Package ‘Bolstad2’

February 19, 2015

Version 1.0-28
Date 2013-06-17
Title Bolstad functions
Author James M. Curran <j.curran@auckland.ac.nz>
Maintainer James M. Curran <j.curran@auckland.ac.nz>
Description A set of R functions and data sets for the book
Understanding Computational Bayesian Statistics, Bolstad, W.M.
License GPL (>= 2)
URL http://www.waikato.ac.nz/Staff/bolstad
NeedsCompilation no
Repository CRAN
Date/Publication 2013-06-17 11:54:52

R topics documented:

AidsSurvival.df .. 2
BayesCPH ... 2
BayesLogistic ... 4
BayesPois .. 5
bivnormMH ... 6
cl0ex16.df .. 7
chd.df ... 7
credInt ... 8
credIntNum .. 9
credIntSamp ... 10
describe .. 11
GelmanRubin ... 12
hierMeanReg ... 13
hiermeanRegTest.df .. 14
logisticTest.df ... 15
normGibbs ... 15
BayesCPH

Bayesian Cox Proportional Hazards Modelling

Description

Uses a Metropolis Hastings scheme on the proportional hazards model to draw sample from posterior. Uses a matched curvature Student’s t candidate generating distribution with 4 degrees of freedom to give heavy tails.

AidsSurvival.df

HIV Survival data

Description

Usage

data (AidsSurvival.df)

Format

A data frame with 100 observations on 7 variables.

\[.1\]	id	numeric	Subject ID code
\[.2\]	entdate	date	Entry date (ddmmyr)
\[.3\]	enddate	date	Entry date (ddmmyr)
\[.4\]	time	numeric	Survival Time = days between Entry date and End date
\[.5\]	age	numeric	Age in years
\[.6\]	drug	factor	History of IV drug use (0 = No, 1 = Yes)
\[.7\]	censor	factor	Follow-Up Status1 = Death due to AIDS or AIDS related factors (0 = Alive at study end or lost to follow-up)
Usage

BayesCPH(y, t, x, steps = 1000,
 priorMean = NULL, priorVar = NULL,
 mleMean = NULL, mleVar,
 startValue = NULL, randomSeed = NULL,
 plots = FALSE)

Arguments

y the Poisson censored response vector. It has value 0 when the variable is censored and 1 when it is not censored.

t time

x matrix of covariates

steps the number of steps to use in the Metropolis-Hastings updating

priorMean the mean of the prior

priorVar the variance of the prior

mleMean the mean of the matched curvature likelihood

mleVar the covariance matrix of the matched curvature likelihood

startValue a vector of starting values for all of the regression coefficients including the intercept

randomSeed a random seed to use for different chains

plots Plot the time series and auto correlation functions for each of the model coefficients

Value

A list containing the following components:

beta a data frame containing the sample of the model coefficients from the posterior distribution

mleMean the mean of the matched curvature likelihood. This is useful if you’ve used a training set to estimate the value and wish to use it with another data set

mleVar the covariance matrix of the matched curvature likelihood. See mleMean for why you’d want this
BayesLogistic

Bayesian Logistic Regression

Description

Perform a Metropolis Hastings on the logistic regression model to draw sample from posterior. Uses a matched curvature Student’s t candidate generating distribution with 4 degrees of freedom to give heavy tails.

Usage

```r
BayesLogistic(y, x, steps = 1000, 
priorMean = NULL, priorVar = NULL, 
mleMean = NULL, mleVar, 
startValue = NULL, randomSeed = NULL, 
plots = FALSE)
```

Arguments

- `y` the binary response vector
- `x` matrix of covariates
- `steps` the number of steps to use in the Metropolis-Hastings updating
- `priorMean` the mean of the prior
- `priorVar` the variance of the prior
- `mleMean` the mean of the matched curvature likelihood
- `mleVar` the covariance matrix of the matched curvature likelihood
- `startValue` a vector of starting values for all of the regression coefficients including the intercept
- `randomSeed` a random seed to use for different chains
- `plots` Plot the time series and auto correlation functions for each of the model coefficients

