Package ‘Biograph’

March 31, 2016

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Explore Life Histories</td>
</tr>
<tr>
<td>Version</td>
<td>2.0.6</td>
</tr>
<tr>
<td>Depends</td>
<td>R (>= 3.0.0)</td>
</tr>
<tr>
<td>Imports</td>
<td>mvna, etm, msm, Epi, lubridate, reshape, plyr, survival, mstate, ggplot2, grDevices, graphics, stats</td>
</tr>
<tr>
<td>Date</td>
<td>2016-03-31</td>
</tr>
<tr>
<td>Author</td>
<td>Frans Willekens</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Frans Willekens willekens@nidi.nl</td>
</tr>
</tbody>
</table>

Description
Transition rates are computed from transitions and exposures. Useful graphics and life-course indicators are computed. The package structures the data for multistate statistical and demographic modeling of life histories.

License
GPL-2

LazyLoad
yes

NeedsCompilation
no

Repository
CRAN

Date/Publication
2016-03-31 17:50:43

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biograph-package</td>
<td>3</td>
</tr>
<tr>
<td>AgeTrans</td>
<td>4</td>
</tr>
<tr>
<td>age_as_Date</td>
<td>5</td>
</tr>
<tr>
<td>age_as_year</td>
<td>6</td>
</tr>
<tr>
<td>Biograph.Lexis</td>
<td>7</td>
</tr>
<tr>
<td>Biograph.long</td>
<td>7</td>
</tr>
<tr>
<td>Biograph msm</td>
<td>8</td>
</tr>
<tr>
<td>Biograph.mstate</td>
<td>9</td>
</tr>
<tr>
<td>Biograph mvna</td>
<td>10</td>
</tr>
<tr>
<td>ChangeObservationWindow.e</td>
<td>11</td>
</tr>
<tr>
<td>ChangeObservationWindow.t</td>
<td>12</td>
</tr>
</tbody>
</table>
R topics documented:

check.par ... 13
cmc_as_age .. 14
cmc_as_Date ... 14
cmc_as_year ... 15
Cumrates ... 16
Date_as_age .. 17
Date_as_cmc .. 18
Date_as_year ... 19
date_b ... 19
date_convert ... 20
GLHS ... 21
GLHS.IllnessDeath ... 22
GLHS.trans ... 23
Lexis.lines ... 24
Lexis.points ... 25
Lexislines.episodes .. 26
LexisOccExp ... 28
Lexispoints ... 29
locpath ... 30
MSLT .. 31
NLOG98 ... 33
Occup ... 34
OverviewEpisodes ... 35
OverviewTransitions ... 36
Parameters ... 37
plot.cumrates .. 39
plot.MSLT.S ... 40
plot.occup.S ... 41
pos.char .. 42
pos.charstr ... 43
Rates.ac .. 44
RateTable ... 45
Remove.intrastate ... 46
rrdat ... 46
SamplePath .. 47
Sequences ... 48
Sequences.ind ... 49
Sequences.ind.0 .. 50
StateSpace ... 51
state_age ... 52
state_time ... 53
string.blank.omit .. 54
stringf .. 54
Trans ... 55
TransitionAB .. 56
transitions ... 57
YearTrans ... 58
year_as_age ... 59
Biograph-package

Description

Biograph is designed to facilitate the descriptive and statistical analysis of life histories. It follows a multistate perspective on the life course and conceptualizes the life course as a sequence of states and transitions between states (events). Transitions are governed by transition rates that depend on event counts and exposure times. Transition rates also depend on covariates.

Biograph produces useful life-course indicators for individuals and groups: (1) types of episodes (open, closed) and transitions (transient, absorbing), (2) states occupied at various ages, (3) sojourn times in different states and (4) state sequences (trajectories). Biograph estimates transition rates by age, origin and destination. Biograph also structures the data for multistate statistical and demographic modeling of life histories. Biograph accepts data in wide format. The user needs to create a Biograph object from original data. The object has a fixed data structure and is input to most functions. The Doc subdirectory of the package (inst/doc of the source package) contains a description of how to prepare Biograph objects. It includes illustrations and R code. It demonstrates the preparation of Biograph objects using hypothetical data and data from the German Life History Survey (GLHS) (used by Blossfeld and Rohwer in their book Techniques of Event History Modeling, 2002), the Netherlands Family and Fertility Survey (NLOG98), the Survey on Health, Ageing and Retirement in Europe (SHARE), the National Family Life Survey of India (NFHS) and data from the European Registry for Blood and Marrow Transplantation (EBMT) (included in the mstate package developed by Putter and colleagues).

Two time scales are considered: individual time (age) and calendar time.

Details

Package: Biograph
Type: Package
Version: 2.0.6
Date: 2016-03-31
License: GPL-2
LazyLoad: yes

Major functions of Biograph (for a complete list, see the INDEX file):
Parameters: extract information from data set
TransitionAB: extract from the raw data information on a selected transition (age profile)
Occup: determines state occupancies at each age and state-specific sojourn times in age interval
Sequences: shows the different state sequences (trajectories) in the sample data
AgeTrans

Rates.ac : computes transition rates by origin state and destination state, and by age (and covariates) by dividing occurrences and exposures.

Biograph.long : converts Biograph object to long format required by the survival and eha packages

Biograph.Lexis : converts Biograph object to Lexis object

Biograph.mstate : converts Biograph object to long format required by the mstate package

Biograph.msm : converts Biograph object to long format required by the msm package

Biograph.mvna : converts Biograph object to long format required by the mvna package

Cumrates : produces (and plots) two types of estimates of cumulative transition rates: Nelson-Aalen estimators (using the mvna package) and occurrence-exposure rates. The latter are generally used in demography.

Lexispoints : produces a scatter plot of the age and time at selected transitions for a subsample of subjects with selected characteristics

Lexislines.episodes : draws lifelines for selected subjects

Author(s)

Frans Willekens <willekens@demogr.mpg.de>

References

<table>
<thead>
<tr>
<th>AgeTrans</th>
<th>Ages at transition</th>
</tr>
</thead>
</table>

Description

Converts dates at transition to ages at transition

Usage

AgeTrans(Bdata)

Arguments

Bdata Biograph object: data in Biograph format

Details

Ages are in years, even when dates are in CMC.
Value

- ages: ages at transition
- ageentry: ages at entry into observation
- agecens: ages at end of observation (censoring)
- st_entry: states occupied at entry into observation
- st_censoring: states occupied at censoring

Note

The sequence of transitions in the component 'ages' is same as in the Biograph object

Author(s)

Frans Willekens

See Also

YearTrans

Examples

data(GLHS)
agetrans <- AgeTrans(Bdata=GLHS)

age_as_Date

Converts a vector of ages to object of class 'Date'.

Description

Converts vector of ages to object of class 'Date'.

Usage

age_as_Date (x,born,format.born,format.out)

Arguments

- x: vector of ages
- born: vector of dates of birth
- format.born: Format of birth dates
- format.out: Format of output dates

Value

decimal year (year and fraction of year)
Author(s)

Frans Willekens

Examples

```r
age_as_Date(23.456, "1990-10-30", "%Y-%m-%d")
# date is 14 April 2014
```

age_as_year

Converts a vector of ages to decimal year (calendar year and fraction of year).

Description

Converts a vector of ages (class 'numeric') to calendar years and fractions of year. The function needs dates of births.

Usage

```r
age_as_year(x, born, format.born)
```

Arguments

- `x`: vector of ages
- `born`: vector of dates of birth (class 'Date')
- `format.born`: format of birth dates

Value

- `year`: Calendar year and fraction of year

Author(s)

Frans Willekens

Examples

```r
age_as_year(23, "1990-10-30", "%Y-%m-%d")
```
Biograph.Lexis

Description

Converts Biograph object to Lexis object of class "Lexis".

Usage

Biograph.Lexis(Bdata, Dlong)

Arguments

- **Bdata**: Biograph object
- **Dlong**: Data in episode (long) format

Details

The argument Dlong is Dlong$Depisode. If Dlong is missing, it is computed.

Value

Lexis object. Time scale is age and time unit is year.

