Package ‘CRM’

February 19, 2015

Title Continual Reassessment Method (CRM) for Phase I Clinical Trials
Version 1.1.1
Date 2012-2-29
Depends R (>= 2.10.0)
Author Qianxing Mo
Maintainer Qianxing Mo <qmo@bcm.edu>
Description CRM simulator for Phase I Clinical Trials
LazyData no
License GPL (>= 2)
Repository CRAN
Date/Publication 2012-03-01 07:54:02
NeedsCompilation yes

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>crm</td>
<td>A function for the continued reassessment method (CRM) used in Phase I clinical trials</td>
</tr>
</tbody>
</table>

Description

Function crm implement the continued reassessment method (CRM) for dose finding in Phase I clinical trials.

Usage

```r
crm(target,prior,ptdata,model=1,a0=1,b=3)
```
Arguments

- `target`: Target probability of toxicity. The value must be in (0, 1).
- `prior`: Prior probabilities of toxicity for each dose. The values must be in (0,1) and in an ascending order. For example, `prior=c(0.05,0.1,0.2,0.3,0.5,0.7)`, which corresponds to dose levels 1, 2, 3, 4, 5 and 6, respectively.
- `ptdata`: A n by 2 matrix in which the first column contains dose levels and the second column contains toxicity indicators. Dose levels must be integers (e.g., 1, 2, 3, ..., N). Toxicity indicators must be 0 and 1, where 0 indicates no toxicity and 1 indicates toxicity.
- `model`: Dose-toxicity model. The value must be 1 (hyperbolic tangent model) or 2 (one-parameter logistic model). Default is 1. Hyperbolic tangent model: $p(y=1|x,a) = (\tanh(x)+1)/2^a$. One-parameter logistic model: $p(y=1|x,a,b) = \exp(b+ax)/(1+\exp(b+ax))$. For both models, y=1 indicates toxicity is observed; a is the parameter that can be updated based on the outcome of the trail; b is a fixed parameter. The prior for a is $\exp(-a)$.
- `a0`: Initial value for parameter a. Default is 1.0.
- `b`: A fixed parameter for the one-parameter logistic model. Default is 3.0.

Value

A list with the following two objects:

- `MTD`: The dose level proposed as the maximum tolerated dose (MTD) based on the patient data
- `a`: The updated value for parameter a

Author(s)

Qianxing Mo; <qmo@bcm.edu>

References

See Also

`crmsim`

Examples

```R
#The table 1 in O'Quigley et al.'s paper, page 40
#This example is used to illustrate how the program is used to find
#the MTD and the updated parameter

target <- 0.2
prior <- c(0.05,0.1,0.2,0.3,0.5,0.7)
```
x <- c(3,4,4,3,3,2,1,1,2,2,2,2,2,2,2,2,2,2,1)
y <- c(0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.1,0.0,0.0,0.1,0.0,0.1,0.1,1)
ptdata <- cbind(x,y)
for(i in 1:25){
 if(i == 1){
 cat(1,1,3,0,\n"
 }
 res <- crm(target,prior,ptdata[1:i],model=1,a0=1)
 if(i < 25){
 cat(i+1,resa,resMTD,ptdata[i+1,2],\n"
 }else {
 cat(i+1,res$a,\n"
 }
}
#the proposed MTD is
res$MTD

crmsim
CRM Simulator

Description

crmsim, crmsiminc1 and crmsiminc2 implement the continued reassessment method (CRM) for dose finding in Phase I clinical trials. The operating characteristics of CRM are summarized through simulations.

crmsim allows users to select a variety of cohort sizes. A cohort of subjects are treated at the same dose.

The cohort size is fixed to 1 in crmsiminc1 and crmsiminc2. crmsiminc1 implements an algorithm that allows a clinical trial to proceed to the next subject’s dose assignment before observing the last subject’s toxicity data. crmsiminc2 allows a clinical trial to proceed to the next subject’s dose assignment before observing the last two subject’s toxicity data (see Iasonos et al. for details).

Usage

```r
  crmsim(target,prior,true,rate,cycle,cohort=1,nsubject=24,nsim=1000,
  model=1,a0=1,b=3,jump=FALSE,start.dose=1,seed=777)
  crmsiminc1(target,prior,true,rate,cycle,nsubject=24,nsim=1000,
  model=1,a0=1,b=3,jump=FALSE,start.dose=1,seed=777)
  crmsiminc2(target,prior,true,rate,cycle,nsubject=24,nsim=1000,
  model=1,a0=1,b=3,jump=FALSE,start.dose=1,seed=777)
```

Arguments

- **target**
 Target probability of toxicity. The value must be in (0, 1).

