Package ‘CellularAutomaton’

February 19, 2015

Type Package
Title One-Dimensional Cellular Automata
Version 1.1-1
Date 2013-08-19
Author John Hughes
Maintainer John Hughes <hughes.j@umn.edu>
Depends R.oo, R.methodsS3
Description This package is an object-oriented implementation of one-dimensional cellular automata. It supports many of the features offered by Mathematica, including elementary rules, user-defined rules, radii, user-defined seeding, and plotting.
License GPL
NeedsCompilation no
Repository CRAN
Date/Publication 2013-08-20 07:01:00

R topics documented:

CellularAutomaton-package ... 2
CellularAutomaton .. 3
getLattice ... 4
getLattice.CellularAutomaton ... 4
getNumberOfColors .. 5
getNumberOfColors.CellularAutomaton 5
getRadius ... 6
getRadius.CellularAutomaton .. 6
getRuleNumber .. 7
getRuleNumber.CellularAutomaton 7
getSteps ... 8
getSteps.CellularAutomaton ... 8
getTotalistic ... 9
getTotalistic.CellularAutomaton 9
plot ... 10
plot.CellularAutomaton .. 10
Description

This package is an object-oriented implementation of one-dimensional cellular automata. It supports many of the features offered by Mathematica, including elementary rules, user-defined rules, radii, user-defined seeding, and plotting.

Details

Package: CellularAutomaton
Type: Package
Version: 1.1
Date: 2011-12-28
License: GPL

Author(s)

John Hughes
Maintainer: John Hughes <hughesj@umn.edu>

References

Examples

ca = CellularAutomaton(t = 100) \# Evolve Rule 30 for 100 steps. k = 2, r = 1, and the seed
\# have length \(2r + 1 = 201\).
ca$plot() \# Have a look.

\# Evolve Rule 110 for 100 steps. k = 2, r = 1, and the seed is 001000. Each row will have the
\# same length as the seed because -1 was given as the background.
ca = CellularAutomaton(n = 110, t = 100, seed = c(0, 0, 1, 0, 0, 0), bg = -1)
ca$plot(col = c("white", "darkblue")) \# Plot it using Penn State colors. :-)
CellularAutomaton Constructor for Class CellularAutomaton

Description
This method instantiates class CellularAutomaton.

Usage
CellularAutomaton(n = 30, fun = NULL, k = 2, r = 1, t = 1,
 totalistic = 0, seed = 1, bg = 0)

Arguments
- n: This is the elementary rule number for the automaton.
- fun: This is a user-defined rule.
- k: This is the number of colors.
- r: This is the radius of a neighborhood.
- t: This is the number of steps.
- totalistic: 0 = general; 1 = totalistic
- seed: This is a seed for the automaton.
- bg: This is the background upon which to place the seed.

Value
This method returns an instance of class CellularAutomaton, provided the arguments make sense.

Author(s)
John Hughes

References

Examples
ca = CellularAutomaton(t = 100) # Evolve Rule 30 for 100 steps. k = 2, r = 1, and the seed
 # is a single black cell on a white background. Each row will
 # have length 2rt + 1 = 201.
 ca$plot() # Have a look.

Evolve Rule 110 for 100 steps. k = 2, r = 1, and the seed is 001000. Each row will have the
same length as the seed because -1 was given as the background.
ca = CellularAutomaton(n = 110, t = 100, seed = c(0, 0, 1, 0, 0, 0), bg = -1)
ca$plot(col = c("white", "darkblue")) # Plot it using Penn State colors. :-)
getLattice

Lattice of Cells of a One-Dimensional Cellular Automaton

Description

This method extracts the matrix of cells from an instance of class CellularAutomaton.

Details

cal$getLattice()

Value

gelLattice returns a matrix of nonnegative integers. Each row of the matrix represents one generation in the evolution of the automaton.

Author(s)

John Hughes
getNumberOfColors

Number of Colors of a One-Dimensional Cellular Automaton

Description
This method extracts the number of colors from an instance of class `CellularAutomaton`.

Details
```java
ca$getNumberOfColors()
```

Value
`getNumberOfColors` returns an integer ≥ 2.