Author(s)

Frans Willekens

Examples

data (GLHS)
Dlongg <- Biograph.long (GLHS)
D <- Biograph.Lexis (GLHS, Dlongg$Depisode)
D <- Biograph.Lexis (GLHS)

Biograph.long

Description

Converts Biograph object to long format used by e.g. the survival and eha packages.

Usage

Biograph.long(Bdata)
Biograph.msm

Arguments

bdata Biograph object

Details

The function firsts calls Parameters if that function was not called before. The long format is produced by the reshape function. A few variables are added. The long format produced by Biograph.long is used by the survival and eha packages. The mstate, mvna and msm packages require a different long format. Biograph.mstate, Biograph mvna and Biograph.msm produce these formats.

Value

devent Data frame with event data: one record for each transition
Depisode Data frame with episode data: one record for each episode

Author(s)

Frans Willekens

References

Willekens (2011)

See Also

Biograph.mstate, Biograph.mvna, Biograph.msm

Examples

data(GLHS)
D <- Biograph.long (Bdata=GLHS)

Biograph.msm Biograph to msm format

Description

Converts Biograph object to input data for msm package (long format)

Usage

Biograph.msm(bdata)

Arguments

bdata Biography object
Value

Data frame with data in msm format

Author(s)

Frans Willekens

References

Examples

data(GLHS)
D <- Biograph.msm(GLHS)
Function statetable.msm of msm package
require(msm)
statetable.msm(state,ID,data=D)

Biograph.mstate

Converting Biograph object to mstate object of class "msdata"

Description

Converts Biograph object to input data for mstate package (long format).

Usage

Biograph.mstate(Bdata)

Arguments

Bdata Biograph object

Details

The procedure consists of four steps:

a. Remove intra-state transitions. First the functions Parameters and Remove.intrastate are called.
b. Produce long format
c. Create object of class "msdata" (mstate format) from long format by producing one record of input data for each possible destination from a given origin and by adding the attribute "trans".
Biograph.mvna

Value
Data in msdata format, used by the mstate package.

Author(s)
Frans Willekens

References

Examples
data (GLHS)
D <- Biograph.mstate (GLHS)
Function events of mstate package
library (mstate)
events (D)
s <- coxph(Surv(Tstart,Tstop,status)~edu+sex,data=D,method="breslow")

Biograph.mvna

\textit{Converts Biograph object to input data for mvna package}

Description
Converts Biograph object to long format used as input data in mvna package.

Usage
Biograph.mvna(Bdata)

Arguments
\begin{itemize}
\item [Bdata] Biograph object
\end{itemize}

Details
The function performs four operations on data in Biograph format:
a. It checks whether intrastate transitions are omitted, i.e. that the diagonal elements are zero. If that is not the case, then it calls the Remove.intrastate function to remove the intrastate moves.
b. It calls the Parameters function to determine the parameters associated with the Biograph object with diagonal elements removed.
c. It calls the Biograph.long function to create an object having the data in long format.
d. It adds to the data frame the variables entry and exit and it changes the variable name of the subject identification number from ID to id.

Value

- `D`: Data frame of class "mvna" (only variables that are required)
- `D.cov`: Data in mvna format, including covariates and some other variables
- `par`: Object produced by Parameters function, including the object `trans_possible`: possible transitions
- `cens`: Character string denoting censoring (it is "cens")

Note

Function `Biograph.mvna` uses the functions `Extract`, `remove.intrastate` and `Biograph.long`

Author(s)

Frans Willekens

References

Examples

```r
data(GLHS)
D <- Biograph.mvna(GLHS)
# Run mvna:
require(mvna)
zz <- attr(D$D,"param")$namstates
zzz <- attr(D$D,"param")$trans_possible
na <- mvna(data=D$D,state.names=zz,tra=zzz,cens.name=D$cens)
```

Description

Observation starts at time of entry into given state (entrystate) and ends at time of entry into another given state (exitstate). If exitstate = NULL, then observation ends at last date for which data are available. Entry into entrystate and entry into exitstate must lie in original observation window.
Usage

ChangeObservationWindow.t(Bdata, entrystate, exitstate)

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bdata</td>
<td>Biograph object</td>
</tr>
<tr>
<td>entrystate</td>
<td>Observation starts at time of entry into entry state</td>
</tr>
<tr>
<td>exitstate</td>
<td>Entry into exitstate implies end of observation. If exitstate = NA, observation ends at end of initial observation window</td>
</tr>
</tbody>
</table>

Value

Biograph object with information on new observation window and transitions during the new observation window.

Author(s)

Frans Willekens

Examples

The following example defines observation window
as period between labour force entry and survey date.
data(GLHS)
entrystate <- "J"
exitstate <- NA
GLHS2 <- ChangeObservationWindow.t(GLHS, entrystate, exitstate)

ChangeObservationWindow.t

Changes observation window to period between two points in time

Description

Observation starts at starttime and ends at endtime.

Usage

ChangeObservationWindow.t(Bdata, starttime, endtime, covs.dates)

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bdata</td>
<td>Biograph object</td>
</tr>
<tr>
<td>starttime</td>
<td>Observation starts at starttime. Time is measured in unit used in Biograph object.</td>
</tr>
<tr>
<td>endtime</td>
<td>Observation ends at endtime. Time is measured in unit used in Biograph object.</td>
</tr>
<tr>
<td>covs.dates</td>
<td>Covariates having dates</td>
</tr>
</tbody>
</table>
Value

Biograph object with information on new observation window and transitions during the new observation window.

Author(s)

Frans Willekens

Examples

```r
# The following example defines observation window
# as period between Century Month Code (CMC) 500 and CMC 900 (survey = GLHS)
data (GLHS)
z <- ChangeObservationWindow.t (GLHS,starttime=500,endtime=800,covs.dates=c("marriage","LMentry"))
```

Description

Assesses consistency between parameter values and the Biograph object (data set) loaded.

Usage

```r
check.par(Bdata)
```

Arguments

- **Bdata**: Biograph object

Details

The function checks the presence of the date format and the correct specification of a set of parameters.

Author(s)

Frans Willekens
cmc_as_age

Converts date in Century Month Code (CMC) to age.

Description

Converts date in Century Month Code (CMC) to age.

Usage

cmc_as_age (x, born, format.born)

Arguments

x
Date in Century Month Code
born
Date of birth
format.born
Format of date of birth

Value

year
Dates in calendar year and fraction of year
age
age

Author(s)

Frans Willekens

Examples

cmc_as_age (1260, 555, "cmc")
cmc_as_age (1260, "1946-03-18", "%Y-%m-%d")

cmc_as_Date

Converts a vector of dates in Century Month Code (CMC) to object of class 'Date'.

Description

Converts vector of dates in Century Month Code (CMC) to object of class 'Date'.

Usage

cmc_as_Date (x, selectday, format.out)
cmc_as_year

Arguments

x Date in Century Month Code
selectday If input date is in Century Month Code (year and month), selectday gives the
day of the month. Default value is one, the transition occurs on the 1st of the
month.
format.out Format of output dates

Value

Dates (object of class 'Date'): days since 1-1-1970 and printed as date in Gre-
gorian calendar, e.g. "1946-03-01"

Author(s)

Frans Willekens

Examples

CMC 555, which is March 1,1946 or 1946.167
cmc_as_Date (x=555,selectday=1)

cmc_as_year Converts date in Century Month Code (CMC) to date in calendar year
and fraction of year.

Description

Converts date in Century Month Code (CMC) to date in year and fraction of year.

Usage

cmc_as_year (x,selectday)

Arguments

x Date in Century Month Code
selectday If input date is in Century Month Code, selectday gives the day of the month.
Default value is one, the transition occurs on the 1st of the month.

Value

Dates in calendar year and fraction of year

Author(s)

Frans Willekens
Cumrates

Examples

CMC 555, which is March 1,1946 or 1946.167
cmc_as_year (x=555,selectday=1)

Cumrates

Estimates cumulative transition rates

Description

Estimates cumulative transition rates by origin, destination, and age. Two estimation methods are distinguished: the statistical method (Nelson-Aalen estimator) and the demographic method (occurrence-exposure rates).