Value

A list containing the following components:

- `beta` a data frame containing the sample of the model coefficients from the posterior distribution
- `mleMean` the mean of the matched curvature likelihood. This is useful if you’ve used a training set to estimate the value and wish to use it with another data set
- `mleVar` the covariance matrix of the matched curvature likelihood. See mleMean for why you’d want this
BayesPois

Examples

data(logisticTest.df)
BayesLogistic(logisticTest.df$y, logisticTest.df$x)

BayesPois Bayesian Pois Regression

Description

Performs Metropolis Hastings on the logistic regression model to draw sample from posterior. Uses a matched curvature Student’s t candidate generating distribution with 4 degrees of freedom to give heavy tails.

Usage

BayesPois(y, x, steps = 1000,
 priorMean = NULL, priorVar = NULL,
 mleMean = NULL, mleVar,
 startValue = NULL, randomSeed = NULL,
 plots = FALSE)

Arguments

y the binary response vector
x matrix of covariates
steps the number of steps to use in the Metropolis-Hastings updating
priorMean the mean of the prior
priorVar the variance of the prior
mleMean the mean of the matched curvature likelihood
mleVar the covariance matrix of the matched curvature likelihood
startValue a vector of starting values for all of the regression coefficients including the intercept
randomSeed a random seed to use for different chains
plots Plot the time series and auto correlation functions for each of the model coefficients

Value

A list containing the following components:

beta a data frame containing the sample of the model coefficients from the posterior distribution
mleMean the mean of the matched curvature likelihood. This is useful if you’ve used a training set to estimate the value and wish to use it with another data set
mleVar the covariance matrix of the matched curvature likelihood. See mleMean for why you’d want this

Examples

```r
data(poissonTest.df)
results <- BayesPois(poissonTest.df$y, poissonTest.df$x)
```

bivnormMH

Metropolis Hastings sampling from a Bivariate Normal distribution

Description

This function uses the Metropolis-Hastings algorithm to draw a sample from a correlated bivariate normal target density using a random walk candidate and an independent candidate density respectively where we are drawing both parameters in a single draw. It can also use the block-wise Metropolis-Hastings algorithm and Gibbs sampling respectively to draw a sample from the correlated bivariate normal target.

Usage

```r
bivnormMH(rho, rho1 = 0.9, sigma = c(1.2, 1.2),
           steps = 1000, type = 'ind')
```

Arguments

- `rho` the correlation coefficient for the bivariate normal
- `rho1` the correlation of the candidate distribution. Only used when type = 'ind'
- `sigma` the standard deviations of the marginal distributions of the independent candidate density. Only used when type = 'ind'
- `steps` the number of Metropolis Hastings steps
- `type` the type of candidate generation to use. Can be one of 'rw' = random walk, 'ind' = independent normals, 'gibbs' = Gibbs sampling or 'block' = blockwise. It is sufficient to use 'r','i','g', or 'b'

Value

returns a list which contains a data frame called `targetSample` with members x and y. These are the samples from the target density.

Examples

```r
## independent chain
chain1.df<-bivnormMH(0.9)$targetSample

## random walk chain
chain2.df<-bivnormMH(0.9, type = 'r')$targetSample

## blockwise MH chain
chain3.df<-bivnormMH(0.9, type = 'b')$targetSample
```
Gibbs sampling chain

```r
chain4.df <- bivnormMH(0.9, type = 'g')$targetSample

oldPar <- par(mfrow=c(2,2))
plot(y ~ x, type = 'l', chain1.df, main = 'Independent')
plot(y ~ x, type = 'l', chain2.df, main = 'Random Walk')
plot(y ~ x, type = 'l', chain3.df, main = 'Blockwise')
plot(y ~ x, type = 'l', chain4.df, main = 'Gibbs')
par(oldPar)
```

c10ex16.df

Chapter 10 Example 16 data

Description

A random sample of size 10 from a \(N(\mu, \sigma^2) \) distribution where both \(\mu \) and \(\sigma \) are unknown parameters.