Author(s)
John Hughes

getNumberOfColors.CellularAutomaton

Number of Colors of a One-Dimensional Cellular Automaton

Description
This method extracts the number of colors from an instance of class `CellularAutomaton`.

Details
```java
ca$getNumberOfColors()
```

Value
`getNumberOfColors` returns an integer ≥ 2.

Author(s)
John Hughes
getRadius

Radius of a One-Dimensional Cellular Automaton

Description

This method extracts the radius from an instance of class CellularAutomaton.

Details

cellularautomaton$\text{getRadius}()$

Value

getRadius returns an integer ≥ 1.

Author(s)

John Hughes
getRuleNumber

Elementary Rule of a One-Dimensional Cellular Automaton

Description

This method extracts the rule number from an instance of class CellularAutomaton.

Details

```java
ca$getRuleNumber()
```

Value

`getRuleNumber` returns the rule number for the automaton, provided that an elementary rule was specified by the user. If the user supplied his/her own rule, then this method returns -1.

Author(s)

John Hughes

getRuleNumber.CellularAutomaton

Elementary Rule of a One-Dimensional Cellular Automaton

Description

This method extracts the rule number from an instance of class CellularAutomaton.

Details

```java
ca$getRuleNumber()
```

Value

`getRuleNumber` returns the rule number for the automaton, provided that an elementary rule was specified by the user. If the user supplied his/her own rule, then this method returns -1.

Author(s)

John Hughes
getSteps

Number of Steps of a One-Dimensional Cellular Automaton

Description

This method extracts the number of steps (generations) from an instance of class `CellularAutomaton`.

Details

`ca$getSteps()`

Value

`getSteps` returns an integer ≥ 1.

Author(s)

John Hughes

getSteps.CellularAutomaton

Number of Steps of a One-Dimensional Cellular Automaton

Description

This method extracts the number of steps (generations) from an instance of class `CellularAutomaton`.

Details

`ca$getSteps()`

Value

`getSteps` returns an integer ≥ 1.

Author(s)

John Hughes
getTotalistic

Totalistic of a One-Dimensional Cellular Automaton

Description

This method extracts the setting of totalistic from an instance of class CellularAutomaton.

Details

```plaintext
ca$getTotalistic()
```

Value

`getTotalistic` returns 0 or 1. A 0 indicates a general automaton. A 1 indicates a totalistic automaton. Outer-totalistic rules are not currently supported.

Author(s)

John Hughes

getTotalistic.CellularAutomaton

Totalistic of a One-Dimensional Cellular Automaton

Description

This method extracts the setting of totalistic from an instance of class CellularAutomaton.

Details

```plaintext
ca$getTotalistic()
```

Value

`getTotalistic` returns 0 or 1. A 0 indicates a general automaton. A 1 indicates a totalistic automaton. Outer-totalistic rules are not currently supported.

Author(s)

John Hughes
plot

Plot a One-Dimensional Cellular Automaton

Description

This method plots an instance of class CellularAutomaton.

Arguments

- `col` a vector of colors

Details

This method uses `image()` to plot the automaton. The plot displays the automaton's steps in increasing order from top to bottom. The user may specify a vector of colors to be used by the plot. The default is `0:(k - 1)`, where k is the number of colors for the automaton.

```r
ca$plot()
ca$plot(col = c(3, 1, 4))
```

Author(s)

John Hughes
Index

*Topic **hplot**
 plot, 10
 plot.CellularAutomaton, 10

*Topic **methods**
 CellularAutomaton, 3
 getLattice, 4
 getLattice.CellularAutomaton, 4
 getNumberOfColors, 5
 getNumberOfColors.CellularAutomaton, 5
 getRadius, 6
 getRadius.CellularAutomaton, 6
 getRuleNumber, 7
 getRuleNumber.CellularAutomaton, 7
 getSteps, 8
 getSteps.CellularAutomaton, 8
 getTotalistic, 9
 getTotalistic.CellularAutomaton, 9
 plot, 10
 plot.CellularAutomaton, 10

*Topic **package**
 CellularAutomaton, 3
 CellularAutomaton-package, 2

 CellularAutomaton, 3
 CellularAutomaton-package, 2