Package ‘CompQuadForm’

April 12, 2017

Type Package
Title Distribution Function of Quadratic Forms in Normal Variables
Version 1.4.3
Date 2017-04-10
Author P. Lafaye de Micheaux
Maintainer P. Lafaye de Micheaux <lafaye@unsw.edu.au>
Description Computes the distribution function of quadratic forms in normal variables using Imhof’s method, Davies’s algorithm, Farebrother’s algorithm or Liu et al.’s algorithm.
License GPL (>= 2)
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-04-12 14:28:23 UTC

R topics documented:

davies ... 1
farebrother ... 3
imhof ... 5
liu ... 6

Index 9

<table>
<thead>
<tr>
<th>davies</th>
<th>Davies method</th>
</tr>
</thead>
</table>

Description

Distribution function (survival function in fact) of quadratic forms in normal variables using Davies’s method.
Usage

davies(q, lambda, h = rep(1, length(lambda)), delta = rep(0, length(lambda)), sigma = 0, lim = 10000, acc = 0.0001)

Arguments

q value point at which distribution function is to be evaluated
lambda the weights $\lambda_1, \lambda_2, ..., \lambda_n$, i.e. distinct non-zero characteristic roots of $A\Sigma$
h respective orders of multiplicity n_j of the λs
delta non-centrality parameters δ_j^2 (should be positive)
sigma coefficient σ of the standard Gaussian
lim maximum number of integration terms. Realistic values for ‘lim’ range from 1,000 if the procedure is to be called repeatedly up to 50,000 if it is to be called only occasionally
acc error bound. Suitable values for ‘acc’ range from 0.001 to 0.00005 which should be adequate for most statistical purposes.

Details

Computes $P(Q > q)$ where $Q = \sum_{j=1}^{r} \lambda_j X_j + \sigma X_0$ where X_j are independent random variables having a non-central χ^2 distribution with n_j degrees of freedom and non-centrality parameter δ_j^2 for $j = 1, ..., r$ and X_0 having a standard Gaussian distribution.

Value

trace vector, indicating performance of procedure, with the following components: 1: absolute value sum, 2: total number of integration terms, 3: number of integrations, 4: integration interval in main integration, 5: truncation point in initial integration, 6: standard deviation of convergence factor term, 7: number of cycles to locate integration parameters

ifault fault indicator: 0: no error, 1: requested accuracy could not be obtained, 2: round-off error possibly significant, 3: invalid parameters, 4: unable to locate integration parameters

QQ $P(Q > q)$

Author(s)

Pierre Lafaye de Micheaux (<lafaye@dms.umontreal.ca>) and Pierre Duchesne (<duchesne@dms.umontreal.ca>)

References

P. Duchesne, P. Lafaye de Micheaux, Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods, Computational Statistics and Data Analysis, Volume 54, (2010), 858-862

Examples

Some results from Table 3, p.327, Davies (1980)

round(1 - davies(1, c(6, 3, 1), c(1, 1, 1))$qq, 4)
round(1 - davies(7, c(6, 3, 1), c(1, 1, 1))$qq, 4)
round(1 - davies(20, c(6, 3, 1), c(1, 1, 1))$qq, 4)

round(1 - davies(2, c(6, 3, 1), c(2, 2, 2))$qq, 4)
round(1 - davies(20, c(6, 3, 1), c(2, 2, 2))$qq, 4)
round(1 - davies(60, c(6, 3, 1), c(2, 2, 2))$qq, 4)

round(1 - davies(10, c(6, 3, 1), c(6, 4, 2))$qq, 4)
round(1 - davies(50, c(6, 3, 1), c(6, 4, 2))$qq, 4)
round(1 - davies(120, c(6, 3, 1), c(6, 4, 2))$qq, 4)

round(1 - davies(20, c(7, 3), c(6, 2), c(6, 2))$qq, 4)
round(1 - davies(100, c(7, 3), c(6, 2), c(6, 2))$qq, 4)
round(1 - davies(200, c(7, 3), c(6, 2), c(6, 2))$qq, 4)

round(1 - davies(10, c(7, 3), c(1, 1), c(6, 2))$qq, 4)
round(1 - davies(60, c(7, 3), c(1, 1), c(6, 2))$qq, 4)
round(1 - davies(150, c(7, 3), c(1, 1), c(6, 2))$qq, 4)