Usage

Cumrates(irate, Bdata)

Arguments

irate
Indicator variable defining option to be used: 1 = Nelson-Aalen method; 2 = Occurrence-Exposure rate; 3 = Both

Bdata
Biograph object

Details

The Nelson-Aalen estimator is obtained using the mvna package. First the function Biograph.mvna is called to convert the Biograph object to a data frame of class mvna. Then the mvna and the predict functions of the mvna package are called. The predict function produces cumulative hazards (with confidence intervals) at each birthday.

For estimating the cumulative occurrence-exposure rates, the functions Occup, Trans and RateTable are called (among other functions). The object M is produced; it is a three-dimensional array containing the transition rates by age, origin and destination in a standard format used in multistate demographic analysis.

Value

D
The Biograph object Bdata with diagonal elements removed

irate
Option for estimation of rates: (1) Nelson-Aalen, (2) Occurrence-exposure rates, (3) both

NeAa
Nelson-Aalen estimator

predicted
Cumulative transition rates (Nelson-Aalen estimator) predicted at consecutive ages (using predict function of mvna package)

astr
Age-specific transition rate by age, derived from predicted cumulative transition rates
Date_as_age

```
  oecum  Cumulative occurrence-exposure rates
  oe    The M-matrix of age-specific transition (occurrence-exposure) rates by origin
        and destination

Note

The function takes time to execute. It calls Parameters, date_convert, Remove.intrastate, statese-
quence.ind, Occup, Trans, RateTable, Rates.ac, Biograph.mvna and the mvna and predict functions
of the mvna package.

Author(s)

Frans Willekens

Examples

data(GLHS)
bdata.a <- date_b (GLHS,format.out="age",covs=c("marriage","Lentry"))
cumrates <- Cumrates (irate = 3,Bdata=Bdata.a)
```

Date_as_age
Converts a vector of dates (class 'Date') to ages.

Description

Converts a vector of dates (class 'Date') to ages. Function needs birth dates.

Usage

```r
Date_as_age (x,format.in,born)
```

Arguments

- `x` Vector of dates of class 'Date'
- `format.in` date format
- `born` Vector of dates of birth. Birth dates have the same format as the other dates.

Value

- `age.sec` Age in seconds
- `age.day` Age in days
- `age` Age in years, months and days (produced by package lubridate)
- `age.year` Age in decimal year
Author(s)

Frans Willekens

Examples

```
Date_as_age("2010-10-30", "%Y-%m-%d", "1990-4-20")
```

Date_ascmc

Converts a vector of dates (class 'Date') to Century Month Codes.

Description

Converts a vector of dates (class 'Date') to months elapsed since 1st January 1900.

Usage

```
Date_as_cmc(x, format.in)
```

Arguments

- **x**
 - Vector of dates. The Date vector is of class 'Date'
- **format.in**
 - Format of date

Value

- **cmc**
 - Dates in cmc
- **selectday**
 - Day of the month

Author(s)

Frans Willekens

Examples

```
Date_as_cmc("2010-10-30", "%Y-%m-%d")
  # cmc is 1330 and day of month is 30
```
Date_as_year

Converts a vector of dates (class 'Date') to decimal year (calendar year and fraction of year).

Description

Converts a vector of dates (class 'Date') to calendar years and fractions of year.

Usage

```r
Date_as_year (x, format.in)
```

Arguments

- `x` Date as variable of class 'Date'
- `format.in` Format of the date.

Value

Calendar year and fraction of year

Author(s)

Frans Willekens

Examples

```r
Date_as_year (x="1946-03-01")
```

date_b

Converts dates in a Biograph object to dates in another format

Description

Converts dates in a Biograph object to dates in another format. The function converts an entire Biograph object. It calls the function date_convert, which converts a vector of dates.

Usage

```r
date_b(Bdata, selectday, format.out, covs)
```
date_convert

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bdata</td>
<td>Biograph object</td>
</tr>
<tr>
<td>selectday</td>
<td>If input date is in Century Month Code (year and month), the argument selectday gives the day of the month. Default value is one, the transition occurs on the 1st of the month. The argument may be omitted.</td>
</tr>
<tr>
<td>format.out</td>
<td>Format of output date</td>
</tr>
<tr>
<td>covs</td>
<td>Vector of covariates that are dates (that need to be converted too). The dates should be in the same format as the other dates.</td>
</tr>
</tbody>
</table>

Value

Biograph object with dates in new format (format.out)

Author(s)

Frans Willekens

Examples

```r
data(GLHS)
bbe< date_b (Bdata=GLHS,selectday=1,format.out="day-mon-year",covs=c("marriage","Lmentry"))
```

Description

Converts dates at transition to dates in another format or to ages

Usage

```r
date_convert(d,format.in,selectday,format.out,born,format.born)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>A vector of dates to be converted</td>
</tr>
<tr>
<td>format.in</td>
<td>Format of input date</td>
</tr>
<tr>
<td>selectday</td>
<td>If input date is in CMC, selectday gives the day of the month. Default is 1</td>
</tr>
<tr>
<td>format.out</td>
<td>Format of output date</td>
</tr>
<tr>
<td>born</td>
<td>Date of birth for computation of age. Format the date of birth is format.in. May be omitted, unless date at transition need to be converted to age</td>
</tr>
<tr>
<td>format.born</td>
<td>Format of date of birth</td>
</tr>
</tbody>
</table>
Value

date Dates at transition. Object of class 'Date' (number of days since 1970-01-01)
datep Dates for printing

Author(s)
Frans Willekens

Examples

data(GLHS)
b <- date_convert(d='01/01/2011', format.in='%m/%d/%Y', selectday=1, format.out='day-month-year')
dd <- GLHS$marriage
fo <- 'day-mon-year'
gb <- GLHS$born
bb <- date_convert(d=dd, format.in="CMC", selectday=1, format.out=fo, born=gb, format.born="CMC")

Description
data from Blossfeld-Rohwer 2002

Usage
data(GLHS)

Format
A data frame with 201 observations on the following 24 variables. Dates are given in Century
Month Code (CMC).

ID Identification number
born Month of birth (CMC)
start Onset of observation (CMC)
end End of observation (CMC)
sex Sex. A factor with levels Males Females
edu Years of education.
marr Date of marriage (CMC) (TB in BR data)
entr Date of entry in labour force (CMC) (TE in BR data)
coh Coh Year cohort. A factor with levels 1929–31 1939–41 1949–51
path State sequence (a character vector)
tr1 Date of first transition (CMC)
Description

The function creates from the GLHS data file a Biograph object with the following states (episodes): first job, second or higher-order job and out-of-a-job.

Usage

GLHS.IllnessDeath(GLHS)

Arguments

GLHS The GLHS data file in Biograph format

Details

The illness-death model is applied to labour-market transitions. In an illness-death model, a person may reach an end-state directly or indirectly by first experiencing an intermediate transition. The illness-death model is generally used in epidemiology and public health. Biograph includes the model to illustrate the mstate package, in particular the msprep function.
Value

The function returns a Biograph object with 3 states: First job, Second or higher-order job and No job.

Author(s)

Frans Willekens

Examples

data (GLHS)
ild <- GLHS.IllnessDeath (GLHS)

<table>
<thead>
<tr>
<th>GLHS.trans</th>
<th>Transition matrix of illness-death model (tmat)</th>
</tr>
</thead>
</table>

Description

The function produces the transition matrix of an illness-death model with three states: Job1, Job2+ and NoJob. The function is called by GLHS.IllnessDeath().

Usage

GLHS.trans(names)

Arguments

names The names of the three states. If the names are missing, the default names Job1, Job2 and NoJob are given.

Value

The transition matrix of possible transitions in the illness-death model. A possible transition is denoted by a number.

Examples

data (GLHS)
z <- GLHS.trans()
Lexis.lines

Draws Lexis diagram with lifelines for selected subjects

Description

The function draws a Lexis diagram and draws lifelines for selected subjects (using ggplot2 package)

Usage

