Package ‘DIME’

February 19, 2015

Type Package
Title DIME (Differential Identification using Mixture Ensemble)
Version 1.2
Date 2013-12-03
Author Cenny Taslim <taslim.2@osu.edu>, with contributions from Dustin Potter, Abbasali Khalili and Shili Lin <shili@stat.osu.edu>.
Maintainer Cenny Taslim <taslim.2@osu.edu>
License GPL (>= 2)

Description A robust differential identification method that considers an ensemble of finite mixture models combined with a local false discovery rate (fdr) to analyze ChIP-seq (high-throughput genomic) data comparing two samples allowing for flexible modeling of data.

LazyLoad yes
NeedsCompilation yes
Repository CRAN

Date/Publication 2013-12-09 23:08:40

R topics documented:

DIME-package .. 2
DIME ... 3
DIME.classify .. 9
DIME.plot.fit .. 11
gng.classify ... 12
gng.fit .. 13
gng.plot.comp .. 16
gng.plot.fit ... 17
gng.plot.mix .. 19
gng.plot.qq ... 20
huber .. 21
inudge.classify .. 22
inudge.fit ... 23
inudge.plot.comp .. 25
Description

A robust differential identification method that considers an ensemble of finite mixture models combined with a local false discovery rate (fdr) for analyzing ChIP-seq data comparing two samples. This package can also be used to identify differential in other high throughput data such as microarray, methylation etc.

After normalization, an Exponential-Normal(k) or a Uniform-Normal(k) mixture is fitted to the data. The (k)-normal component can represent either differential regions or non-differential regions depending on their location and spread. The exponential or uniform represent differentially sites.

local (fdr) are computed from the fitted model. Unique features of the package:

1. Accurate modeling of data that comes from any distribution by the use of multiple normal components (any distribution can be accurately represented by mixture of normal).

2. Using ensemble of mixture models allowing data to be accurately & efficiently represented. Then two-phase selection ensure the selection of the best overall model.

3. This method can be used as a general program to fit a mixture of uniform-normal or uniform-k-normal or exponential-k-normal

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>DIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Date</td>
<td>2010-11-19</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

Cenny Taslim <taslim.2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>, Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>

Maintainer: Cenny Taslim <taslim.2@osu.edu> or Shili Lin <shili@stat.osu.edu>

References

DIME (Differential Identification using Mixtures Ensemble)

Description

A robust differential identification method that considers ensemble of finite mixture models combined with a local false discovery rate (fdr) for analyzing ChIP-seq data comparing two samples. This package can also be used to identify differential in other high throughput data such as microarray, methylation etc.

Usage

```r
DIME(data, avg = NULL, gng.K = 2, gng.weights = NULL, gng.weights.cutoff = -1.345, gng.pi = NULL, gng.mu = NULL, gng.sigma = NULL, gng.beta = NULL, gng.tol = 1e-05, gng.max.iter = 2000, gng.th = NULL, gng.rep = 15, gng.fdr.cutoff = 0.1, gng.sigma.diff.cutoff = NULL, gng.mu.diff.cutoff = NULL, gng.var.thres = 1e2, gng.min.sd = NULL, inudge.K = 2, inudge.weights = NULL, inudge.weights.cutoff = -1.345, inudge.pi = NULL, inudge.mu = NULL, inudge.sigma = NULL, inudge.tol = 1e-05, inudge.max.iter = 2000, inudge.z = NULL, inudge.rep = 15, inudge.fdr.cutoff = 0.1, inudge.sigma.diff.cutoff = NULL, inudge.mu.diff.cutoff = NULL, inudge.var.thres = 1e2, inudge.min.sd = NULL, nudge.z = NULL, nudge.tol = 1e-05, nudge.max.iter = 2000, nudge.mu = NULL, nudge.sigma = NULL, nudge.rep = 15, nudge.fdr.cutoff = 0.1, nudge.weights = NULL, nudge.weights.cutoff = -1.345, nudge.pi = NULL)
```
Arguments

data

an R list of vector of normalized difference (log ratios). Each element can correspond to a particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.

avg

optional R list of vector of mean data (or log intensities). Each element can correspond to a particular chromosome in data. Only required when any one of huber weight (lower, upper or full) is selected.

gng.K

optional maximum number of normal component that will be fitted in GNG model. For example: gng.K=2 will fit a model with 1 and 2 normal components and select the best k.

gng.weights

optional weights to be used for robust fitting. Can be a matrix the same length as data with each row correspond to weights to be used in each repetition or a character description of the huber-type method to be employed: "lower" - only value below cutoff are weighted, "upper" - only value above cutoff are weighted, "full" - both values above and below the cutoff are weighted. If selected, mean of data (avg) is required.

gng.weights.cutoff

optional cutoff to be used with the Huber weighting scheme.

