Package ‘CADFtest’

June 2, 2017

Type Package
Title A Package to Perform Covariate Augmented Dickey-Fuller Unit Root Tests
Version 0.3-3
Date 2017-05-31
Author Claudio Lupi
Maintainer Claudio Lupi <lupi@unimol.it>
Depends dynlm, sandwich, tseries, urca
Description Hansen’s (1995) Covariate-Augmented Dickey-Fuller (CADF) test. The only required argument is y, the Tx1 time series to be tested. If no stationary covariate X is passed to the procedure, then an ordinary ADF test is performed. The p-values of the test are computed using the procedure illustrated in Lupi (2009).
License GPL (>= 2)
URL http://www.jstatsoft.org/v32/i02
LazyLoad yes
LazyData yes
Repository CRAN
Date/Publication 2017-06-02 17:10:31 UTC

R topics documented:

 CADFpvalues ... 2
 CADFtest .. 3
 coeffs_ct ... 5
 plot.CADFtest .. 6
 residuals.CADFtest ... 7
 summary.CADFtest .. 7
 update.CADFtest ... 8
Description

The asymptotic p-values of the Hansen’s (1995) Covariate-Augmented Dickey Fuller (CADF) test for a unit root are computed using the approach outlined in Costantini et al. (2007). The function can be used also to compute the p-values of the ordinary Dickey-Fuller distribution.

Usage

```r
CADFpvalues(t0, rho2 = 0.5, type=c("trend", "drift", "none"))
```

Arguments

- `t0`: the value of the test statistic.
- `rho2`: the value of the long-run correlation. When `rho2 = 1` is set, the p-values of the ordinary Dickey-Fuller are computed.
- `type`: defines the deterministic kernel used in the test. It accepts the values used in package urca. It specifies if the underlying model must be with linear trend ("trend", the default), with constant ("drift") or without constant ("none").

Value

- `p.value`: a scalar containing the estimated asymptotic p-value of the test.

Author(s)

Claudio Lupi

References

Examples

```r
CADFpvalues(t0=-1.7, rho2=0.20, type="trend")
```
CADFtest

Hansen's Covariate-Augmented Dickey Fuller (CADF) test for unit roots

Description

This function is an interface to \texttt{CADFtest.default} that computes the CADF unit root test proposed in Hansen (1995). The asymptotic p-values of the test are also computed along the lines proposed in Costantini et al. (2007). Automatic model selection is allowed. A full description and some applications can be found in Lupi (2009).

Usage

\texttt{CADFtest(model, X=NULL, type=c("trend", "drift", "none"), data=list(), max.lag.y=1, min.lag.X=0, max.lag.X=0, dname=NULL, criterion=c("none", "BIC", "AIC", "HQC", "MAIC"), ...)}

Arguments

- **model** a formula of the kind \(y \sim x1 + x2 \) containing the variable \(y \) to be tested and the stationary covariate(s) to be used in the test. If the model is specified as \(y \sim 1 \), then an ordinary ADF is carried out. Note that the specification \(y \sim . \) here does not imply a model with all the disposable regressors, but rather a model with no stationary covariate (which corresponds to an ADF test). This is because the stationary covariates have to be explicitly indicated (they are usually one or two). An ordinary ADF is performed also if \texttt{model=y} is specified, where \(y \) is a vector or a time series. It should be noted that \texttt{model} is not the actual model, but rather a representation that is used to simplify variable specification. The covariates are assumed to be stationary.

- **X** if \texttt{model=y}, a matrix or a vector time series of stationary covariates \(X \) can be passed directly, instead of using the formula expression. However, the formula expression should in general be preferred.

- **type** defines the deterministic kernel used in the test. It accepts the values used in package \texttt{urca}. It specifies if the underlying model must be with linear trend ("trend", the default), with constant ("drift") or without constant ("none").

- **data** data to be used (optional). This argument is effective only when \texttt{model} is passed as a formula.

- **max.lag.y** maximum number of lags allowed for the lagged differences of the variable to be tested.

