Package ‘COMPoissonReg’

December 9, 2018

Type Package

Title Conway-Maxwell Poisson (COM-Poisson) Regression

Version 0.6.1

Date 2018-12-08

Author Kimberly Sellers <kfs7@georgetown.edu>
Thomas Lotze <thomas.lotze@thomaslotze.com>
Andrew Raim <andrew.raim@gmail.com>

Maintainer Andrew Raim <andrew.raim@gmail.com>

URL https://github.com/lotze/COMPoissonReg

License GPL-2 | GPL-3

LazyLoad yes

Depends stats, Rcpp

LinkingTo Rcpp

RoxygenNote 6.1.1

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-12-09 14:30:07 UTC

R topics documented:

COMPoissonReg-package .. 2
CMP Distribution .. 5
COMPoissonReg-options .. 6
couple.rda ... 6
Description

This package offers the ability to compute the parameter estimates for a COM-Poisson or zero-inflated (ZI) COM-Poisson regression and associated standard errors. This package also provides a hypothesis test for determining statistically significant data dispersion, and other model diagnostics.

Details

This package offers the ability to compute COM-Poisson parameter estimates and associated standard errors for a regular regression model or a zero-inflated regression model (via the glm cmp function).

Further, the user can perform a hypothesis test to determine the statistically significant need for using COM-Poisson regression to model the data. The test addresses the matter of statistically significant dispersion.

The main order of functions for COM-Poisson regression is as follows:

1. Compute Poisson estimates (using glm for Poisson regression or pscl for ZIP regression).
2. Use Poisson estimates as starting values to determine COM-Poisson estimates (using glm.cmp).
3. Compute associated standard errors (using sdev function).

From here, there are lots of ways to proceed, so order is irrelevant:

- Perform a hypothesis test to assess for statistically significant dispersion (using equitest or parametric_bootstrap).
- Compute leverage (using leverage) and deviance (using deviance).
- Predict the outcome for new examples, using predict.

The package also supports fitting of the zero-inflated COM-Poisson model (ZICMP). Most of the tools available for COM-Poisson are also available for ZICMP.

As of version 0.5.0 of this package, a hybrid method is used to compute the normalizing constant $z(\lambda, \nu)$ for the COM-Poisson density. A closed-form approximation (Shmueli et al, 2005; Gillispie & Green, 2015) to the exact sum is used if the given λ is sufficiently large and ν is sufficiently small. Otherwise, an exact summation is used, except that the number of terms is truncated to meet a given accuracy. Previous versions of the package used simple truncation (defaulting to 100 terms), but this was found to be inaccurate in some settings.
Author(s)

Kimberly Sellers, Thomas Lotze, Andrew M. Raim

References

Examples

```r
## load freight data
data(freight)

# Fit standard Poisson model
glm.out <- glm(broken ~ transfers, data=freight,
               family=poisson, na.action=na.exclude)
print(glm.out)

# Fit COM-Poisson model (with intercept-only regression linked to the # dispersion parameter)
cmp.out <- glm.cmp(broken ~ transfers, data=freight)
print(cmp.out)
coef(cmp.out)
nu(cmp.out)[1]

# Compute associated standard errors
sdev(cmp.out)

# Get the full covariance matrix for the estimates
vcov(cmp.out)

# Likelihood ratio test for dispersion parameter
# Test for H_0: dispersion equal to 1 vs. H_1: not equal to 1
# (i.e. Poisson vs. COM-Poisson regression models)
lrt <- equitest(cmp.out)

# Compute constant COM-Poisson leverage
lev <- leverage(cmp.out)

# Compute constant COM-Poisson deviances
dev <- deviance(cmp.out)
```
Compute fitted values
y.hat <- predict(cmp.out, newdata=freight)

Compute residual values
res <- residuals(cmp.out)
print(summary(res))

Compute MSE
mean(res^2)

Compute predictions on new data
new_data <- data.frame(transfers=(0:10))
y.hat <- predict(cmp.out, newdata=new_data)
plot(0:10, y.hat, type="l",
 xlab="number of transfers", ylab="predicted number broken")

Compute parametric bootstrap results and use them to generate
0.95 confidence intervals for parameters.
cmp.boot <- parametric_bootstrap(cmp.out, reps=1000)
print(apply(cmp.boot, 2, quantile, c(0.025,0.975)))

load couple data
data(couple)

Fit standard Poisson model
glm.out <- glm(UPB ~ EDUCATION + ANXIETY, data=couple, family=poisson)
print(glm.out)

Fit ZICMP model
zicmp.out <- glm.cmp(UPB ~ EDUCATION + ANXIETY,
 formula.nu = ~ 1,
 formula.p = ~ EDUCATION + ANXIETY,
 data=couple)
print(zicmp.out)