gng.pi

optional matrix containing initial estimates for proportion of the GNG mixture components. Each row is the initial pi to be used in each repetition. Each row must have gng.K+2 entries. The first and last entries are for the estimates of negative and positive exponentials, respectively. The middle k entries are for normal components.

gng.mu

optional matrix containing initial estimates of the Gaussian means in GNG model. Each row is the initial means to be used in each repetition. Each row must have gng.K entries.

gng.sigma

optional matrix containing initial estimates of the Gaussian standard deviation in GNG model. Each row is the initial means to be used in each repetition. Each row must have gng.K entries.

gng.beta

optional matrix containing initial estimates for the shape parameter in exponential components in GNG model. Each row is the initial beta’s to be used in each repetition. Each row must have 2 entries, one for negative exponential followed by another for positive exponential.

gng.tol

optional threshold for convergence for EM algorithm to estimate GNG parameters.

gng.max.iter

optional maximum number of iterations for EM algorithm to estimate GNG parameters.

gng.th

optional 2-column matrix of threshold for the two location exponential components. First column is the initial estimates for negative exponential and the second column is the initial estimates for positive exponential.

gng.rep

optional number of times to repeat the GNG parameter estimation using different starting estimates.

gng.fdr.cutoff

optional cut-off for local fdr for classifying regions into differential and non-differential using GNG mixture.
gng.sigma.diff.cutoff
optional cut-off for sigma of the normal component in GNG to be declared as representing differential. For example: gng.sigma.diff.cutoff = 2 then if a normal component has sigma > 2 then this component is considered as differential component. Default = (1.5*iqr(data)-gng$mu)/2. Where gng$mu is mean of non-differential normal components in iNUDGE.

gng.mu.diff.cutoff
optional cut-off for mu of the normal component in GNG to be declared as representing differential. For example: gng.mu.diff.cutoff = 2 then if a normal component has mean > 2 then this component is considered as differential component.

gng.var.thres
optional threshold to detect huge imbalance in variance. max(gng.variance)/min(gng.variance) <= gng.var.thres.

gng.min.sd
optional threshold to detect very small sigma. all normal components in GNG model has to have sigma > gng.min.sd. Default = 0.1 * sd(data)

inudge.K
optional maximum number of normal component that will be fitted in iNUDGE model. For example: inudge.K=2 will fit a model with 1 and 2 normal components and select the best k.

inudge.weights
optional weights to be used for robust fitting. Can be a matrix the same length as data with each row correspond to weights to be used in each repetition or a character description of the huber-type method to be employed: "lower" - only value below cutoff are weighted, "upper" - only value above cutoff are weighted, "full" - both values above and below the cutoff are weighted, any other character - "lower" are used (default). If selected, mean of data (avg) is required.

inudge.weights.cutoff
optional cutoff to be used with the Huber weighting scheme.

inudge.pi
optional matrix of initial estimates for proportion of the iNUDGE mixture components. Each row correspond to the intial proportion to be used in each repetition. Each row must have inudge.K+1 entries corresponding to proportion of negative exponential, proportion of k-normal and proportion of exponential, respectively.

inudge.mu
optional maxtrix of initial estimates of the Gaussian means in iNUDGE model. Each row correspond to the intial means to be used in each repetition. Each row must have inudge.K entries.

inudge.sigma
optional matrix of initial estimates for Gaussian standard deviation in iNUDGE model. Each row correspond to the intial means to be used in each repetition. Each row must have inudge.K entries.

inudge.tol
optional threshold for convergence for EM algorithm to estimate iNUDGE parameters.

inudge.max.iter
optional maximum number of iterations for EM algorithm to estimate iNUDGE parameters.

inudge.z
optional 2-column matrix with each row giving initial estimate of probability of the region being non-differential and a starting estimate for the probability of the region being differential. Each row must sum to 1. Number of row must be equal to data length.
inudge.rep optional number of times to repeat the iNUDGE parameter estimation using different starting estimates.

inudge.fdr.cutoff optional cut-off for local fdr for classifying regions into differential and non-differential based on iNUDGE mixture.

inudge.sigma.diff.cutoff optional cut-off for sigma of the normal component in GNG to be declared as representing differential. For example: gng.sigma.diff.cutoff = 2 then if a normal component has sigma > 2 then this component is considered as differential component. Default = (1.5*iqr(data)-inudge$mu^)/2. Where inudge$mu^ is mean of non-differential normal components in iNUDGE.

inudge.mu.diff.cutoff optional cut-off for mu of the normal component in GNG to be declared as representing differential. For example: gng.mu.diff.cutoff = 2 then if a normal component has mean > 2 then this component is considered as differential component.

inudge.var.thres optional threshold to detect huge imbalance in variance. max(inudge.variance)/min(inudge.variance) <= inudge.var.thres.