```r
Lexis.lines(Bdata,Dlong, subjectsID, title)
```

Arguments

- `Bdata`: Biograph object
- `Dlong`: Input data in long format
- `subjectsID`: Lifelines are drawn for subjects, identified by ID, included in the vector subjectsID.
- `title`: Title of the Lexis diagram.

Details

The function produces a Lexis object and plots the object for selected subjects. Transitions are marked on the lifelines. It requires data in long format. If the long format is not available, the function calls the function Biograph.long to produce the required object.

Value

- `subjectsID`: Subjects selected
- `p`: The plot of the lifelines

Note

requires ggplot2

Author(s)

Frans Willekens

See Also

Lexislines.episodes
Examples

Example 1: Employment careers
data(GLHS)
z <- Parameters (GLHS)
GLHS.yr <- date_b(Bdata=GLHS,selectday=1,format.out="year")
D <- Biograph.long (GLHS.yr)
tit5 <- "Employment careers for a selection of subjects. GLHS"
subjects <- c(1,78,120,208)
z <- Lexis.lines (Bdata=GLHS.yr,Dlong=D$Depisode,subjectsID = subjects,title = tit5)

Example 2: Long data format need to be obtained
z <- Lexislines.episodes (Bdata=GLHS.yr,subjectsID = subjects,title = tit5)

Example 3: Living arrangements
data(NLOG98)
z<- Parameters (NLOG98)
NLOG98.yr <- date_b(Bdata=NLOG98,selectday=1,format.out="year")
D <- Biograph.long (NLOG98.yr)
tit5 <- "Living arrangements for a selection of subjects, NLOG98"
subjectsID <- c(8,96,980,1056,1496,2883)
z <- Lexis.lines (NLOG98.yr,D$Depisode,subjectsID = subjectsID,title = tit5)

Lexis.points

Plots ages and calendar years at transitions in Lexis diagram

Description

Plots observations in age-time diagram for each category of categorical covariate (using ggplot2)

Usage

Lexis.points(Bdata, transition, title, cov, group, legend.pos, pdf)

Arguments

Bdata Biograph object
transition The transition selected. e.g. "NJ" in GLHS data
title Title of Lexis diagram
cov Covariate. Observations are plotted for each category of this covariate. If observations should be plotted for the total sample population, cov = NA
group Covariate. Graphs for groups are in separate panels.
legend.pos position of legend
pdf If graph should be stored in pdf file: pdf=TRUE, else pdf=FALSE

Value

graph
Note
requires ggplot2

Author(s)
Frans Willekens.

See Also
Lexispoints (requires Epi)

Examples

Example 1: ages at labour market entry, by sex
data(GLHS)
y <- Parameters(GLHS)
t <- "Date and age at labour market entry by sex and cohort"
z <- Lexis.points(GLHS, "NJ", title=t, cov="sex", group="cohort", legend.pos="right", pdf=FALSE)

Example 2: ages at first birth among married women, by religious denomination
data(NLOG98)
y <- Parameters(NLOG98)
t <- "Date and age at first birth (married women) by religion and cohort"
z <- Lexis.points(NLOG98, "MK", title=t, cov="kerk", group="cohort", legend.pos="right", pdf=FALSE)

Example 3: ages at leaving home, by birth cohort (any destination)
t <- "Date and age at leaving parental home by religion and education"
z <- c(0.7,0.2)
z <- Lexis.points(NLOG98, "Hx", title=t, cov="kerk", group="educ", legend.pos=z, pdf=FALSE)

Lexislines.episodes Draws Lexis diagram with lifelines for selected subjects

Description
The function draws a Lexis diagram, using the Lexis object defined in the Epi package, and draws lifelines for selected subjects.

Usage
Lexislines.episodes(Bdata,Dlong, subjectsID, title)

Arguments

Bdata Biograph object
Dlong Input data in long format
subjectsID Lifelines are drawn for subjects, identified by ID, included in the vector subjectsID.
title Title of the Lexis diagram.
Details

The function produces a Lexis object and plots the object for selected subjects. Transitions are marked on the lifelines. It requires data in long format. If the long format is not available, the function calls the function Biograph.long to produce the required format.

Value

- \texttt{lcoh11}\hspace{1em} Lexis object that includes all subjects
- \texttt{lcohh1R}\hspace{1em} Lexis object that includes selected subjects
- \texttt{sub}\hspace{1em} vector of IDs of subjects selected for the lifelines in the Lexis diagram
- \texttt{k}\hspace{1em} Number of subjects selected

Note

requires Epi

Author(s)

Frans Willekens

References

Carstensen, B. (2009) \textit{The Epi package}. Available at http://cran.r-project.org/web/packages/Epi/Epi.pdf

See Also

Lexis.lines

Examples

```r
# Example 1: Employment careers
data(GLHS)
z <- Parameters (GLHS)
D <- Biograph.long (GLHS)
tit5 <- "Employment careers for a selection of subjects. GLHS"
subjects <- c(1,7,12,208)
z <- Lexislines.episodes (Bdata=GLHS,Dlong=D$Depisode,subjectsid = subjects,title = tit5)

# Example 2: Long data format need to be obtained
z <- Lexislines.episodes (Bdata/GLHS,subjectsID = subjects,title = tit5)

# Example 3: Living arrangements
data(NLOG98)
z <- Parameters (NLOG98)
D <- Biograph.long (NLOG98)
tit5 <- "Living arrangements for a selection of subjects, NLOH98"
subjectsID <- c(8,96,980,1056,1496,2883)
z <- Lexislines.episodes (NLOG98,D$Depisode,subjectsID = subjectsID,title = tit5)
```
LexisOccExp

Displays occurrences, exposures and transition rates in a Lexis diagram

Description

The Lexis diagram is an age-time framework. The diagram displays transition data in two time dimensions, e.g. calendar date and age. The Lexis class in the EPI package is an object-based framework for managing transition data on multiple time scales. The function displays occurrences, exposures and transition rates for a selected transition. The user also determines the age and time interval.

Usage

```r
LexisOccExp(Bdata, transition, nyear)
```

Arguments

- **Bdata**: Data in Biograph format (Biograph object)
- **transition**: The transition selected. A transition is identified by the state of origin and the state of destination.
- **nyear**: The age and time interval, generally 5 years.

Details

The presentation of data in the Lexis diagram is particularly helpful to explain the concept of occurrence-exposure rate. The functions plots Lexis diagrams for event counts, exposures and transition rates. In addition, it produces an object with as components the event counts, exposures and rates. It also produces a survival object, which can be used for further survival analysis with the survival package, and a Lexis object, which can be used for further analysis with the Epi package.

Value

- **surv**: The survival object. The survival object is used as a response variable in survival models (see the survival package in CRAN)
- **Lcoh**: The Lexis object. The Lexis object is a key object in the Epi package.
- **nevents**: Event counts: number of transitions by age, origin and destination
- **ndur**: Exposure times: duration exposed to the risk of experiencing the selected transition.
- **rates**: The transition rates (occurrence-exposure rates). They are obtained by dividing the event counts by the exposure times.

Author(s)

Frans Willekens
References

Examples

The following example selects the "JN" transitions from the GLHS data
and produces Lexis diagrams with age and time intervals of 5 years data (GLHS)
data (GLHS)
w <- LexisOccExp (Bdata=GLHS,transition= "JN",nyear=5)

Description

Plots observations in age-time diagram for each category of categorical covariate (using the Lexis function of the Epi package)

Usage

Lexispoints(Bdata, transition, title, cov,legend)

Arguments

Bdata Biograph object
transition The transition selected, e.g. "NJ" in GLHS data
title Title of Lexis diagram
cov Covariate. Observations are plotted for each category of this covariate. If observations should be plotted for the total sample population, cov = NA
legend legend

Value

Lcoh Lexis object created to plot the observations

Note

requires Epi

Author(s)

Frans Willekens. The Epi package used to plot the Lexis diagram was developed by Carstensen.
References

See Also

Lexislines.episodes

Examples

Example 1: ages at labour market entry, by sex
library(Epi)
data(GLHS)
y <- Parameters(GLHS)
t <- "Calendar time and age at labour market entry"
z <- Lexispoints(Bdata=GLHS,transition="NJ",title=t,cov="sex",legend="topleft")

Example 2: ages at first birth among married women, by religious denomination
y <- Parameters(NLOG98)
t <- "Calendar time and age at first birth (married women)"
z <- Lexispoints(NLOG98,"MK",t,"kerk")
Example 3: ages at leaving home, by birth cohort (any destination)
t <- "Calendar time and age at leaving parental home"
z <- Lexispoints(NLOG98,"H+",t,"cohort","topleft")

__
locpath Determines location of state sequence in Biograph object
__

Description

Determines location of state sequence (path variable) in Biograph object

Usage

locpath(Bdata)

Arguments

Bdata Biograph object

Author(s)

Frans Willekens
Description

The function `MSLT.S` estimates the multistate survival function from cumulative transition rates. The function `MSLT.e` uses the multistate life table method to estimate expected state occupation times by state.

Usage