Compute standard errors for estimates of coefficients
sdev(zicmp.out)

Get the full covariance matrix for the estimates
vcov(zicmp.out)

Likelihood ratio test for equidispersion (H0: nu = 1 vs H1: not)
equitest(zicmp.out)

Compute fitted values
y.hat <- predict(zicmp.out)

Compute residuals
res.raw <- residuals(zicmp.out, type = "raw")
res.quan <- residuals(zicmp.out, type = "quantile")
print(summary(res.raw))
print(summary(res.quan))

Compute predictions on new data
new_data <- data.frame(EDUCATION = round(1:20 / 20), ANXIETY = seq(-3,3, length.out = 20))
y.hat.new <- predict(zicmp.out, newdata=new_data)
print(y.hat.new)

Compute parametric bootstrap results and use them to generate
0.95 confidence intervals for parameters.
zicmp.boot <- parametric_bootstrap(zicmp.out, reps=1000)
print(apply(zicmp.boot, 2, quantile, c(0.025,0.975)))

CMP Distribution

COM-Poisson Distribution

Description

Functions for the COM-Poisson distribution.

Usage

\[
dcmp(x, lambda, nu, log = FALSE) \\
pcmp(x, lambda, nu) \\
qcmp(q, lambda, nu, log.p = FALSE) \\
rcmp(n, lambda, nu)
\]

Arguments

- **x** vector of quantiles.
- **q** vector of probabilities.
- **n** number of observations.
- **lambda** rate parameter.
- **nu** dispersion parameter.
- **log, log.p** logical; if TRUE, probabilities p are given as log(p).

Value

dcmp gives the density, pcmp gives the cumulative probability, qcmp gives the quantile function, and rcmp generates random values.

Author(s)

Kimberly Sellers
References

COMPoissonReg-options Package options

Description

Global options used by the COMPoissonReg package.

Arguments

COMPoissonReg.optim.method
 Optim method to use when computing maximum likelihood estimates.
COMPoissonReg.optim.control
 A list to be passed to control when calling optim. fnscale will be ignored if specified.
COMPoissonReg.grad.eps
 Distance to be used when finite differences are taken.
COMPoissonReg.hess.eps
 Distance to be used when finite second differences are taken.

Details

options(COMPoissonReg.optim.method = 'L-BFGS-B')
options(COMPoissonReg.optim.control = list(maxit = 1))
options(COMPoissonReg.grad.eps = 1e-5)
options(COMPoissonReg.hess.eps = 1e-2)

couple.rda Couple dataset

Description

A dataset investigating the impact of education level and level of anxious attachment on unwanted pursuit behaviors in the context of couple separation.

Usage

data(couple)

Format

- UPB = number of unwanted pursuit behavior perpetrations.
- EDUCATION = 1 if at least bachelor’s degree; 0 otherwise.
- ANXIETY = continuous measure of anxious attachment.
References

equitest

Likelihood ratio test for Equidispersion

Description

A generic function for the likelihood ratio test for equidispersion using the output of a fitted mode. The function invokes particular methods which depend on the class of the first argument.

Usage

equitest(object, ...)

Arguments

object a model object

... other parameters which might be required by the model

Details

See the documentation of the particular methods for details.

Value

Returns the test statistic and p-value determined from the χ^2_1 distribution.

Author(s)

Thomas Lotze

See Also

equitest.cmp, equitest.zicmp
Description

A set of data on airfreight breakage (breakage of ampules filled with some biological substance are shipped in cartons).

Usage

```r
data(freight)
```

Format

- `broken` = number of ampules found broken upon arrival.
- `transfers` = number of times carton was transferred from one aircraft to another.

References

Description

Fit COM-Poisson regression using maximum likelihood estimation. Zero-Inflated COM-Poisson can be fit by specifying a regression for the overdispersion parameter.

The COM-Poisson regression model is

\[
y_i \sim CMP(\lambda_i, \nu_i), \quad \log \lambda_i = x_i^\top \beta, \quad \log \nu_i = s_i^\top \gamma.
\]

The Zero-Inflated COM-Poisson regression model assumes that \(y_i \) is 0 with probability \(p_i \) or \(y_i^* \) with probability \(1 - p_i \), where

\[
y_i^* \sim CMP(\lambda_i, \nu_i), \quad \log \lambda_i = x_i^\top \beta, \quad \log \nu_i = s_i^\top \gamma, \quad \log p_i = w_i^\top \zeta.
\]
Usage

```r
glm.cmp(formula.lambda, formula.nu = ~ 1, formula.p = NULL,
         beta.init = NULL, gamma.init = NULL, zeta.init = NULL, ...)
```