round(1 - davies(70, c(7, 3, 7, 3), c(6, 2, 1, 1), c(6, 2, 6, 2))$qq, 4)
round(1 - davies(160, c(7, 3, 7, 3), c(6, 2, 1, 1), c(6, 2, 6, 2))$qq, 4)
round(1 - davies(260, c(7, 3, 7, 3), c(6, 2, 1, 1), c(6, 2, 6, 2))$qq, 4)

round(1 - davies(-40, c(7, 3, -7, -3), c(6, 2, 1, 1), c(6, 2, 6, 2))$qq, 4)
round(1 - davies(40, c(7, 3, -7, -3), c(6, 2, 1, 1), c(6, 2, 6, 2))$qq, 4)
round(1 - davies(140, c(7, 3, -7, -3), c(6, 2, 1, 1), c(6, 2, 6, 2))$qq, 4)

You should sometimes play with the 'lim' parameter:
davies(0.00001, lambda=0.2)
imhof(0.00001, lambda=0.2)$qq
davies(0.00001, lambda=0.2, lim=20000)

farebrother

Ruben/Farebrother method

Description

Distribution function (survival function in fact) of quadratic forms in normal variables using Farebrother’s algorithm.
Usage

farebrother(q, lambda, h = rep(1, length(lambda)),
delta = rep(0, length(lambda)), maxit = 100000,
eps = 10^-10, mode = 1)

Arguments

q
value point at which distribution function is to be evaluated
lambda
the weights $\lambda_1, \lambda_2, \ldots, \lambda_n$, i.e. the distinct non-zero characteristic roots of $A\Sigma$
h
vector of the respective orders of multiplicity m_i of the λs
delta
the non-centrality parameters δ_i (should be positive)
maxit
the maximum number of term K in equation below
eps
the desired level of accuracy
mode
if 'mode' > 0 then $\beta = mode \ast \lambda_{min}$ otherwise $\beta = \beta_B = 2/(1/\lambda_{min} + 1/\lambda_{max})$

Details

Computes $P[Q>q]$ where $Q = \sum_{j=1}^{n} \lambda_j \chi^2(m_j, \delta^2_j)$. $P[Q<q]$ is approximated by $\sum_{k=0}^{K-1} a_k P[\chi^2(m+2k) < q/\beta]$ where $m = \sum_{j=1}^{n} m_j$ and β is an arbitrary constant (as given by argument mode).

Value

dnsty
the density of the linear form
ifault
the fault indicator. -i: one or more of the constraints $\lambda_i > 0$
$m_i > 0$ and $\delta_i^2 > 0$ is not satisfied. 1: non-fatal underflow of a_0. 2: one or more of the constraints $n > 0$, $q > 0$, maxit > 0 and eps > 0 is not satisfied. 3: the current estimate of the probability is greater than 2. 4: the required accuracy could not be obtained in 'maxit' iterations. 5: the value returned by the procedure does not satisfy $0 \leq RUBEN \leq 1$. 6: 'dnsty' is negative. 9: faults 4 and 5. 10: faults 4 and 6. 0: otherwise.

Qq
$P[Q > q]$

Author(s)

Pierre Lafaye de Micheaux (<lafaye@dms.umontreal.ca>) and Pierre Duchesne (<duchesne@dms.umontreal.ca>)

References

P. Duchesne, P. Lafaye de Micheaux, Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods, Computational Statistics and Data Analysis, Volume 54, (2010), 858-862

Examples

Some results from Table 3, p.327, Davies (1980)

1 - farebrother(1, c(6, 3, 1), c(1, 1, 1), c(0, 0, 0))$q

Description

Distribution function (survival function in fact) of quadratic forms in normal variables using Imhof’s method.

Usage

imhof(q, lambda, h = rep(1, length(lambda)),
 delta = rep(0, length(lambda)),
 epsabs = 10^-6, epsrel = 10^-6, limit = 10000)

Arguments

- q: value point at which the survival function is to be evaluated
- lambda: distinct non-zero characteristic roots of $A\Sigma$
- h: respective orders of multiplicity of the λs
- delta: non-centrality parameters (should be positive)
- epsabs: absolute accuracy requested
- epsrel: relative accuracy requested
- limit: determines the maximum number of subintervals in the partition of the given integration interval

Details

Let $X = (X_1, \ldots, X_n)'$ be a column random vector which follows a multidimensional normal law with mean vector 0 and non-singular covariance matrix Σ. Let $\mu = (\mu_1, \ldots, \mu_n)'$ be a constant vector, and consider the quadratic form

$$Q = (x + \mu)' A (x + \mu) = \sum_{r=1}^{m} \lambda_r \chi^2_{h_r, \delta_r}.$$

The function `imhof` computes $P\{Q > q\}$.