```r
MSLT.S(rates)  
MSLT.e(SS, radix)
```

Arguments

- `rates` transition rates. Either the Nelson-Aalen estimators or the occurrence-exposure rates.
- `SS` The multistate survival function. An object of class 'MSLT.S'
- `radix` The radix, which is the distribution of the population by state at the initial (reference) age

Details

The multistate life table is produced by two functions: (1) `MSLT.S` produces the multistate survival function and (2) `MSLT.e` generates expected sojourn times: total and by state. `MSLT.S` uses the `MatrixExp` function of the `msm` package. `MSLT.e` applies the multistate life table method that incorporates equations that infer expected sojourn times from transition rates and the associated transition probabilities.

Value

The function `MSLT.S` returns:

- `S` The multistate survival function
- `P` Age-specific transition probabilities

The function `MSLT.e` returns an object with the following components:

- `L` For each state, the expected sojourn time by age. It is the number of time units (years, months) a person at the beginning of his or her career (e.g. at birth or at a reference age) may expect to spend in the given state during each age interval.
The total expected sojourn time in each state. If life histories are considered from birth, \(e_0 \) gives the life expectancy by state. If life histories are truncated at a given age, the life expectancy is the total expected sojourn time in a state between birth and that maximum age.

Population-based life expectancies by age and state. Population-based measures are independent on the state occupied at the reference age.

Status-based life expectancies by age and state. Status-based measures depend on the state occupied at the reference age.

Author(s)
Frans Willekens

References

See Also
plot.MSLT.S

Examples

```r
# a. The multistate life table based on Nelson-Aalen estimators
# The example obtains Nelson-Aalen estimators of the cumulative transition rates
# using the mavna package. It derives the multistate life survival function
# from the transition rates and the expected sojourn times from the survival function.
# The radix is the number of persons by state at the reference age
# (e.g. at the start of the life history).
data(GLHS)
z <- Parameters (GLHS)
cr <- Cumrates (irate=3,Bdata=GLHS)
S.e <- MSLT.S(cr$astre[,1]) # expected
radix <- c(10000,0)
mslt.e <- MSLT.e (S.e,radix)
S.u <- MSLT.S(cr$astre[,2]) # upper
mslt.u <- MSLT.e (S.u,radix)
S.l <- MSLT.S(cr$astre[,3]) # lower
mslt.l <- MSLT.e (S.l,radix)

# b. The multistate life table based on occurrence-exposure rates
S <- MSLT.S(cr$oes)
radix <- c(10000,0)
mslt <- MSLT.e (S,radix)
```
Description

Life history data of NLOG98: a subsample of 500 of the 5450 respondents of the NLOG98

Usage

data(NLOG98)

Format

A data frame with 500 observations on the following 23 variables.

ID Personal identification number
born Date of birth in Century Month Code (CMC)
start Date at entry in observation in CMC
end Date at exit from observation in CMC
kerk Religious denomination: a factor with 5 levels: (1) no religion (2) Roman Catholic (3) Protestant (4) other (5) missing data
educ Level of education: a factor with 6 levels: (2) Primary education (3) Secondary
cohort Birth cohort: a factor with 2 levels: (1) <1960 (2) 1960+
path State sequence during observation period
tr1 Date of first transition in CMC
tr2 Date of second transition in CMC
tr3 Date of third transition in CMC
tr4 Date of fourth transition in CMC
tr5 Date of fifth transition in CMC
tr6 Date of sixth transition in CMC
tr7 Date of seventh transition in CMC
tr8 Date of eighth transition in CMC
tr9 Date of ninth transition in CMC

Details

NLOG98 data

Source

Statistics Netherlands. Life history format: Matsuo and Willekens, 2003
References

Examples

data(NLO98)

State occupancies and sojourn times

Description
Determines states occupied at each age (birthday) and sojourn time in each state during intervals of one-year age.

Usage
Occup(Bdata)

Arguments
Bdata Biograph object

Value
state_occup For each age: number of subjects by state and number of subjects censored
st_age_1 For each subject: state occupied at each consecutive age. This component may be used as input to the TraMineR package.
sjt_age_1 For each subject: sojourn time (years) in each state during age intervals of one year.
tsjt For total sample: number of years spent in each state during age intervals of one year.

Author(s)
Frans Willekens

See Also
Trans is used after Occup

Examples

data(GLHS)
param <- Parameters(GLHS)
z <- Occup (GLHS)
Overview Episodes

Overview of episodes

Description

Computes several indicators of the episodes in the life history data: number of episodes, types of episodes (open or closed) and total and mean durations of episodes.

Usage

OverviewEpisodes(bdata, seq.ind)

Arguments

bdata input data: Biograph object
seq.ind individual state sequences. If seq.ind is missing, the function calls Sequences.ind to obtain the individual state sequences.

Details

Open intervals start before onset of observation (left truncated) or continue after observation ends (right censored). Closed intervals start and end during the observation period.

Value

n Sample size
ne Total number of episodes
nt Total number of transitions
types Number of episodes by type [open, closed]
sojourn Total sojourn time in each type of episode

Author(s)

Frans Willekens

References

Willekens (2011)

Examples

data (GLHS)
z <- Parameters (GLHS)
seq.ind <- Sequences.ind (GLHS$path, attr(GLHS, "param")$namstates)
z <- OverviewEpisodes(bdata=GLHS, seq.ind=seq.ind)
Overview of transitions

Description

Produces summary indicators of transitions.

Usage

OverviewTransitions(Bdata, seq.ind, agetrans)

Arguments

- Bdata: input data
- seq.ind: individual state sequences. If seq.ind is missing, the function calls Sequences.ind to obtain the individual state sequences.
- agetrans: Ages at the different transitions. If agetrans is missing, the function calls AgeTrans.

Value

- ttrans: Number of transitions by origin and destination and censored cases by state occupied at time of censoring.
- meanage: Mean age at transition by origin and destination and mean age at censoring.

Note

The function checks for availability of numstates (number of states). If numstates is not available, the function Parameters is called.

Author(s)

Frans Willekens

Examples

data (GLHS)
z <- Parameters (GLHS)
seq.ind <- Sequences.ind (GLHS$path.attr(GLHS,"param")$namstates)
agetrans <- AgeTrans (GLHS)
overviewT <- OverviewTransitions (GLHS, seq.ind=seq.ind, agetrans)
Parameters

Life history parameters from data

Description

Extracts state space and other characteristics from Biograph object

Usage

Parameters(Bdata, newnamstates)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bdata</td>
<td>Biograph object</td>
</tr>
<tr>
<td>newnamstates</td>
<td>Biograph detect determines the state space from the data set. The sequence of states detected may not be the most logical sequence. newnamstates allows to change the sequence. Default: sequence of labels detected by Biograph.</td>
</tr>
</tbody>
</table>

Details

Parameters extracts useful information and stores it in values returned by the function.

1. nsample: sample size
2. numstates: number of states in the state space (produced by StateSpace)
3. namstates: labels for the states (determined from the character variable <path>) (produced by StateSpace)
4. absorbstates: vector of absorbing states (determined by StateSpace)
5. iagelow: lowest age in the (sample) population (determined from date at entry in observation and date of birth)
6. iagehigh: highest age in the (sample) population (determined from date at exit from observation and date of birth)
7. namage: labels for the single years of age from the lowest age (iagelow) to the highest age (iagehigh)
8. nage: number of age groups: iagehigh - iagelow + 1
9. maxtrans: maximum number of transitions
10. ntrans: number of transitions
11. trans_possible: transition matrix: feasible transitions
12. tmat: matrix with transition numbers
13. transitions: identifications of transitions: number, origin, destination
14. nntrans: transition counts by origin and destination
15. locpat: column number of <path> variable in Biograph object
16. ncovariates: number of covariates
Parameters

17. covariates: vector of covariate names
18. format.date: format of date variables (chronological objects) in Biograph object
19. format.born: format of date of birth

The parameters and the format of the dates (format.date) are attached to the Biograph object (Bdata) as attributes.

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample</td>
<td>Sample size</td>
</tr>
<tr>
<td>numstates</td>
<td>number of states in state space</td>
</tr>
<tr>
<td>namstates</td>
<td>names of states</td>
</tr>
<tr>
<td>absorbstates</td>
<td>names of absorbing states</td>
</tr>
<tr>
<td>iagelow</td>
<td>lowest age</td>
</tr>
<tr>
<td>iagehigh</td>
<td>highest age</td>
</tr>
<tr>
<td>namage</td>
<td>names of age groups</td>
</tr>
<tr>
<td>nage</td>
<td>number of age groups</td>
</tr>
<tr>
<td>maxtrans</td>
<td>maximum number of transitions by individual</td>
</tr>
<tr>
<td>ntrans</td>
<td>number of transitions</td>
</tr>
<tr>
<td>trans_possible</td>
<td>Origin-destination matrix of logical elements indicating whether transition is allowed or not. In multistate survival analysis, the matrix is known as 'transition matrix'</td>
</tr>
<tr>
<td>tmat</td>
<td>Origin-destination matrix showing the line numbers of the transitions. A number is allocated to each possible transition. The matrix tmat is attached as an attribute to the data file.</td>
</tr>
<tr>
<td>transitions</td>
<td>Data frame which gives for each transition the following information: origin and destination in character value and numeric value</td>
</tr>
<tr>
<td>nntrans</td>
<td>Number of transitions by origin and destination</td>
</tr>
<tr>
<td>ncovariates</td>
<td>number of covariates</td>
</tr>
<tr>
<td>covariates</td>
<td>covariate labels</td>
</tr>
<tr>
<td>format.date</td>
<td>format of date variables in Biograph object</td>
</tr>
<tr>
<td>format.born</td>
<td>format of date of birth in Biograph object</td>
</tr>
</tbody>
</table>

Author(s)

Frans Willekens

See Also

StateSpace
plot.cumrates

Examples

Example 1
data(GLHS)
z <- Parameters(GLHS)
Example 2
data (NLOG98)
z <- Parameters(NLOG98, newnamstates=c("H", "A", "C", "M", "K"))

data(GLHS)
Bdata.a <- date_b (GLHS, format.out="age", covs=c("marriage", "LMenity"))
cumrates <- Cumrates (irate = 3, Bdata=Bdata.a)
z<- plot (x=cumrates, ptrans=c("NJ", "JN"))
Description

Plot method for object of class 'MSLT.S' using the ggplot2 package. It plots the multistate survival function by as estimated by MSLT.S

Usage

S3 method for class 'MSLT.S'
plot(x, e0, order, colours, title, area, xmin, xmax, ...)

Arguments

x
The multistate survival function. An object of class MSLT.S produced by the MSLT.S function. It is one of two components of the object produced by the MSLT.S function.

e0
Life expectancy at reference age (e.g. at birth)

order
Desired sequence of states in plot

colours
Colours

title
Title for multistate survival plot

area
Graph type: area (area=TRUE) or bar (area=FALSE)

xmin
Minimum value on x-axis

xmax
Maximum value on x-axis

...
Further arguments to plot

Value

The function plot.MSLT.S returns the multistate survival function (S) and the plot. It returns an object with the following components:

S
The multistate survival function (values used in the plot)

plot
The plot produced by the ggplot2 package.

Author(s)

Frans Willekens

See Also

MSLT.S
Examples