S3 method for class 'cmp'
AIC(object, ..., k = 2)
S3 method for class 'cmp'
BIC(object, ...)
S3 method for class 'cmp'
coef(object, ...)
S3 method for class 'cmp'
deviance(object, ...)
S3 method for class 'cmp'
equitest(object, ...)
S3 method for class 'cmp'
leverage(object, ...)
S3 method for class 'cmp'
logLik(object, ...)
S3 method for class 'cmp'
nu(object, ...)
S3 method for class 'cmp'
parametric_bootstrap(object, reps = 1000, report.period = reps + 1, ...)
S3 method for class 'cmp'
predict(object, newdata = NULL, ...)
S3 method for class 'cmp'
print(x, ...)
S3 method for class 'cmp'
residuals(object, type = c("raw", "quantile"), ...)
S3 method for class 'cmp'
sdev(object, ...)
S3 method for class 'cmp'
summary(object, ...)
S3 method for class 'cmp'
vcov(object, ...)
```

## S3 method for class 'zicmp'
AIC(object, ..., k = 2)
## S3 method for class 'zicmp'
BIC(object, ...)
## S3 method for class 'zicmp'
coef(object, ...)
## S3 method for class 'zicmp'
deviance(object, ...)
## S3 method for class 'zicmp'
equitest(object, ...)
## S3 method for class 'z icmp'
leverage(object, ...)
## S3 method for class 'z icmp'
logLik(object, ...)  
## S3 method for class 'zicmp'  
nu(object, ...)  
## S3 method for class 'zicmp'  
parametric_bootstrap(object, reps = 1000, report.period = reps + 1, ...)  
## S3 method for class 'zicmp'  
predict(object, newdata = NULL, ...)  
## S3 method for class 'zicmp'  
print(x, ...)  
## S3 method for class 'zicmp'  
residuals(object, type = c("raw", "quantile"), ...)  
## S3 method for class 'zicmp'  
sdev(object, ...)  
## S3 method for class 'zicmp'  
summary(object, ...)  
## S3 method for class 'zicmp'  
vcov(object, ...)  

Arguments

- formula.lambda: regression formula linked to log(lambda)
- formula.nu: regression formula linked to log(nu). By default, is taken to be intercept only.
- formula.p: regression formula linked to logit(p). If NULL (the default), zero-inflation term is excluded from the model.
- beta.init: initial values for regression coefficients of lambda.
- gamma.init: initial values for regression coefficients of nu.
- zeta.init: initial values for regression coefficients of p.
- ...: other model parameters, such as data
- object: object of type 'cmp' or 'zicmp'.
- x: object of type 'cmp' or 'zicmp'.
- k: Penalty per parameter to be used in AIC calculation.
- newdata: New covariates to be used for prediction.
- type: Type of residual to be computed.
- reps: Number of bootstrap repetitions.

Value

glm.cmp produces an object of either class 'cmp' or 'zicmp', depending on whether zero-inflation is used in the model. From this object, coefficients and other information can be extracted.

Author(s)

Kimberly Sellers, Thomas Lotze, Andrew Raim
References


leverage

Description

a generic function for the leverage of points used in various model fitting functions. The function invokes particular methods which depend on the class of the first argument.

Usage

leverage(object, ...)

Arguments

object a model object

... other parameters which might be required by the model

Details

See the documentation of the particular methods for details.

Value

The form of the value returned depends on the class of its argument. See the documentation of the particular methods for details of what is produced by that method.

Author(s)

Thomas Lotze

See Also

leverage.cmp
nu

Estimate for dispersion parameter

Description

a generic function for the dispersion parameter estimate from the results of various model fitting functions. The function invokes particular methods which depend on the class of the first argument.

Usage

nu(object, ...)

Arguments

object a model object
... other parameters which might be required by the model

Details

See the documentation of the particular methods for details.

Value

The form of the value returned depends on the class of its argument. See the documentation of the particular methods for details of what is produced by that method.

Author(s)

Thomas Lotze

See Also

nu.cmp, nu.zicmp

parametric_bootstrap Parametric Bootstrap

Description

a generic function for the parametric bootstrap from the results of various model fitting functions. The function invokes particular methods which depend on the class of the first argument.

Usage

parametric_bootstrap(object, reps = 1000, report.period = reps+1, ...)


sdev

Arguments

- **object**: a model object
- **...**: other parameters which might be required by the model
- **reps**: Number of bootstrap repetitions.
- **report.period**: Report progress every `report.period` iterations.

Details

See the documentation of the particular methods for details.

Value

The form of the value returned depends on the class of its argument. See the documentation of the particular methods for details of what is produced by that method.

Author(s)

Thomas Lotze

See Also

- `parametric_bootstrap.cmp`
- `parametric_bootstrap.zicmp`

---

**sdev**

*Standard deviations*

Description

A generic function for the standard deviation estimates from the results of various model fitting functions. The function invokes particular methods which depend on the class of the first argument.

Usage

```
sdev(object, ...)```

Arguments

- **object**: a model object
- **...**: other parameters which might be required by the model

Details

See the documentation of the particular methods for details.