- **min.lag.X** if negative it is maximum lead allowed for the covariates. If zero, it is the minimum lag allowed for the covariates.

- **max.lag.X** maximum lag allowed for the covariates.

- **dname** NULL or character. It can be used to give a special name to the model. If the NULL default is accepted and the model is specified using a formula notation, then dname is computed according to the used formula.
criterion it can be either "none" (the default), "BIC", "AIC", "HQC" or "MAIC". If criterion="none", no automatic model selection is performed. Otherwise, automatic model selection is performed using the specified criterion. In this case, the max and min orders serve as upper and lower bounds in the model selection.

... Extra arguments that can be set to use special kernels, prewhitening, etc. in the estimation of ρ^2. A Quadratic kernel with a VAR(1) prewhitening is the default choice. To set these extra arguments to different values, see kernHAC in package sandwich (Zeileis, 2004, 2006). If Hansen’s results have to be duplicated, then kernel="Parzen" and prewhite=FALSE must be specified.

Value

The function returns an object of class c("CADFtest", "htest") containing:

- statistic the t test statistic.
- parameter the estimated nuisance parameter ρ^2 (see Hansen, 1995, p. 1150).
- method the test performed: it can be either ADF or CADF.
- p.value the p-value of the test.
- data.name the data name.
- max.lag.y the maximum lag of the differences of the dependent variable.
- min.lag.X the maximum lead of the stationary covariate(s).
- max.lag.X the maximum lag of the stationary covariate(s).
- AIC the value of the AIC for the selected model.
- BIC the value of the BIC for the selected model.
- HQC the value of the HQC for the selected model.
- MAIC the value of the MAIC for the selected model.
- est.model the estimated model.
- estimate the estimated value of the parameter of the lagged dependent variable.
- null.value the value of the parameter of the lagged dependent variable under the null.
- alternative the alternative hypothesis.
- call the call to the function.
- type the deterministic kernel used.

Author(s)

Claudio Lupi

References

See Also

fUnitRoots, urca

Examples

```r
##---- ADF test on extended Nelson-Plosser data ----
##-- Data taken from package urca
data(npext, package="urca")
ADFT <- CADFtest(npext$gnpperca, max.lag.y=3, type="trend")

##---- CADF test on extended Nelson-Plosser data ----
data(npext, package="urca")
npext$unemrate <- exp(npext$unemploy)  # compute unemployment rate
L <- ts(npext, start=1860)  # time series of levels
D <- diff(L)  # time series of diffs
S <- window(ts.intersect(L,D), start=1909)  # select same sample as Hansen's
CADFt <- CADFtest(L.gnpperca*D.unemrate, data=S, max.lag.y=3,
               kernel="Parzen", prewhite=FALSE)
```

data("coeffs_ct")
data("coeffs_c")
data("coeffs_nc")

coeffs_ct
Tables of coefficients to compute p-values

Description

These tables contain the response surface coefficients needed to compute the p-value of Hansen’s CADF test (see Costantini et al., 2007; Lupi, 2009). `coeffs_ct`, `coeffs_c`, `coeffs_nc` are the relevant tables for the constant plus trend, constant, and no constant case, respectively.

Usage

data("coeffs_ct")
data("coeffs_c")
data("coeffs_nc")

Format

The tables are saved as binary data .rda objects. They are (1005×5) matrices, where the first column represents probabilities and the following four columns are β_0, \ldots, β_3 in eqn. (13) in Costantini et al. (2007) (see also Lupi, 2009).
Author(s)
Claudio Lupi

Source
Costantini et al. (2007).

References

plot.CADFtest Function to plot CADFtest objects

Description
This function conveniently plots the residuals of the Covariate Augmented Dickey-Fuller or the standard Augmented Dickey-Fuller regression carried out in CADFtest.

Usage

```r
## S3 method for class 'CADFtest'
plot(x, plots=(1:4), ...)
```

Arguments

- `x` an object belonging to the class CADFtest.
- `plots` the plots to be produced (all the four plots by default): 1: standardized residuals plot; 2: density of the residuals, with an indication of the p-value of the Jarque-Bera test for normality; 3: ACF of the residuals; 4: partial ACF of the residuals.
- `...` currently not used.