```r
# The multistate life table based on occurrence-exposure rates
data (GLHS)
param <- Parameters (GLHS)
cr <- Cumrates (irate=3,Bdata=GLHS)
S <- MSLT.S(cr$oe)
radix <- c(10000,0)
mslt <- MSLT.e (S,radix)

# Plot the multistate survival function (object of class 'MSLT.S'

z<- plot (x=S$S,e0=mslt$e0,title="Multistate survival function",area=TRUE,order=c("N","J"))
```

Description

Plots state occupancies. It plots the state occupancies (counts in sample or population under observation) as estimated by `Occup`. The data are produced by the `Occupy` function.

Usage

```r
## S3 method for class 'occup.S'
plot(x,namstates.desired,colours,title,area,xmin,xmax,...)
```

Arguments

- `x`: State occupancies in sample population, by age. An object of class `occup.S` produced by the `Occupy` function.
- `namstates.desired`: Desired sequence of states in plot. The argument is used to specify an informative ordering of the state occupancies or state probabilities to be stacked.
- `colours`: Colours selected to distinguish the states in the state space.
- `title`: Title of plot
- `area`: Logical variable. If `area` is `TRUE`, a area plot is displayed (using `geom_area` of `ggplot2`). If `area` is `FALSE`, a bar plot is displayed (using `geom_bar` of `ggplot2`).
- `xmin`: Minimum age in plot
- `xmax`: Maximum age in plot
- `...`: Further arguments to plot

Details

The function uses the `ggplot2` package.
Value

<table>
<thead>
<tr>
<th>occup.S</th>
<th>State occupancies</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot</td>
<td>The figure of state occupancies</td>
</tr>
</tbody>
</table>

Author(s)

Frans Willekens

Examples

```r
data(GLHS)
Bdata.a <- date_b (GLHS,format.out="age",cova=c("marriage","LMentry"))
occup <- Occup(Bdata.a)
dd <- occup$state_occup
t < "States occupancies. GLHS" cc <- c("red","green","lightgrey") x <- c("N","J","Censored") z <- plot(x=dd,namstates.desired=xx,colours=cc,title=t,area=TRUE,xmin=10,xmax=55)
```

pos.char

Position of a given character in a string variable (first match)

Description

Determines the position(s) of a given character in a string variable. If the character is absent, NA is returned.

Usage

`pos.char(string, char)`

Arguments

<table>
<thead>
<tr>
<th>string</th>
<th>Character string</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>The character to position of which needs to be determined</td>
</tr>
</tbody>
</table>

Details

The function converts the string to a vector of characters. An alternative is to use `which(strsplit(string, ")[[1]]==a"), where a is the character. That code determines all positions of the character in the character string.

Value

The position is returned
pos.charstr

Author(s)
Frans Willekens

See Also
printf

Examples