Usage

```r
data(c10ex16.df)
```

Format

A data frame with 10 observations in a single variable called `y`

chd.df

Coronary Heart Disease Chapter 8 Example 11

Description

The age and coronary heart disease status of 100 individuals taken from Hosmer and Lemeshow (1989).

Usage

```r
data(chd.df)
```

Format

A data frame with 100 observations in two columns

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>chd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>numeric</td>
<td>factor</td>
</tr>
<tr>
<td></td>
<td>age in years</td>
<td>coronary heat disease status. Levels (1 = Yes), (0 = No)</td>
</tr>
</tbody>
</table>
credInt

Calculate a credible interval from a numerically specified posterior CDF or from a sample from the posterior

Description

Calculates a lower, upper, or two-sided credible interval from the numerical posterior CDF or from a sample from the posterior.

Usage

credInt(theta, cdf = NULL, conf = 0.95, type="twosided")

Arguments

- theta: either a sample from the posterior density or the values over which the the posterior CDF is specified
- cdf: the values of the CDF, \(F(\theta) = \int_{-\infty}^{\theta} f(t) dt \) where \(f(t) \) is the PDF. This only needs to be specified if a numerically specified posterior is being used
- conf: the desired 'confidence' level
- type: the type of interval to return, 'lower' = one sided lower bound, 'two-sided' = two-sided, or 'upper' = one sided upper bound. It is sufficient to use 'l', 't' or 'u'

Details

This function uses linear interpolation to calculate bounds for points that may not be specified by CDF

Value

a list containing the elements lower.bound, upper.bound or both depending on type

Examples

```r
## commands for calculating a numerical posterior CDF.
## In this example, the likelihood is proportional to
## \( \text{exp}(\theta^{3/2}) \times \text{exp}(-\theta/4) \) and a N(6, 9) prior is used.
theta <- seq(from = 0.001, to = 40, by = 0.001)
prior <- dnorm(theta,6,3)
ppnLike <- theta^1.5*exp(-theta/4)
ppnPost <- prior*ppnLike
scaleFactor <- sintegral(theta, ppnPost)$int
posterior <- ppnPost/scaleFactor
cdf <- sintegral(theta, posterior)$y
ci<-credInt(theta, cdf)
par(mfrow=c(2,2))
plot(prior ~ theta, type = 'l', main = "Prior N(6, 9)")
```
credIntNum

Calculate a credible interval from a numerically specified posterior CDF.

Description
Calculates a lower, upper, or two-sided credible interval from the numerical posterior CDF.

Usage
credIntNum(theta, cdf, conf = 0.95, type="twosided")

Arguments
theta the values over which the posterior CDF is specified
cdf the values of the CDF, $F(\theta) = \int_{-\infty}^{\theta} f(t).df$ where $f(t)$ is the PDF.
conf the desired 'confidence' level
type the type of interval to return, 'lower' = one sided lower bound, 'two-sided' = two - sided, or 'upper' = one sided upper bound. It is sufficient to use 'l','t' or 'u'

Details
This function uses linear interpolation to calculate bounds for points that may not be specified by CDF

Value
a list containing the elements lower.bound, upper.bound or both depending on type

Examples
commands for calculating a numerical posterior CDF.
In this example, the likelihood is proportional to
$\theta^{3/2}\times\exp(-\theta/4)}$ and a N(6, 9) prior is used.
theta <- seq(from = 0.001, to = 40, by = 0.001)
prior <- dnorm(theta,6,3)
ppnLike <- theta^1.5*exp(-theta/4)
credIntSamp <- function(theta, conf = 0.95, type = "twosided") {
 theta
 conf
 type
}

credIntSamp(theta)

Description

Calculates a lower, upper, or two-sided credible interval from the numerical posterior CDF.