inudge.min.sd optional threshold to detect very small sigma. All normal components in iNUDGE model has to have sigma > inudge.min.sd. Default = 0.1 * sd(data)

nudge.z optional 2-column matrix with each row giving initial estimate of probability of the region being non-differential and a starting estimate for the probability of the region being differential. Each row must sum to 1. Number of row must be equal to data length.

nudge.tol optional threshold for convergence for EM algorithm to estimate NUDGE parameters.

nudge.max.iter optional maximum number of iterations for EM algorithm to estimate iNUDGE parameters.

nudge.mu optional maxtrix of initial estimates of the Gaussian means in NUDGE model. Each row correspond to the intial means to be used in each repetition. Each row must have 1 entry.

nudge.sigma optional initial estimates of the Gaussian standard deviation in NUDGE model. Each row correspond to the intial standard deviation to be used in each repetition. Each row must have 1 entry.

nudge.rep optional number of times to repeat the NUDGE parameter estimation using different starting estimates.

nudge.fdr.cutoff optional cut-off for local fdr for classifying regions into differential and non-differential based on NUDGE mixture.

nudge.weights optional weights to be used for robust fitting. Can be a matrix the same length as data with each row correspond to weights to be used in each repetition or a character description of the huber-type method to be employed: "lower" - only value below cutoff are weighted, "upper" - only value above cutoff are weighted, "full" - both values above and below the cutoff are weighted, any
other character - "lower" are used (default). If selected, mean of data (avg) is required.

nudge.weights.cutoff
optional cutoff to be used with the Huber weighting scheme.

nudge.pi
optional initial estimates for proportion of the NUDGE mixture components. Each row is the initial pi to be used in each repetition. Each row must have 2 entries: proportion of uniform and proportion of normal components, respectively.

Details
After normalization, a Gamma-Normal(k)-Gamma (GNG), a Uniform-Normal(k) (iNUDGE) and a Uniform-Normal (NUDGE) mixture are fitted to the data. Two-phase selection method is used to choose the best model. The (k)-normal component can represent either differential regions or non-differential regions depending on their location and shape, making the model more robust to different underlying distributions. The exponential or uniform represents differential sites. Local \((fdr) \) is computed from the best fitted model. Parameters estimation is performed using EM algorithm.

Value
A list with 4 components (i.e. best, gng, inudge and nudge) which in itself is another list containing the estimated parameters of each model fitted correspondingly. "best" lists the model chosen as the best overall model, i.e. if the best model is inudge then best$name = "iNUDGE" and its content is the same as inudge. Thus, depending on the model, the components are:

name
the name of the model "GNG", "iNUDGE","NUDGE" where GNG: normal(k)-exponential (a special case of gamma), iNUDGE: normal(k)-uniform, or NUDGE: normal-uniform models

pi
a vector of estimated proportion of each components in the model

mu
a vector of estimated Gaussian means for k-normal components.

sigma
a vector of estimated Gaussian standard deviation for k-normal components.

beta
a vector of estimated exponential shape values. Only available in gng.

th1
negative location parameter used to fit the negative exponential model. Only available in gng.

th2
positive location parameter used to fit the positive exponential model. Only available in gng.

a
the minimum value of the normalized data. Only available in (i)nudge.

b
the maximum value of the normalized data. Only available in (i)nudge.

K
the number of normal components in the corresponding mixture model. For inudge, K=1.

loglike
the log likelihood for the fitted mixture model.

iter
the number of iterations run by the EM algorithm until either convergence or iteration limit was reached.

fdr
the local false discover rate estimated based on the corresponding model.
class a vector of classifications for the observations in data. A classification of 0 denotes that the regions could not be classified as differential with fdr < <model>.fdr.cutoff, 1 denotes differential.

diffPiIdx a vector of index of the normal components that are defined as capturing differential regions based on their shape and locations.

phi a vector of estimated mixture function

mu.diff.cutoff normal component with mean > mu.diff.cutoff will be used to represent differential component.

sigma.diff.cutoff normal component with standard deviation > sigma.diff.cutoff will be used to represent differential component.