```r
string <- "tests"
pos.char(str,string,"s")
```

Description
Determine the position of a character string in a string variable

Usage
pos.charstr(string, charstr)

Arguments

- `string`: The character string
- `charstr`: The character variable

Value
First occurrence

Author(s)
Frans Willekens
Estimates occurrence-exposure rates

Description

Estimates occurrence-exposure rates. The transition rates are of the age-cohort type.

Usage

Rates.ac (Stable)

Arguments

Stable Stable is object produced by RateTable function

Details

The transition rates and the cumulative transition rates are organized as follows: row variable is age, column variable is destination state and layer variable is origin state. The age-cohort transition rates are used to construct multistate life tables.

Value

M Transition rates by origin, destination and age in standard format [M-format]
Mcum Cumulative occurrence-transition rates

Author(s)

Frans Willekens

Examples

Example 1: Transition rates between NOJOB and JOB, based on GLHS
data(GLHS)
z <- Parameters (GLHS)
occup <- Occup(GLHS)
seq.ind <- Sequences.ind (GLHS$path, attr(GLHS,"param")$namstates)
trans <- Trans (GLHS)
ratetable <- RateTable (GLHS, occup=occup, trans=trans)
rates <- Rates.ac (Stable=ratetable$Stable)

Example 2: Rates of transition between living arrangements, based on NLOG98
data(NLOG98)
data <- NLOG98[!is.na (NLOG98$kerk)&NLOG98$kerk=="Roman Catholic",]
z <- Parameters (data)
seq.ind <- Sequences.ind (data$path, namstatesnew=c("H","C","A","M","K"))
occup <- Occup (data)
trans <- Trans (Bdata=data)
ratetable <- RateTable (NLOG98, occup=occup, trans=trans)
RateTable

Table for rate calculation

Description

RateTable produces a table of transition counts and exposure times for the computation of transition rates (occurrence-exposure rates)

Usage

RateTable(Bdata, occup, trans)

Arguments

Bdata Biograph object
occup Object produced by the Occup function
trans Object produced by the Trans function

Details

RateTable is one of the key functions of the package. The Stable object it produces contains the data needed for the computation of transition rates by origin, destination and age

Value

Stable The table of transitions and exposure times
censored_by_age Number of censored cases by age and state at censoring

Author(s)

Frans Willekens

References

Willekens (2011)

Examples

data (GLHS)
z <- Parameters (GLHS)
occup <- Occup(GLHS)
ist <- Sequences.ind (GLHS$path, attr(GLHS,"param")$namstates)
trans <- Trans (GLHS)
w <- RateTable(GLHS,occup, trans)
Remove.intrastate

Removes intrastate transitions from Biograph object

Description

Removes intrastate transitions.

Usage

Remove.intrastate(Bdata)

Arguments

Bdata Biograph object

Details

Intrastate transitions are removed and new characteristics of the data set are obtained.

Value

Biograph object with intrastate transitions removed. The "param" attribute is adjusted.

Author(s)

Frans Willekens

Examples

```r
data (GLHS)
Bdata2 <- Remove.intrastate (GLHS)
```

rrdat

The Blossfeld-Rohwer subsample of the German Life History Survey (GLHS)

Description

The data provides information on 600 job episodes.

Usage

```r
data(rrdat)
```
SamplePath

Details
- ID Identification number of subject
- NOJ Serial number of the job episode
- TS Starting time of the job episode
- TF Ending time of the job episode
- SEX Sex (1 male; 2 female)
- TI Date of interview (CMC)
- TB Date of birth (CMC)
- T1 Date of entry into the labour market (CMC)
- TM Date of marriage (CMC) [0 if not married]
- PRES Prestige score of current job, i.e. of job episode in current record of data file
- PRESN Prestige score of the next job (if missing: -1)
- EDU Highest educational attainment before entry into labour market

Source
http://oldsite.soziologie-blossfeld.de/eha/tda/cf_files/Data/RRDAT.1

References

See Also
- GLHS

Examples
- data(rrdat)

SamplePath
Obtains samplepath for selected subjects

Description
Obtains empirical lifepaths for selected subjects

Usage
SamplePath(Bdata, subjectsID)
Arguments

- `Bdata` Biograph object
- `subjectsid` Vector with IDs of selected subjects

Details

Displays lifepaths for selected individuals

Author(s)

Frans Willekens

Examples

```r
data (GLHS)
z <- Parameters (GLHS)
subjectsid <- c(1,6,7,19,136,208)
samplepaths <- SamplePath (Bdata=GLHS, subjectsid=subjectsid)
```

Description

Lists state sequences in the data

Usage

`Sequences(Bdata, mean_median)`

Arguments

- `Bdata` Biograph object
- `mean_median` Select mean or median age: "mean" or "median"

Details

The sequences are determined from the path variable in the data. The default age is the median age.

Value

Frequency table of sequences

Author(s)

Frans Willekens
Examples

Example 1: Sequences in GLHS
data(GLHS)
z <- Parameters(GLHS)
seq <- Sequences(Bdata=GLHS,mean_median="median")

Example 2: Sequences in NLOG98
data(NLOG98)
z <- Parameters(NLOG98)
seq <- Sequences(NLOG98) # default is median age

Example 3: State sequence in NLOG98, by birth cohort
table(NLOG98$cohort) # cohort size
seq.1 <- Sequences(NLOG98[NLOG98$cohort="<1960",,"median")
seq.2 <- Sequences(NLOG98[NLOG98$cohort="1960+",,"median")
Note that the sum(seq.2$ncase) equals size of second cohort

Sequences.ind Individual state trajectories

Description

Shows for each subject in the sample the state sequence (trajectory) from onset to end of observation.

Usage

Sequences.ind(path,namstatesnew)

Arguments

path State sequence
namstatesnew state labels (labels of single characters)

Details

Individual sequences are basis for exploratory sequence analysis

Value

The value returned is a two-way table with for each subject the sequences of states occupied between onset and end of observation

Author(s)

Frans Willekens
Examples

data(GLHS)
z <- Parameters (GLHS)
seq.ind <- Sequences.ind (path=GLHS$path, namstatesnew=attr(GLHS,"param")$namstates)

Sequences.ind.0 Sorts dates in ascending order and generates state sequence (path).

Description

Sorts dates in ascending order: earlier dates come first. The function also generates state sequences (life path or career path). The function is used in generating a Biograph object from raw data. The state sequence is the path variable of the Biograph object.

Usage

Sequences.ind.0 (d,namstates,absorb)

Arguments

d Vector of dates

namstates state labels (labels of single characters)

absorb Vector of absorbing states

Value

namstates Labels of the states in the state space.

d Sorted dates

path Character variable of state sequences. This variable is the 'path' variable in the Biograph object.

Author(s)

Frans Willekens

Examples

d <- c(300,250,340) # dates in CMC
f<- Sequences.ind.0 (d,c('A','B','C'))
StateSpace

Get state space

Description

Obtains statespace from the data

Usage

StateSpace(d, newnamstates)

Arguments

d Biograph object (e.g. Bdata) or vector of state sequences (e.g. Bdata$path)
newnamstates The preferred sequence of states.

Details

StateSpace derives statespace from the character vector 'path' in the Biograph object. In that vector, each state is uniquely identified by a single character (ASCII). The function finds the different characters. The sequence of states is determined by characters popping up first, second, etc. You may impose a preferred sequence by specifying the argument newnamstates. If no preferred sequence exists, newnamstates is missing from the argument list. The results are stored in two variables: numstates (number of states) and namstates (names of the states). The function also returns an object identifying the absorbing state (if any). A state that is entered but not left is an absorbing state.

Value

namstates Names of the states in the state space
absorbstates List of absorbing states. It is NULL if there is no absorbing state.

Author(s)

Frans Willekens

Examples

data(GLHS)
z <- StateSpace(GLHS)
data(NLOG98)
z <- StateSpace(NLOG98,c("H","A","C","M","K"))
z <- StateSpace(NLOG98$path)
state_age

Determines for given individuals state occupied at given ages

Description

Determines state occupied at given exact ages (birthdays). The function is used in the Occup function.

Usage

state_age (Bdata, age, ID)

Arguments

Bdata Biograph object
age Vector of ages for which state occupancy should be determined
ID Vector of IDs of individuals for whom state occupancy should be determined

Value

nam Names of states that can be occupied. The list includes '‐' to indicate that at that age observation did not start yet and '+' to indicate that observation ended.
state State occupied at given age by each individual in the study.
state.n State occupied at given age: all individuals (table).

Author(s)

Frans Willekens and Sabine Zinn

See Also

Occup

Examples

data(GLHS)
param <- Parameters(GLHS)
agetrans <- AgeTrans(Bdata=GLHS)
z <- state_age (Bdata=GLHS, age=c(20,30), ID=c(15,208))
state_time

Determines individual state occupation times

Description

Determines for given individuals state occupation times at all ages. The function is used in the `Occup` function.

Usage

`state_time(Bdata, ID)`

Arguments

- **Bdata**: Biograph object
- **ID**: Vector of IDs of individuals for whom state occupancy should be determined

Value

- **state**: Individual state occupancies at each birthday
- **state.n**: State occupancies by age
- **sjt_age_1**: For each subject selected: occupation time in each state during age intervals of one year (time in years).
- **tsjt**: For total of selected individuals: number of years spent in each state during age intervals of one year (all ages) (time in person-years).

Author(s)

Frans Willekens and Sabine Zinn

See Also

`Occup`

Examples