Usage

credIntSamp(theta, conf = 0.95, type = "twosided")

Arguments

theta
 a sample from the posterior density

conf
 the desired 'confidence' level

type
 the type of interval to return, 'lower' = one sided lower bound, 'two-sided' = two-sided, or 'upper' = one sided upper bound. It is sufficient to use 'l', 't' or 'u'

Details

This function uses linear interpolation to calculate bounds for points that may not be specified by CDF.

Value

a list containing the elements lower.bound, upper.bound or both depending on type

Examples

posterior is N(0,1)
theta <- rnorm(1000)

ci <- credIntSamp(theta)

plot(density(theta))

abline(v = c(unlist(ci)))
describe

Give simple descriptive statistics for a matrix or a data frame

Description

This function is designed to emulate the Minitab function DESCRIBE. It gives simple descriptive statistics for a data frame.

Usage

```r
describe(x, varNames = NULL)
```

Arguments

- `x`: A matrix or data.frame with numeric entries. Different variables are represented by columns.
- `varNames`: A vector of variable names for each of the columns.

Value

A data.frame containing the following elements:

- `N`: The number of observations for each variable
- `mean`: The sample mean for each variable
- `stdev`: The sample standard deviation
- `sterr`: The standard error of the mean
- `min`: The minimum
- `q1`: The lower quartile
- `med`: The median
- `q3`: The upper quartile
- `max`: The maximum

Examples

```r
data(poissonTest.df)
describe(poissonTest.df)
```
GelmanRubin

Calculate the Gelman Rubin statistic

Description

Calculate the Gelman Rubin statistic

Usage

```r
GelmanRubin(theta)
GR(theta)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>A matrix containing samples from at least two chains on a parameter theta. Each chain should 2n iterations. The last n iterations will be used to calculate the statistic</td>
</tr>
</tbody>
</table>

Value

A list containing n, the between chain variance B, the within chain variance W, the estimated variance of the parameter vHat, and the Gelman Rubin statistic \(R = \sqrt{vHat/W} \)

References

Examples

```r
## take four chains sampling from a normal mixture density
theta0 <- c(0,1)
theta1 <- c(3,2)
p <- 0.6
candidate <- c(0, 3)

v1 <- normMixMH(theta0, theta1, p, candidate, steps = 200)
v2 <- normMixMH(theta0, theta1, p, candidate, steps = 200)
v3 <- normMixMH(theta0, theta1, p, candidate, steps = 200)
v4 <- normMixMH(theta0, theta1, p, candidate, steps = 200)

theta<-cbind(v1,v2,v3,v4)
GelmanRubin(theta)
```
Hierarchical Normal Means Regression Model

Description

fits a hierarchical normal model of the form $E[y_{ij}] = \mu_j + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}$

Usage

hierMeanReg(design, priorTau, priorPsi, priorVar,
 priorBeta = NULL, steps = 1000, startValue = NULL,
 randomSeed = NULL)

Arguments

design a list with elements y = response vector, group = grouping vector, x = matrix of covariates or NULL if there are no covariates
priorTau a list with elements tau0 and v0
priorPsi a list with elements psi0 and eta0
priorVar a list with elements s0 and kappa0
priorBeta a list with elements b0 and bMat or NULL if x is NULL
steps the number of Gibbs sampling steps to take
startValue a list with possible elements tau, psi, mu, sigmasq and beta. tau, psi and sigmasq must all be scalars. mu and beta must be vectors with as many elements as there are groups and covariates respectively
randomSeed a random seed for the random number generator

Value

A data frame with variables:

tau Samples from the posterior distribution of tau
psi Samples from the posterior distribution of psi
mu Samples from the posterior distribution of mu
beta Samples from the posterior distribution of beta if there are any covariates
sigmasq Samples from the posterior distribution of σ^2
sigma Samples from the posterior distribution of sigma
Examples