Author(s)

Cenny Taslim <taslim.2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>, Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>

See Also

gng.fit, inudge.fit, nudge.fit

Examples

library(DIME)
generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25,1.50); rsigma <- c(1,1);
 rp <- c(.50,.45,.45,.05); rbeta <- c(12,10);
 set.seed(1234)
 ch1 <- c(-rgamma(ceiling(rpi[1]*N1),shape = 1,scale = rbeta[1]),
 rnorm(ceiling(rpi[2]*N1),rnu[1],rsigma[1]),
 rnorm(ceiling(rpi[3]*N1),rnu[2],rsigma[2]),
 rgamma(ceiling(rpi[4]*N1),shape = 1,scale = rbeta[2]));
 ch2 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
 rnorm(ceiling(rpi[2]*N2),rnu[1],rsigma[1]),
 rnorm(ceiling(rpi[3]*N2),rnu[2],rsigma[2]),
 rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
 ch3 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
 rnorm(ceiling(rpi[2]*N2),rnu[1],rsigma[1]),
 rnorm(ceiling(rpi[3]*N2),rnu[2],rsigma[2]),
 rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));

analyzing only chromosome 1 and chromosome 3
data <- list(ch1,ch3);

run DIME
set.seed(1234)
test <- DIME(data,gng.max.iter=10,gng.rep=1,inudge.max.iter=10,inudge.rep=1,
 nudge.max.iter=10,nudge.rep=1)

Getting the best fitted model (parameters)
test$best$name # name of the best fitted model
DIME.classify

Classification Based on The Best Model

Description

Classifies observed data into differential and non-differential groups based on the model selected as the best fit to the observed data.

Usage

DIME.classify(data, obj, obj.cutoff = 0.1, obj.sigma.diff.cutoff = NULL, obj.mu.diff.cutoff = NULL)

Arguments

data an R list of vector of normalized intensities (counts). Each element can correspond to particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.

obj a list object returned by DIME function.

obj.cutoff optional local \textit{fdr} cutoff for classifying data into differential and non-differential groups based on the best mixture model.

obj.sigma.diff.cutoff optional cut-off for standard deviation of the normal component in the best model to be declared as representing differential.
DIME.classify

obj.mu.diff.cutoff
optional cut-off for standard deviation of the normal component in the best model to be declared as representing differential.

Value
A list object passed as input with additional element $class containing vector of classifications for all the observations in data. A classification of 1 denotes that the data is classified as differential with fdr < obj.cutoff.

Author(s)
Cenny Taslim <taslim.2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>, Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>

See Also
DIME

Examples
library(DIME)
generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25,1.50); rsigma <- c(1,1);
ri <- c(0.05,.45,.45,.05); rgbeta <- c(12,10);
set.seed(1234)
chr1 <- c(-rgamma(ceiling(ri[1]*N1),shape = 1,scale = rgbeta[1]),
 rnorm(ceiling(ri[2]*N1),rmu[1],rsigma[1]),
 rnorm(ceiling(ri[3]*N1),rmu[2],rsigma[2]),
 rgamma(ceiling(ri[4]*N1),shape = 1,scale = rgbeta[2]));
chr2 <- c(-rgamma(ceiling(ri[1]*N2),shape = 1,scale = rgbeta[1]),
 rnorm(ceiling(ri[2]*N2),rmu[1],rsigma[1]),
 rnorm(ceiling(ri[3]*N2),rmu[2],rsigma[2]),
 rgamma(ceiling(ri[4]*N2),shape = 1,scale = rgbeta[2]));
chr3 <- c(-rgamma(ceiling(ri[1]*N2),shape = 1,scale = rgbeta[1]),
 rnorm(ceiling(ri[2]*N2),rmu[1],rsigma[1]),
 rnorm(ceiling(ri[3]*N2),rmu[2],rsigma[2]),
 rgamma(ceiling(ri[4]*N2),shape = 1,scale = rgbeta[2]));
analyzing only chromosome 1 and chromosome 3
data <- list(chr1,chr3);

run DIME with small maximum iteration and repetitions
set.seed(1234);
test <- DIME(data,gng.max.iter=10,gng.rep=1,inudge.max.iter=10,inudge.rep=1,
inudge.max.iter=10,inudge.rep=1)
get classification based on inudge
test$inudge <- DIME.classify(data,test$inudge,obj.cutoff=0.1);
vector of classification. 1 represents differential, 0 denotes non-differential
inudgeClass <- test$inudge$class;
DIME.plot.fit Plot Best Model Goodness of Fit

Description

Plot the best mixture model fitted using DIME along with their estimated individual components, superimposed on the histogram of the observation data. This plot shows how good the fit of the estimated model to the data.

Usage

DIME.plot.fit(data, obj, ...)

Arguments

data an R list of vector of normalized intensities (counts). Each element can correspond to particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.

obj a list object returned by DIME function.

... additional graphical arguments to be passed to methods (see par).

Details

The components representing differential data are denoted by asterisk (*) symbol on the plot legend.