The λ_r’s are the distinct non-zero characteristic roots of $A\Sigma$, the h_r’s their respective orders of multiplicity, the δ_r’s are certain linear combinations of μ_1, \ldots, μ_n, and the $\chi^2_{h_r, \delta_r}$ are independent χ^2-variables with h_r degrees of freedom and non-centrality parameter δ_r. The variable $\chi^2_{h, \delta}$ is defined here by the relation $\chi^2_{h, \delta} = (X_1 + \delta)^2 + \sum_{i=2}^{h} X_i^2$, where X_1, \ldots, X_h are independent unit normal deviates.
Value

\[P[Q > q] \]

abserr estimate of the modulus of the absolute error, which should equal or exceed abs(result)

Author(s)

Pierre Lafaye de Micheaux (<lafaye@dms.umontreal.ca>) and Pierre Duchesne (<duchesne@dms.umontreal.ca>)

References

Examples

Some results from Table 1, p.424, Imhof (1961)

Q1 with x = 2
round(imhof(2, c(0.6, 0.3, 0.1))$Qq, 4)

Q2 with x = 6
round(imhof(6, c(0.6, 0.3, 0.1), c(2, 2, 2))$Qq, 4)

Q6 with x = 15
round(imhof(15, c(0.7, 0.3), c(1, 1), c(6, 2))$Qq, 4)

liu

liu

Liu’s method

Description

Distribution function (survival function in fact) of quadratic forms in normal variables using Liu et al.’s method.

Usage

\[
\text{liu}(q, \lambda, h = \text{rep}(1, \text{length}(\lambda)), \\
\delta = \text{rep}(0, \text{length}(\lambda)))
\]
Arguments

- **q**: value point at which the survival function is to be evaluated
- **lambda**: distinct non-zero characteristic roots of $A\Sigma$, i.e. the λ_i's
- **h**: respective orders of multiplicity h_i's of the λ's
- **delta**: non-centrality parameters δ_i's (should be positive)

Details

New chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables.

Computes $P[Q > q]$ where $Q = \sum_{j=1}^{n} \lambda_j \chi^2(h_j, \delta_j)$.

This method does not work as good as the Imhof’s method. Thus Imhof’s method should be recommended.

Value

- **Qq**: $P[Q > q]$

Author(s)

Pierre Lafaye de Micheaux (<lafaye@dms.umontreal.ca>) and Pierre Duchesne (<duchesne@dms.umontreal.ca>)

References

Examples

```r
# Some results from Liu et al. (2009)
# Q1 from Liu et al.
round(liu(2, c(0.5, 0.4, 0.1), c(1, 2, 1), c(1, 0.6, 0.8)), 6)
round(liu(6, c(0.5, 0.4, 0.1), c(1, 2, 1), c(1, 0.6, 0.8)), 6)
round(liu(8, c(0.5, 0.4, 0.1), c(1, 2, 1), c(1, 0.6, 0.8)), 6)

# Q2 from Liu et al.
round(liu(1, c(0.7, 0.3), c(1, 1), c(6, 2)), 6)
round(liu(6, c(0.7, 0.3), c(1, 1), c(6, 2)), 6)
round(liu(15, c(0.7, 0.3), c(1, 1), c(6, 2)), 6)

# Q3 from Liu et al.
round(liu(2, c(0.995, 0.005), c(1, 2), c(1, 1)), 6)
round(liu(8, c(0.995, 0.005), c(1, 2), c(1, 1)), 6)
round(liu(12, c(0.995, 0.005), c(1, 2), c(1, 1)), 6)
```
Q4 from Liu et al.

```
round(liu(3.5, c(0.35, 0.15, 0.35, 0.15), c(1, 1, 6, 2), c(6, 2, 6, 2)), 6)
round(liu(8, c(0.35, 0.15, 0.35, 0.15), c(1, 1, 6, 2), c(6, 2, 6, 2)), 6)
round(liu(13, c(0.35, 0.15, 0.35, 0.15), c(1, 1, 6, 2), c(6, 2, 6, 2)), 6)
```
Index

*Topic distribution
 davies, 1
 farebrother, 3
 imhof, 5
 liu, 6

*Topic htest
 davies, 1
 farebrother, 3
 imhof, 5
 liu, 6

davies, 1

farebrother, 3

imhof, 5

liu, 6

ruben (farebrother), 3