Value

The form of the value returned depends on the class of its argument. See the documentation of the particular methods for details of what is produced by that method.
ZICMP Distribution

Author(s)
Thomas Lotze

See Also
sdev cmp, sdev zicmp

ZICMP Distribution

Description
Computes the density, cumulative probability, quantiles, and random draws for the zero-inflated COM-Poisson distribution.

Usage
dzicmp(x, lambda, nu, p, log = FALSE)
pzicmp(x, lambda, nu, p)
qzicmp(q, lambda, nu, p, log.p = FALSE)
rzicmp(n, lambda, nu, p)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>vector of quantiles.</td>
</tr>
<tr>
<td>q</td>
<td>vector of probabilities.</td>
</tr>
<tr>
<td>n</td>
<td>number of observations.</td>
</tr>
<tr>
<td>lambda</td>
<td>rate parameter.</td>
</tr>
<tr>
<td>nu</td>
<td>dispersion parameter.</td>
</tr>
<tr>
<td>p</td>
<td>zero-inflation probability parameter.</td>
</tr>
<tr>
<td>log, log.p</td>
<td>logical; if TRUE, probabilities p are given as log(p).</td>
</tr>
</tbody>
</table>

Value
dzicmp gives the density, pzicmp gives the cumulative probability, qzicmp gives the quantile value, and rzicmp generates random numbers.

Author(s)
Kimberly Sellers, Andrew Raim

References
Index

*Topic COM-Poisson distribution
 CMP Distribution, 5

*Topic ZICMP distribution
 ZICMP Distribution, 14

*Topic estimate
 glm.cmp, 8

*Topic maximum likelihood estimation
 glm.cmp, 8

*Topic regression
 glm.cmp, 8

AIC.cmp (glm.cmp), 8
AIC.zicmp (glm.cmp), 8

BIC.cmp (glm.cmp), 8
BIC.zicmp (glm.cmp), 8

CMP Distribution, 5
coeff.cmp (glm.cmp), 8
coeff.zicmp (glm.cmp), 8
COM-PoissonReg (COM-PoissonReg-package), 2
COM-PoissonReg-package (COM-PoissonReg-package), 2
COM-PoissonReg-options, 6
COM-PoissonReg-package, 2
couple (couple.rda), 6
couple.rda, 6
dcmp (CMP Distribution), 5
deviance.cmp (glm.cmp), 8
deviance.zicmp (glm.cmp), 8
dzicmp (ZICMP Distribution), 14
equitest, 7
equitest.cmp, 7
equitest.cmp (glm.cmp), 8
equitest.zicmp, 7
equitest.zicmp (glm.cmp), 8

freight (freight.rda), 8
freight.rda, 8

glm.cmp, 8
glm.zicmp (glm.cmp), 8

leverage, 11
leverage.cmp, 11
leverage.cmp (glm.cmp), 8
leverage.zicmp (glm.cmp), 8
loglik.cmp (glm.cmp), 8
loglik.zicmp (glm.cmp), 8

nu, 12
nu.cmp, 12
nu.zicmp (glm.cmp), 8
nu.zicmp (glm.cmp), 8

parametric_bootstrap, 12
parametric_bootstrap.cmp, 13
parametric_bootstrap.cmp (glm.cmp), 8
parametric_bootstrap.zicmp, 13
parametric_bootstrap.zicmp (glm.cmp), 8
pcmp (CMP Distribution), 5
predict.cmp (glm.cmp), 8
predict.zicmp (glm.cmp), 8
print.cmp (glm.cmp), 8
print.zicmp (glm.cmp), 8
pzicmp (ZICMP Distribution), 14

qcmp (CMP Distribution), 5
qzicmp (ZICMP Distribution), 14

rcmp (CMP Distribution), 5
residuals.cmp (glm.cmp), 8
residuals.zicmp (glm.cmp), 8
rzicmp (ZICMP Distribution), 14

sdev, 13
sdev.cmp, 14
sdev.cmp(glm.cmp), 8
sdev.zicmp, 14
sdev.zicmp(glm.cmp), 8
summary.cmp(glm.cmp), 8
summary.zicmp(glm.cmp), 8

vcov.cmp(glm.cmp), 8
vcov.zicmp(glm.cmp), 8

ZICMP Distribution, 14