Author(s)

Cenny Taslim <taslim.2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>, Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>

See Also

DIME, gng.plot.fit, inudge.plot.fit

Examples

library(DIME);
generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25,1.50); rsigma <- c(1,1)
rrpi <- c(.05,.45,.45,.05); rbeta <- c(12,10)
set.seed(1234)
chr1 <- c(-rgamma(ceiling(rrpi[1]*N1),shape = 1, scale = rbeta[1]),
 rnorm(ceiling(rrpi[2]*N1),rmu[1],rsigma[1]),
 rnorm(ceiling(rrpi[3]*N1),rmu[2],rsigma[2]),
 rgamma(ceiling(rrpi[4]*N1),shape = 1, scale = rbeta[2]));
chr3 <- c(-rgamma(ceiling(rrpi[1]*N2),shape = 1, scale = rbeta[1]),
 rnorm(ceiling(rrpi[2]*N2),rmu[1],rsigma[1]),
 rnorm(ceiling(rrpi[3]*N2),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]+N2),shape = 1, scale = rbeta[2]));
data <- list(chr1, chr3);

run DIME with small maximum iterations and repetitions
set.seed(1234);
test <- DIME(data, gng.max.iter=10, gng.rep=1, inudge.max.iter=10, inudge.rep=1,
 nudge.max.iter=10, nudge.rep=1);

plot best model
DIME.plot.fit(data, test);

gng.classify

Classification Based on GNG Model

Description
Classifies observed data into differential and non-differential groups based on GNG model.

Usage

gng.classify(data, obj, obj.cutoff = 0.1, obj.sigma.diff.cutoff = NULL,
 obj.mu.diff.cutoff = NULL)

Arguments

data an R list of vector of normalized intensities (counts). Each element can correspond to particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.

obj a list object returned by gng.fit function.

obj.cutoff optional local fdr cutoff for classifying data into differential and non-differential groups based on GNG model.

obj.sigma.diff.cutoff optional cut-off for standard deviation of the normal component in the best model to be declared as representing differential.

obj.mu.diff.cutoff optional cut-off for standard deviation of the normal component in the best model to be declared as representing differential.

Value
A list object passed as input with additional element $class containing vector of classifications for all the observations in data. A classification of 1 denotes that the data is classified as differential with fdr < obj.cutoff.

mu.diff.cutoff normal component with mean > mu.diff.cutoff will be used to represent differential component.

sigma.diff.cutoff normal component with standard deviation > sigma.diff.cutoff will be used to represent differential component.
Author(s)
Cenny Taslim <taslim.2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>, Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>

See Also
 gng.fit

Examples

library(DIME);
generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25,1.50); rsigma <- c(1,1);
ri <- c(.05,.45,.45,.05); rbeta <- c(12,10);
set.seed(1234);
chr1 <- c(-rgamma(ceiling(rpi[1]*N1), shape = 1, scale = rbeta[1]),
 rnorm(ceiling(rpi[2]*N1), rmu[1], rsigma[1]),
 rnorm(ceiling(rpi[3]*N1), rmu[2], rsigma[2]),
 rgamma(ceiling(rpi[4]*N1), shape = 1, scale = rbeta[2]));
chr2 <- c(-rgamma(ceiling(rpi[1]*N2), shape = 1, scale = rbeta[1]),
 rnorm(ceiling(rpi[2]*N2), rmu[1], rsigma[1]),
 rnorm(ceiling(rpi[3]*N2), rmu[2], rsigma[2]),
 rgamma(ceiling(rpi[4]*N2), shape = 1, scale = rbeta[2]));
chr3 <- c(-rgamma(ceiling(rpi[1]*N2), shape = 1, scale = rbeta[1]),
 rnorm(ceiling(rpi[2]*N2), rmu[1], rsigma[1]),
 rnorm(ceiling(rpi[3]*N2), rmu[2], rsigma[2]),
 rgamma(ceiling(rpi[4]*N2), shape = 1, scale = rbeta[2]));
analyzing only chromosome 1 and chromosome 3
data <- list(chr1,chr3);

fit GNG model with 2 normal components
test <- gng.fit(data, K = 2);
vector of classification. 1 represents differential, 0 denotes non-differential
gngClass <- test$class;

gng.fit

Function for Fitting GNG model parameters

Description
Function to estimate parameters for GNG model, mixture of exponential and k-normal. Parameters are estimated using EM algorithm.

Usage
gng.fit(data, avg = NULL, K = 2, weights = NULL, weights.cutoff = -1.345,
 pi = NULL, mu = NULL, sigma = NULL, beta = NULL, tol = 1e-05,
 max.iter = 2000, th = NULL)
Arguments

data an R list of vector of normalized intensities (counts). Each element can correspond to particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.

avg optional vector of mean data (or log intensities). Only required when any one of huber weight (lower, upper or full) is selected.