Author(s)
Claudio Lupi

Examples

data(npext, package="urca")
ADFT <- CADFtest(npext$realgnp, type="trend")
plot(ADFT, plots=c(3,4))
residuals.CADFtest

Function to extract the residuals from CADFtest objects

Description
This function applies the residuals() method to an object of class CADFtest.

Usage
```r
## S3 method for class 'CADFtest'
residuals(object, ...)
```

Arguments
- **object**: an object belonging to the class CADFtest.
- **...**: currently not used.

Author(s)
Claudio Lupi

Examples
```r
data(npext, package="urca")
AD Ft <- CADFtest(npext$realgnp, type="trend")
residuals(AD Ft)
```

summary.CADFtest

Function to print a summary of CADFtest objects

Description
This function conveniently prints the detailed results of the Covariate-Augmented Dickey Fuller test carried out in CADFtest.

Usage
```r
## S3 method for class 'CADFtest'
summary(object, ...)
```

Arguments
- **object**: an object belonging to the class CADFtest.
- **...**: currently not used.
Value

The function returns an object of class \texttt{CADFtest}summary containing the main results of the test.

- \texttt{test.summary} is a matrix, containing the t-test statistic, the estimated value of ρ^2, the p-value of the test, the max lag used for the differenced dependent variable, the max lag of the stationary covariate, the max lead of the stationary covariate. When a standard ADF test is performed, only the t-test statistic, the p-value and the max lag of the differenced dependent variable are reported.

- \texttt{model.summary} is the summary of the test model, in the usual form. However, note that the p-value of the lagged dependent is computed under the null of a unit root. Furthermore, differently from the common practice, the F-statistic refers to the joint significance of the stationary regressors. If no stationary regressors are used (no lagged differences of the dependent, no stationary covariates) then the F-statistic is not computed and a \texttt{NA} value is returned.

Author(s)

Claudio Lupi

Examples

data(next, package="urca")
next <- CADFtest(next$rgdp, type="trend")
summary(next)

\texttt{update.CADFtest} \hspace{1cm} \textit{Function to update the formula of CADFtest objects}

Description

This function updates the formula and/or the other arguments of CADFtest object and re-run the test using the updated arguments. It can be useful if one wants to see the effect of adding/removing stationary covariates or the effect of changing lags, kernel, etc. If covariates have to be added/removed, \texttt{update()} works only if \texttt{model} is passed as a formula.

Usage

\texttt{## S3 method for class 'CADFtest'}
\texttt{update(object, change, \ldots)}

Arguments

- \texttt{object} an object belonging to the class CADFtest.
- \texttt{change} list of character describing the changes to be applied to the existing model.
- \texttt{\ldots} currently not used.
Value

The function re-run the test and returns an object of class `CADFtest`. See `CADFtest()`.

Author(s)

Claudio Lupi

Examples

```r
data(npext, package="urca")
npext$unemrate <- exp(npext$unemploy)  # compute unemployment rate
L <- ts(npext, start=1860)           # time series of levels
D <- diff(L)                         # time series of diffs
S <- window(ts.intersect(L,D, start=1909))  # select same sample as Hansen's
CADFt <- CADFtest(L.gnppercap-0.1*unemrate, data=5, max.lag.y=3,
                  kernel="Parzen", prewhite=FALSE)
CADFt.2 <- update(CADFt, change=list("+ D.indprod", "max.lag.X=3",
                                    "criterion='BIC'"))
```
Index

*Topic datasets
 coeffs_ct, 5
*Topic htest
 CADFtest, 3
*Topic ts
 CADFtest, 3
*Topic univar
 CADFtest, 3

CADFpvalues, 2
CADFtest, 3
coeffs_c(coeffs_ct), 5
coeffs_ct, 5
coeffs_nc(coeffs_ct), 5

plot.CADFtest, 6
residuals.CADFtest, 7
summary.CADFtest, 7
update.CADFtest, 8