```r
priorTau <- list(tau0 = 0, v0 = 1000)
priorPsi <- list(psi0 = 500, eta0 = 1)
priorVar <- list(s0 = 500, kappa0 = 1)
priorBeta <- list(b0 = c(0,0), bMat = matrix(c(1000,100,100,1000), nc = 2))

data(hiermeanRegTest.df)
data.df <- hiermeanRegTest.df
design <- list(y = data.df$y, group = data.df$group,
                 x = as.matrix(data.df[,3:4]))
r<-hierMeanReg(design, priorTau, priorPsi, priorVar, priorBeta)

oldPar <- par(mfrow = c(3,3))
plot(density(r$tau))
plot(density(r$psi))
plot(density(r$mu.1))
plot(density(r$mu.2))
plot(density(r$mu.3))
plot(density(r$beta.1))
plot(density(r$beta.2))
plot(density(r$sigmaSq))
par(oldPar)
```

example with no covariates

```r
priorTau <- list(tau0 = 0, v0 = 1000)
priorPsi <- list(psi0 = 500, eta0 = 1)
priorVar <- list(s0 = 500, kappa0 = 1)

data(hiermeanRegTest.df)
data.df <- hiermeanRegTest.df
design <- list(y = data.df$y, group = data.df$group, x = NULL)
r<-hierMeanReg(design, priorTau, priorPsi, priorVar)

oldPar <- par(mfrow = c(3,2))
plot(density(r$tau))
plot(density(r$psi))
plot(density(r$mu.1))
plot(density(r$mu.2))
plot(density(r$mu.3))
plot(density(r$sigmaSq))
par(oldPar)
```

hiermeanRegTest.df
Test data for hiermeanReg

Description

Data for testing hiermeanReg which uses Gibbs sampling on a hierarchical normal mean model with regression on covariates.
Usage

data(hiermeanRegTest.df)

Format

A data frame with 30 observations on 4 variables.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>y</td>
<td>numeric</td>
<td>the response vector</td>
</tr>
<tr>
<td>[2,]</td>
<td>group</td>
<td>factor</td>
<td>the grouping factor levels 1-3</td>
</tr>
<tr>
<td>[3,]</td>
<td>x1</td>
<td>numeric</td>
<td>the first covariate</td>
</tr>
<tr>
<td>[4,]</td>
<td>x2</td>
<td>numeric</td>
<td>the second covariate</td>
</tr>
</tbody>
</table>

See Also

hiermeanReg

logisticTest.df Test data for bayesLogistic

Description

A test data set for bayesLogisticReg

Usage

data(logisticTest.df)

Format

A data frame with 100 observations on 6 variables.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>x</td>
<td>numeric</td>
<td>the covariate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2,]</td>
<td>eps</td>
<td>numeric</td>
<td>the error in the response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3,]</td>
<td>logit.p</td>
<td>numeric</td>
<td>the logit of the probability of success given x = 2 + 3*x + eps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[4,]</td>
<td>p</td>
<td>numeric</td>
<td>the probability of success given x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[5,]</td>
<td>u</td>
<td>numeric</td>
<td>a U[0,1] random variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,]</td>
<td>y</td>
<td>binary</td>
<td>if u[i]<p[i] = 1, otherwise 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See Also

bayesLogistic

normGibbs Draw a sample from a posterior distribution of data with an unknown mean and variance using Gibbs sampling
normGibbs draws a Gibbs sample from the posterior distribution of the parameters given the data from a normal distribution with unknown mean and variance. The prior for μ given σ is prior mean m_0 and prior variance σ/n_0. That means n_0 is the equivalent sample size. The prior distribution of the variance is s_0 times an inverse chi-squared with $kappa_0$ degrees of freedom. The joint prior is the product $g(\sigma)g(\mu|\sigma)$.

Usage