K optional number of normal component that will be fitted in GNG model.

weights optional weights to be used for robust fitting. Can be a matrix the same length as data, or a character description of the huber weight method to be employed: "lower" - only value below weights.cutoff are weighted,
"upper" - only value above weights.cutoff are weighted,
"full" - both values above and below weights.cutoff are weighted. If selected, mean of data (avg) is required.

weights.cutoff optional cutoff to be used with the Huber weighting scheme.

pi optional vector containing initial estimates for proportion of the GNG mixture components. The first and last entries are for the estimates of negative and positive exponentials, respectively. The middle k entries are for normal components.

mu optional vector containing initial estimates of the Gaussian means in GNG model.

sigma optional vector containing initial estimates of the Gaussian standard deviation in GNG model. Must have K entries.

beta optional vector containing initial estimates for the shape parameter in exponential components in GNG model. Must have 2 entries, one for negative exponential the other for positive exponential components.

tol optional threshold for convergence for EM algorithm to estimate GNG parameters.

max.iter optional maximum number of iterations for EM algorithm to estimate GNG parameters.

th optional location parameter used to fit the negative and positive exponential model.

Value

A list of object:

name the name of the model "GNG"

pi a vector of estimated proportion of each components in the model

mu a vector of estimated Gaussian means for k-normal components.

sigma a vector of estimated Gaussian standard deviation for k-normal components.

beta a vector of estimated exponential shape values.

th1 negative location parameter used to fit the negative exponential model.

th2 positive location parameter used to fit the positive exponential model.

K the number of normal components in the corresponding mixture model.

loglike the log likelihood for the fitted mixture model.
iter
the actual number of iterations run by the EM algorithm.

fdr
the local false discover rate estimated based on GNG model.

phi
a matrix of estimated GNG mixture component function.

AIC
Akaike Information Criteria.

BIC
Bayesian Information Criteria.

Author(s)
Cenny Taslim <taslim.2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>, Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>

See Also
DIME, inudge.fit, nudge.fit

Examples
library(DIME)
generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25,1.50); rsigma <- c(1,1);
ri <- c(.05,.45,.45,.05); rbeta <- c(12,10);
set.seed(1234)
chr1 <- c(-rgamma(ceiling(ri[1]*N1),shape = 1, scale = rbeta[1]),
 rnorm(ceiling(ri[2]*N1),rmu[1],rsigma[1]),
 rnorm(ceiling(ri[3]*N1),rmu[2],rsigma[2]),
 rgamma(ceiling(ri[4]*N1),shape = 1, scale = rbeta[2]));
chr2 <- c(-rgamma(ceiling(ri[1]*N2),shape = 1, scale = rbeta[1]),
 rnorm(ceiling(ri[2]*N2),rmu[1],rsigma[1]),
 rnorm(ceiling(ri[3]*N2),rmu[2],rsigma[2]),
 rgamma(ceiling(ri[4]*N2),shape = 1, scale = rbeta[2]));
chr3 <- c(-rgamma(ceiling(ri[1]*N2),shape = 1, scale = rbeta[1]),
 rnorm(ceiling(ri[2]*N2),rmu[1],rsigma[1]),
 rnorm(ceiling(ri[3]*N2),rmu[2],rsigma[2]),
 rgamma(ceiling(ri[4]*N2),shape = 1, scale = rbeta[2]));
analyzing only chromosome 1 and chromosome 3
data <- list(chr1,chr3);

fit GNG model with 2 normal components
test <- gng.fit(data, K = 2);

Getting the best fitted GNG model (parameters)
test$pi # estimated proportion of each component in GNG
test$mu # estimated mean of the normal component(s) GNG
estimated standard deviation of the normal component(s) in GNG

estimated shape parameter of the exponential components in best model
test$beta
Plot GNG Individual Components

Description

Plot each estimated individual components of GNG model (mixture of exponential and k-normal) fitted using `gng.fit`.

Usage

```r
ng.plot.comp(data, obj, new.plot = TRUE, legpos = NULL, xlim=NULL, ylim=NULL, xlab=NULL, ylab=NULL, main=NULL,lwd=NULL,...)
```

Arguments

- **data**: an `R` list of vector of normalized intensities (counts). Each element can correspond to a particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.
- **obj**: a list object returned by `gng.fit` function.
- **new.plot**: optional logical variable on whether to create new plot.
- **legpos**: optional vector of (x,y) location for the legend position
- **xlim**: optional x-axis limit (see `par`).
- **ylim**: optional y-axis limit (see `par`).
- **xlab**: optional x-axis label (see `par`).
- **ylab**: optional y-axis label (see `par`).
- **main**: optional plot title (see `par`).
- **lwd**: optional line width for lines in the plot (see `par`).
- **...**: additional graphical arguments to be passed to methods (see `par`).

Details

The components representing differential data are denoted by asterisk (*) symbol on the plot legend.