- **prior**
 Prior probabilities of toxicity for each dose. The values must be in (0,1) and in ascending order. For example, prior=c(0.05,0.1,0.2,0.3,0.5,0.7), which corresponds to dose levels 1, 2, 3, 4, 5 and 6, respectively.
true True probabilities of toxicity. The values must be in (0,1) and in an ascending order. e.g. (0.1,0.2,0.3,0.4,0.5,0.8)
rate Recruitment/accrual rate of subjects in a 30 window. For example, if 1 subject can be recruited per 30 days, then set rate = 1/30 = 0.033; if 2 patients per 30 day then rate = 2/30 = 0.0667.
cycle The length of treatment cycle in days.
cohort Cohort size of subjects entering into the trials. Default is 1. The value for cohort must be less than or equal to the value for nsubject.
nsubject Total number of subjects in one simulation(or trial). Default is 24. nsubject should be equal to n*cohort, where n is positive integer.
nsim Total number of simulations. Default is 1000.
model Dose-toxicity model. The value must be 1 (hyperbolic tangent model) or 2 (one-parameter logistic model). Default is 1. Hyperbolic tangent model: \(p(y=1|x,a) = ((\tanh(x)+1)/2)^a \). One-parameter logistic model: \(p(y=1|x,a,b) = \exp(b+ax)/(1+\exp(b+ax)) \). For both models, y=1 indicates toxicity is observed; a is the parameter that can be updated based on the outcome of the trail; b is a fixed parameter. The prior for a is \(\exp(-a) \).
a0 Initial value for parameter a. Default is 1.0.
b A fixed parameter for the one-parameter logistic model. Default is 3.0.
jump jump=FALSE means NOT allowing that the proposed dose by the CRM program has an increase of more than one level than the previous level; jump=TRUE means allowing more-than-one-level increase of the proposed dose by the CRM program.
start.dose Initial dose for each trial. Default is 1.
seed Seed for the random number generator. Default is 777.

Value

SimResult is a matrix that summarizes the operating characteristics of CRM. The column names are the dose levels. The row names are the operating characteristics.

% Selection the percentage of selection of each dose as MTD
% Subjects Treated the percentage of subjects treated at each dose
Subjects Treated the average number of subjects treated at each dose
Average Toxicities the average toxicities per trial at each dose
True Probabilities the true probability of toxicity of each dose

TrialDuration is a table that summarizes the time needed for the trial based on the simulation.

Author(s)

Qianxing Mo; <qmo@bcm.edu>
References

See Also
crm

Examples

```r
prior1 <- c(0.05, 0.1, 0.2, 0.3, 0.5, 0.7)
true1 <- c(0.1, 0.15, 0.2, 0.4, 0.5, 0.8)

# simulations using model 1 (hyperbolic tangent model)
crmsim(target=0.2, prior=prior1, true=true1, rate=0.1, cycle=21, cohort=1, nsubject=24, nsim=100,
       model=1, a0=1, b=3, jump=FALSE, start.dose=1, seed=777)

crmsiminc(target=0.2, prior=prior1, true=true1, rate=0.1, cycle=21, nsubject=24, nsim=100,
          model=1, a0=1, b=3, jump=FALSE, start.dose=1, seed=777)

crmsiminc2(target=0.2, prior=prior1, true=true1, rate=0.1, cycle=21, nsubject=24, nsim=100,
            model=1, a0=1, b=3, jump=FALSE, start.dose=1, seed=777)

# simulations using model 2 (one-parameter logistic model)
crmsim(target=0.2, prior=prior1, true=true1, rate=0.1, cycle=21, cohort=1, nsubject=24, nsim=100,
       model=2, a0=1, b=3, jump=FALSE, start.dose=1, seed=777)

crmsiminc(target=0.2, prior=prior1, true=true1, rate=0.1, cycle=21, nsubject=24, nsim=100,
          model=2, a0=1, b=3, jump=FALSE, start.dose=1, seed=777)

crmsiminc2(target=0.2, prior=prior1, true=true1, rate=0.1, cycle=21, nsubject=24, nsim=100,
            model=2, a0=1, b=3, jump=FALSE, start.dose=1, seed=777)
```

Index

*Topic design
 crm, 1
 crmsim, 3

crm, 1, 5
krmsim, 2, 3
krmsimnc1 (krmsim), 3
krmsimnc2 (krmsim), 3