```r
normGibbs(y, steps = 1000, type = 'ind', ...)
```

Arguments

- `y`: A vector containing the data.
- `steps`: The number of iterations of Gibbs sampling to carry out.
- `type`: Either 'ind' for sampling from an independent conjugate prior or 'joint' for sampling from a joint conjugate prior. 'i' and 'j' can be used as compact notation.
- `...`: If `type = 'ind'` then the user can specify the prior for μ with a parameter `priorMu` which can either be a single number m_0, or m_0 and n_0. If m_0 and n_0 are not specified then m_0 and n_0 are 0 by default. The user can also specify `priorVar`, which if given, must be a vector with two elements s_0 and $kappa_0$. If s_0 and $kappa_0$ are not given then they are zero by default. If `type = 'joint'` then `priorMu` must be a vector of length two with elements m_0 and sd_0. The user can also specify `priorVar`, which if given, must be a vector with two elements s_0 and $kappa_0$. If s_0 and $kappa_0$ are not given then they are zero by default.

Value

A data frame containing three variables:

- `[1,] mu`: a sample from the posterior distribution of the mean.
- `[2,] sig`: a sample from the posterior distribution of the standard deviation.
- `[3,] mu`: a sample from the posterior distribution of the variance $= sig^2$.

Author(s)

James M. Curran

Examples

```r
## firstly generate some random data
mu <- rnorm(1)
sigma <- rgamma(1, 5, 1)
y <- rnorm(100, mu, sigma)

## A \(N(10, 3^2)\) prior for \(\mu\) and a 25 times inverse chi-squared
## with one degree of freedom prior for \(\sigma^2\)
MCMCSampleInd <- normGibbs(y, steps = 5000, priorMu = c(10, 3),
```
normMixMH

Sample from a normal mixture model using Metropolis-Hastings

Description

normMixMH uses the Metropolis-Hastings algorithm to draw a sample from a univariate target distribution that is a mixture of two normal distributions using an independent normal candidate density or a random walk normal candidate density.

Usage

```
normMixMH(theta0, theta1, p, candidate,
        steps = 1000, type = 'ind',
        randomSeed = NULL, startValue = NULL)
```

Arguments

- **theta0**: A vector of length two containing the mean and standard deviation of the first component of the normal mixture
- **theta1**: A vector of length two containing the mean and standard deviation of the second component of the normal mixture
A value between 0 and 1 representing the mixture proportion, so that the true density is \(p \times f(\mu_1, \sigma_1) + (1 - p) \times f(\mu_2, \sigma_2) \)

candidate A vector of length two containing the mean and standard deviation of the candidate density

steps The number of steps to be used in the Metropolis-Hastings algorithm. steps must be greater than 100

type Either 'ind' or 'rw' depending on whether a independent candidate density or random walk candidate density is to be used. 'i' and 'r' may be used as alternative compact notation

startValue A starting value for the chain

randomSeed A seed for the random number generator. Only used when you want the same sequence of random numbers in the chain

Value

A vector containing a sample from the normal mixture distribution.

Examples

```r
## Set up the normal mixture
theta0 <- c(0,1)
theta1 <- c(3,2)
p <- 0.8

## Sample from an independent N(0,3^2) candidate density
candidate <- c(0, 3)
MCMCSampleInd <- normMixMH(theta0, theta1, p, candidate)

## If we wish to use the alternative random walk N(0, 0.5^2)
## candidate density
candidate <- c(0, 0.5)
MCMCSampleRW <- normMixMH(theta0, theta1, p, candidate, type = 'rw')
```

pNull Test a one sided hypothesis from a numerically specified posterior CDF or from a sample from the posterior

Description

Calculates the probability of a one sided null hypothesis from a numerically calculated posterior CDF or from a sample from the posterior.

Usage