Author(s)

Cenny Taslim <taslim2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>, Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>

See Also

`gng.plot.mix, gng.plot.comp, gng.plot.fit, gng.plot.qq,DIME.plot.fit, inudge.plot.fit`
Examples

```r
library(DIME);
# generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25,1.50); rsigma <- c(1,1);
rpi <- c(.05,.45,.45,.05); rbeta <- c(12,10);
set.seed(1234);
chrQ <- c(-rgamma(ceiling(rpi[1]*N1),shape = 1,scale = rbeta[1]),
norm(ceiling(rpi[2]*N1),rmu[1],rsigma[1]),
norm(ceiling(rpi[3]*N1),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N1),shape = 1,scale = rbeta[2]));
chrR <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
norm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
norm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
chrS <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
norm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
norm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
# analyzing only chromosome 1 and chromosome 3
data <- list(chrQ,chrS);

# Fitting a GNG model with 2-normal component
bestGng <- gng.fit(data,K=2);

# plot individual components of GNG
bestGng.comp(data,bestGng);
# plot mixture component on top of the individual components plot
gng.plot.mix(bestGng,resolution=1000,new.plot=FALSE);
```

gng.plot.fit

Plot GNG Goodness of Fit

Description

Plot the estimated GNG mixture model fitted using `gng.fit` along with it’s estimated individual components, superimposed on the histogram of the observation data. This plot shows how good the fit of the estimated model to the data.

Usage

```r
gng.plot.fit(data, obj, resolution = 100, breaks = 100, legpos = NULL,
xlim = NULL, main=NULL, ...)```

Arguments

data an R list of vector of normalized intensities (counts). Each element can correspond to a particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.
obj a list object returned by `gng.fit` function.
resolution optional bandwidth used to estimate the density function. Higher number smoother curve.
breaks optional see `hist`, breaks parameters for histogram plot.
legpos optional vector of (x,y) location for the legend position
xlim optional x-axis limit (see `par`).
main optional plot title (see `par`).
... additional graphical arguments to be passed to methods (see `par`).

Details

The components representing differential data are denoted by asterisk (*) symbol on the plot legend.

See Also

`gng.plot.comp, gng.plot.mix.hist`

Examples

```r
library(DIME)
generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25,1.50); rsigma <- c(1,1);
ypi <- c(.05,.45,.45,.05); rbeta <- c(12,10);
set.seed(1234);
chr1 <- c(-rgamma(ceiling(rpi[1]*N1),shape = 1,scale = rbeta[1]),
 rnorm(ceiling(rpi[2]*N1),rmu[1],rsigma[1]),
 rnorm(ceiling(rpi[3]*N1),rmu[2],rsigma[2]),
 rgamma(ceiling(rpi[4]*N1),shape = 1,scale = rbeta[2]));
chr2 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
 rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
 rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]),
 rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
chr3 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
 rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
 rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]),
 rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
analyzing only chromosome 1 and chromosome 3
data <- list(chr1,chr3);

Fitting a GNG model only with 2-normal components
bestGng <- gng.fit(data,K=2);

Goodness of fit plot
gng.plot.fit(data,bestGng);
```
gng.plot.mix  

Plot GNG Mixture Component Function

Description

Plot each estimated individual components of GNG mixture model fitted using `gng.fit`.

Usage

```
gng.plot.mix(obj, amplify = 1, resolution = 100, new.plot = TRUE, ...)
```

Arguments

- **obj**: a list object returned by `gng.fit` function.
- **amplify**: optional scaling factor for visualization purposes.
- **resolution**: optional bandwidth used to estimate the density function. Higher number makes a smoother curve.
- **new.plot**: optional logical variable on whether to create new plot.
- **...**: additional graphical arguments to be passed to methods (see `par`).

Author(s)

Cenny Taslim <taslim2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>, Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>

See Also

- `gng.plot.mix`, `gng.plot.comp`, `gng.plot.fit`, `gng.plot.qq`, `DIME.plot.fit`, `inudge.plot.fit`

Examples

```
library(DIME)
generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25, 1.50); rsigma <- c(1, 1);
ri <- c(0.05, 0.45, 0.45, 0.05); rbeta <- c(12, 10);
set.seed(1234);
chr1 <- c(-rgamma(ceiling(ri[1] * N1), shape = 1, scale = rbeta[1]),
 rnorm(ceiling(ri[2] * N1), rmu[1], rsigma[1]),
 rnorm(ceiling(ri[3] * N1), rmu[2], rsigma[2]),
 rgamma(ceiling(ri[4] * N1), shape = 1, scale = rbeta[2]));
chr2 <- c(-rgamma(ceiling(ri[1] * N2), shape = 1, scale = rbeta[1]),
 rnorm(ceiling(ri[2] * N2), rmu[1], rsigma[1]),
 rnorm(ceiling(ri[3] * N2), rmu[2], rsigma[2]),
 rgamma(ceiling(ri[4] * N2), shape = 1, scale = rbeta[2]));
chr3 <- c(-rgamma(ceiling(ri[1] * N2), shape = 1, scale = rbeta[1]),
 rnorm(ceiling(ri[2] * N2), rmu[1], rsigma[1]),
 rnorm(ceiling(ri[3] * N2), rmu[2], rsigma[2]),
 rgamma(ceiling(ri[4] * N2), shape = 1, scale = rbeta[2]));
```
# analyzing only chromosome 1 and chromosome 3
data <- list(chr1, chr3);

# Fitting a GNG model only
bestGng <- gng.fit(data, K=2);

# Plot the estimated GNG model imposed on the histogram of the observed data
hist(unlist(data), freq=FALSE, breaks=100, xlim=c(-20, 20))
gng.plot.mix(bestGng, resolution=1000, new.plot=FALSE, col="red");

---

**gng.plot.qq**

**QQ-plot of GNG model vs. observed data**

### Description

Produces a QQ-plot for visual inspection of quality of fit with regards to the exponential Gaussian (GNG) mixture model estimated using the function `gng.fit`

### Usage

