using one of its basic definitions as an infinite series. The implementation is pure R, working for numeric, complex, but also e.g., for objects of class "mpfr" from package Rmpfr.

Usage

```
bi(x, nu, nterm = 800, exponent.scaled = FALSE, log = FALSE, 
    Ceps = if (isNum) 8e-16 else 2^(-x@.Data[[1]]@prec))
```

Arguments

- **x**: numeric of complex vector, or of another class for which arithmetic methods are defined, notably objects of class mpfr.
- **nu**: non-negative numeric (scalar).
- **nterm**: integer indicating the number of terms to be used. should be in the order of abs(x), but can be smaller for large x. A warning is given, when nterm was chosen too small.
- **exponent.scaled**: logical indicating if the result should be scaled by $\exp(-\text{abs}(x))$.
- **log**: logical indicating if the logarithm logI() is required. is not yet implemented!
- **Ceps**: a relative error tolerance for checking if nterm has been sufficient. The default is “correct” for double precision and also for multiprecision objects.

Value

a “numeric” (or complex or ...) vector of the same class and length as x.

Author(s)

Martin Maechler

References

See Also

This package *BesselI*, base *besseli*, etc

Examples

```
stopifnot(all.equal(bi(1:10, 1), # R code
                     besseli(1:10, 1)))# internal C code w/ different algorithm
```
Index

*Topic math
 Airy, 2
 Bessel, 3
 BesselH, 4
 besselI.nuAsym, 6
 besselIasym, 7
 bi, 9
 Airy, 2, 5
 AiryA (Airy), 2
 AiryB (Airy), 2
 Bessel, 3
 BesselH, 4
 BesselI, 2, 3, 5, 7–9
 BesselI (Bessel), 3
 besselI, 4, 7–9
 besselI.ftrms (besselIasym), 7
 besselI.nuAsym, 6, 8
 besselIasym, 7, 7
 BesselJ (Bessel), 3
 BesselK (Bessel), 3
 besselK.nuAsym (besselI.nuAsym), 6
 BesselY (Bessel), 3
 bi, 9
 class, 9
 complex, 7, 9
 Hankel, 3
 Hankel (BesselH), 4
 matrix, 4, 5
 mode, 4, 5
 mpfr, 9
 nrow, 4
 numeric, 9