```r
pNull(theta0, theta, cdf = NULL, type = 'upper')
```
Arguments

- **theta0**: the hypothesized value, i.e. H0: theta <= theta0
- **theta**: a sample of values from the posterior density, or, if cdf is not NULL then the values over which the posterior CDF is specified
- **cdf**: the values of the CDF, \(F(\theta) = \int_{-\infty}^{\theta} f(t).df \) where \(f(t) \) is the PDF.
- **type**: the type of probability to return, 'lower' = \(\Pr(\theta \leq \theta_0) \) or 'upper' = \(\Pr(\theta \geq \theta_0) \). It is sufficient to use 'l' or 'u'

Details

This function uses linear interpolation to calculate bounds for points that may not be specified by CDF.

Value

- a list containing the element prob which will be the upper or lower tail probability depending on type

Examples

```r
## commands for calculating a numerical posterior CDF.
## In this example, the likelihood is proportional to
## \( \exp(-\theta/4) \) and a N(6, 9) prior is used.
theta <- seq(from = 0.001, to = 40, by = 0.001)
prior <- dnorm(theta, 6, 3)
ppnLike <- theta*1.5*exp(-theta/4)
ppnPost <- prior*ppnLike
scaleFactor <- sintegral(theta, ppnPost)$int
posterior <- ppnPost/scaleFactor
cdf <- sintegral(theta, posterior)$y
pNull(15, theta, cdf)

## Use an inverse method to take a random sample of size 1000
## from the posterior
suppressWarnings(Finv <- approxfun(cdf, theta))
thetaSample<-Finv(runif(1000))
pNull(15, thetaSample)
```

Description

Calculates the probability of a one sided null hypothesis from a numerically calculated posterior CDF.
Usage

\texttt{pnullNum(\texttt{theta0}, \texttt{theta}, \texttt{cdf}, \texttt{type} = \texttt{‘upper’})}

Arguments

- \texttt{theta0}:
 the hypothesized value, i.e. H0: \(\texttt{theta} \leq \texttt{theta0} \)
- \texttt{theta}:
 the values over which the the posterior CDF is specified
- \texttt{cdf}:
 the values of the CDF, \(F(\theta) = \int_{-\infty}^{\theta} f(t).df \) where \(f(t) \) is the PDF.
- \texttt{type}:
 the type of probability to return, 'lower' = \(\text{Pr}(\texttt{theta} \leq \texttt{theta0}) \) or 'upper' = \(\text{Pr}(\texttt{theta} \geq \texttt{theta0}) \). It is sufficient to use 'l' or 'u'

Details

This function uses linear interpolation to calculate bounds for points that may not be specified by CDF

Value

a list containing the element \texttt{prob} which will be the upper or lower tail probability depending on \texttt{type}

Examples

\begin{verbatim}
commands for calculating a numerical posterior CDF.
In this example, the likelihood is proportional to
\(\frac{\text{\theta}^3}{2!} \times \exp(-\text{\theta}/4) \) and a N(6, 9) prior is used.
theta <- seq(from = 0.001, to = 40, by = 0.001)
prior <- dnorm(theta,6,3)
ppnLike <- theta^1.5*exp(-theta/4)
ppnPost <- prior*ppnLike
scaleFactor <- sintegral(theta, ppnPost)$int
posterior <- ppnPost/scaleFactor
cdf <- sintegral(theta, posterior)$y
pnullNum(1, theta, cdf)
\end{verbatim}

\textbf{pnullSamp} \hspace*{2cm} Test a one sided hypothesis using a sample from a posterior density

Description

Calculates the probability of a one sided null hypothesis from a sample from a posterior density.

Usage

\texttt{pnullSamp(\texttt{theta}, \texttt{theta0} = 0, \texttt{type} = \texttt{‘upper’})}
Arguments

theta a sample of values from a posterior density
theta0 the hypothesized value, i.e. H0: theta <= theta0
type the type of probability to return, 'lower' = Pr(theta <= theta0) or 'upper' =
 Pr(theta >= theta0). It is sufficient to use 'l' or 'u'

Details

This function uses linear interpolation to calculate bounds for points that may not be specified by
CDF

Value

a list containing the element prob which will be the upper or lower tail probability depending on
type

Examples

The posterior density is N(3,1)
theta <- rnorm(1000,3)

test whether the true mean is greater than 0 (it is obviously!)
pnullSamp(theta)

Description

A test data set for bayesPois. The data come from the equation \(\log(\lambda_i) = 1 + 5x_i + \epsilon_i \) where \(\epsilon_i \)
comes from N(0,0.01).

Usage

data(poissonTest.df)

Format

A data frame with 100 observations on 5 variables.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>x</td>
<td>numeric</td>
<td>the covariate</td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td>eps</td>
<td>numeric</td>
<td>the error in the log response</td>
<td></td>
</tr>
<tr>
<td>[3]</td>
<td>log.lam</td>
<td>numeric</td>
<td>(\log(\lambda_i) = 1 + 5x_i + \epsilon_i) where (\epsilon_i)</td>
<td></td>
</tr>
<tr>
<td>[4]</td>
<td>lam</td>
<td>numeric</td>
<td>exp((\log(\lambda)))</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>y</td>
<td>numeric</td>
<td>a Poisson random variate with mean (\lambda_i)</td>
<td></td>
</tr>
</tbody>
</table>
See Also

bayesPois

sintegral

Numerical integration using Simpson’s Rule

Description

Takes a vector of \(x \) values and a corresponding set of positive \(f(x) = y \) values and evaluates the area under the curve:

\[
\int f(x)dx
\]

Usage

\[
sintegral(x, fx, n.pts = 256)
\]

Arguments

\[
x \quad \text{a sequence of } x \text{ values.}
\]

\[
fx \quad \text{the value of the function to be integrated at } x.
\]

\[
n.pts \quad \text{the number of points to be used in the integration.}
\]

Value

returns a list with the following elements

\[
x \quad \text{the } x\text{-values at which the integral has been evaluated}
\]

\[
y \quad \text{the cumulative integral}
\]

\[
int \quad \text{the value of the integral over the whole range}
\]

Examples