```r
data(GLHS)
param <- Parameters(GLHS)
zz <- state_time(Bdata=GLHS, ID=c(15, 208))
```
string.blank.omit

Removes blanks in character string, including the leading and trailing white space.

Description

Removes blanks in character string and returns string without blanks.

Usage

```
string.blank.omit(string)
```

Arguments

- **string**
 Character string

Value

The function returns the string with blanks removed.

Author(s)

Frans Willekens

Examples

```r
z <- string.blank.omit("This is a test ")
y <- string.blank.omit(" A B C ")
```

stringf

Converts character string to vector

Description

Converts character string to vector

Usage

```
stringf(string)
```

Arguments

- **string**
 character string

Details

Converts string
Value
The function returns a vector with elements the characters of a character string.

Author(s)
Frans Willekens

Examples
z <- sprintf("test")

<table>
<thead>
<tr>
<th>Trans</th>
<th>Transitions by age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description
Produces tables of transitions: (1) by origin and destination and (2) by origin, destination and age. It also computes the mean ages at transition.

Usage
Trans(Bdata)

Arguments
Bdata Biograph object

Value
TRANs Total number of transitions by origin and destination.
meanage Mean age of transitions by origin and destination
trans Number of transitions by origin, destination and age
states_during_interval Number of states occupied during an age interval of one year by an average subject.

Author(s)
Frans Willekens

Examples
data (GLHS)
y <- Parameters(GLHS)
z <- Trans (GLHS)
TransitionAB

Occurrences of selected transition by age

Description

Determines for a given transition the number of transitions by age

Usage

```
TransitionAB(Bdata, transition, keep)
```

Arguments

- **Bdata**: Biograph object
- **transition**: Selected transition
- **keep**: Logical variable indicating whether observations (subjects) with the selected transition missing should be kept (TRUE) or removed (FALSE). Default: keep=FALSE

Value

- **case**: The transition
- **n**: Number of subjects in the sample experiencing the selected transition (transition count).
- **id**: Identification number of subjects that experienced the transition
- **pos**: Position of the selected transition in the state sequence (path variable Bdata$path of the Biograph object). If transition = "*N" and N is the first state, then that state is skipped. If a subject experienced several of the selected transition, the first transition is considered.
- **date**: For each subject experiencing the transition, date of transition
- **age**: For each subject experiencing the transition, age at transition
- **year**: For each subject experiencing the transition, year of transition (year is real variable, including fraction of year)
- **cohort**: For each subject experiencing the transition, birth cohort

Author(s)

Frans Willekens

Examples

```r
# Example 1: Transition NJ in GLHS data set
data (GLHS)
z <- TransitionAB (GLHS,"NJ",keep=TRUE)
```

```r
# Example 2: Transition HM in NLOG98 data set
```
transitions

```
data (NLOG98)
z <- TransitionAB (NLOG98,"HM")

# Example 3: Transition 'Leaving parental home', irrespective of destination state
data (NLOG98)
z <- TransitionAB (NLOG98,"H*")

# Example 4: First marriage, irrespective of origin state
data (NLOG98)
z <- TransitionAB (NLOG98,"*M")
```

Description

Generates table of transitions by origin and destination.

Usage

```
transitions(Bdata,newnamstates)
```

Arguments

- `Bdata`: Biograph object
- `newnamstates`: New names of the states

Value

- `nsample`: Sample size
- `namstates`: Names of the states
- `ntrans`: Number of possible interstate transitions
- `ntrans_possible`: Transition count by origin and destination
- `trans_possible`: Logical variable indicating which transitions are feasible
- `transitions`: List of feasible transitions: line number of transition, origin state and destination state
- `tmat`: Line numbers of the feasible transitions

Author(s)

Frans Willekens

Examples

```
data (GLHS)
z <- transitions (GLHS)
```
Description

Converts dates at transition to decimal years at transition (years and fraction of year)

Usage

YearTrans(Bdata)

Arguments

Bdata Biograph object

Value

For each subject, years at transition

Note

For each subject under observation, the years of the following events are given: birth, entry into observation, end of observation, each transition.

Author(s)

Frans Willekens

See Also

CMC_as_year and AgeTrans

Examples

data(GLHS)
yeartrans <- YearTrans(GLHS)
year_as_age

Converting decimal years to age.

Description

Converts a vector of decimal years to ages. The function requires birth dates.

Usage

```
year_as_age (x, born, format.born)
```

Arguments

- `x`: Vector of decimal years.
- `born`: Vector of dates of birth. Class is 'Date'.
- `format.born`: format of dates of birth.

Value

`age`

Author(s)

Frans Willekens

Examples

```
year_as_age (2010.578, "1990-10-30", "%Y-%m-%d")
# result: 19.7506
```

year_as_cmc

Converting decimal years to CMC.

Description

Converts a vector of decimal years to CMC.

Usage

```
year_as_cmc (x)
```

Arguments

- `x`: Vector of decimal years.
year_as_Date

Value

cmc

Author(s)

Frans Willekens

Examples

```r
day <- year_as_date(x=2010.578)
```

Description

Converts a vector of dates in decimal years (calendar years and fractions of year) to object of class `Date`.

Usage

```r
year_as_Date(x, format.out)
```

Arguments

- **x**: Calendar year and fraction of year, e.g. 2012.448
- **format.out**: Format of date

Value

Date as object of class Date: days since 1-1-1970 and printed as date in Gregorian calendar, e.g. "1946-03-01"

Author(s)

Frans Willekens

Examples

```r
# d=1946.167, which is March 1, 1946
year_as_Date(x=1946.167, format.out='%d-%m-%Y')
```
Index

*Topic Exposure
 RateTable, 45
*Topic Lexis
 Biograph.Lexis, 7
*Topic Transitions
 RateTable, 45
*Topic datasets
 Biograph-package, 3
 GLHS, 21
 NLOG98, 33
 rrdat, 46
*Topic long
 Biograph.long, 7
*Topic msdata
 Biograph.mstate, 9
*Topic package
 Biograph-package, 3
*Topic remove.intrastate
 Biograph.mstate, 9
*Topic survival
 Biograph-package, 3
 Biograph.long, 7

age_as_Date, 5
age_as_year, 6
AgeTrans, 4

Biograph (Biograph-package), 3
Biograph-package, 3
Biograph.Lexis, 7
Biograph.long, 7
Biograph.msm, 8, 8
Biograph.mstate, 8, 9
Biograph.mvna, 8, 10

ChangeObservationWindow.e, 11
ChangeObservationWindow.t, 12
check.par, 13
cmc_as_age, 14
cmc_as_Date, 14

cmc_as_year, 15
Cumrates, 16, 39
Date_as_age, 17
Date_as_cmc, 18
Date_as_year, 19
date_b, 19
date_convert, 20

GLHS, 21, 47
GLHS.IllnessDeath, 22
GLHS.trans, 23
Lexis.lines, 24
Lexis.points, 25
Lexislines (Lexislines.episodes), 26
Lexislines.episodes, 26
LexisOccExp, 28
Lexispoints, 29
locpath, 30

MSLT, 31
MSLT.S, 40

NLOG98, 33

Occup, 34, 41
OverviewEpisodes, 35
OverviewTransitions, 36

Parameters, 37
plot.cumrates, 39
plot.MSLT.S, 32, 40
plot.occup.S, 41
pos.char, 42
pos.charstr, 43

Rates.ac, 44
RateTable, 45
Ratetable (RateTable), 45
Remove.intrastate, 46
rmdat, 46

SamplePath, 47
Sequences, 48
Sequences.ind, 49
Sequences.ind.0, 50
state_age, 52
state_time, 53
StateSpace, 38, 51
string.blank.omit, 54
stringf, 54

Trans, 55
TransitionAB, 56
transitions, 57

year_as_age, 59
year_ascmc, 59
year_as_Date, 60
YearTrans, 58