```r
## integrate the normal density from -3 to 3
x<-seq(-3,3,length=100)
fx<-dnorm(x)
estimate<-sintegral(x,fx)$int
true.val<-diff(pnorm(c<-3,3)))
cat(paste("Absolute error ",round(abs(estimate-true.val),7),"\n"))
cat(paste("Relative percentage error ", 100*round((abs(estimate-true.val)/true.val),6),"\n"))
```
Thin an MCMC sample

Description
Thins the output from an MCMC process

Usage
```
thin(x, k)
```

Arguments
- `x`: A vector, matrix or data.frame containing output from an MCMC sampling scheme
- `k`: An integer. This function takes every kth element from `x`

Details
Note this function does not check to see if `k` is sensible.

Value
A thinned vector, matrix or data frame containing every kth element of `x`.

Examples
```
## A blockwise Metropolis-Hastings chain of 1000 elements, thinned to
## 5th element
##
MCMCSampleBW <- bivnormMH(0.9, type = 'block')
MCMCSampleBW <- thin(MCMCSampleBW, 5)
```
Index

*Topic **datasets**
 - AidsSurvival.df, 2
 - c10ex16.df, 7
 - chd.df, 7
 - hierMeanRegTest.df, 14
 - logisticTest.df, 15
 - poissonTest.df, 21

*Topic **misc**
 - sintegral, 22

AidsSurvival.df, 2

BayesCPH, 2
BayesLogistic, 4
BayesPois, 5
bivnormMH, 6

c10ex16.df, 7
chd.df, 7
credInt, 8
credIntNum, 9
credIntSamp, 10
describe, 11

ex16.df (c10ex16.df), 7

GelmanRubin, 12
GR (GelmanRubin), 12

hierMeanReg, 13
hierMeanRegTest.df, 14

logisticTest.df, 15

normGibbs, 15
normMixMH, 17

pNull, 18
pnullNum, 19
pnullSamp, 20

poissonTest.df, 21
sintegral, 22
thin, 23