```r
gng.plot.qq(data, obj, resolution=10, xlab=NULL, ylab=NULL, main=NULL, pch=NULL,...)
```

### Arguments

- **data**: an R list of vector of normalized intensities (counts). Each element can correspond to a particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.
- **obj**: a list object returned by `gng.fit` function.
- **resolution**: optional number of points used to sample the estimated density function.
- **xlab**: optional x-axis label (see `par`).
- **ylab**: optional y-axis label (see `par`).
- **main**: optional plot title (see `par`).
- **pch**: optional plotting symbol to use (see `par`).
- **...**: additional graphical arguments to be passed to methods (see `par`).

### Author(s)

Cenny Taslim <taslim.2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>, Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>

### See Also

`gng.fit, gng.plot.fit`
Examples

```r
library(DIME)
generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25, 1.50); rsigma <- c(1, 1);
rpi <- c(.05, .45, .45, .05); rbeta <- c(12, 10);
set.seed(1234);
chr1 <- c(-rgamma(ceiling(rpi[1]*N1), shape = 1, scale = rbeta[1]),
 rnorm(ceiling(rpi[2]*N1), rmu[1], rsigma[1]),
 rnorm(ceiling(rpi[3]*N1), rmu[2], rsigma[2]),
 rgamma(ceiling(rpi[4]*N1), shape = 1, scale = rbeta[2]));
chr2 <- c(-rgamma(ceiling(rpi[1]*N2), shape = 1, scale = rbeta[1]),
 rnorm(ceiling(rpi[2]*N2), rmu[1], rsigma[1]),
 rnorm(ceiling(rpi[3]*N2), rmu[2], rsigma[2]),
 rgamma(ceiling(rpi[4]*N2), shape = 1, scale = rbeta[2]));
chr3 <- c(-rgamma(ceiling(rpi[1]*N2), shape = 1, scale = rbeta[1]),
 rnorm(ceiling(rpi[2]*N2), rmu[1], rsigma[1]),
 rnorm(ceiling(rpi[3]*N2), rmu[2], rsigma[2]),
 rgamma(ceiling(rpi[4]*N2), shape = 1, scale = rbeta[2]));
analyzing only chromosome 1 and chromosome 3
data <- list(chr1, chr3);

Fitting a GNG model only
bestGng <- gng.fit(data, K = 2);

QQ-plot
gng.plot.qq(data, bestGng)
```

---

huber

**Huber’s weight function**

Description

A weight function used to downweigh outliers.

Usage

`huber(input, co, shape = c("full", "lower", "upper"))`

Arguments

- **input**: an R list of vector of normalized mean (log intensities).
- **co**: cutoff used in determining weights.
- **shape**: parameter determining which outliers are weighted: "full" - both values above and below threshold are downweighted; "lower" - only values below threshold are downweighted; "upper" - only values above threshold are downweighted.

Value

a vector of weights.
Author(s)

Dustin Potter

References


inudge.classify

Classification Based on iNUDGE Model

Description

Classifies observed data into differential and non-differential groups based on iNUDGE model.

Usage

inudge.classify(data, obj, obj.cutoff = 0.1, obj.sigma.diff.cutoff = NULL,
obj.mu.diff.cutoff = NULL)

Arguments

data an R list of vector of normalized intensities (counts). Each element can correspond to particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.

obj a list object returned by inudge.fit function.

obj.cutoff optional local fdr cutoff for classifying data into differential and non-differential groups based on iNUDGE model.

obj.sigma.diff.cutoff optional cut-off for standard deviation of the normal component in iNUDGE model to be designated as representing differential.

obj.mu.diff.cutoff optional cut-off for standard deviation of the normal component in iNUDGE model to be designated as representing differential.

Value

A list object passed as input with additional element $class containing vector of classifications for all the observations in data. A classification of 1 denotes that the data is classified as differential with fdr < obj.cutoff.

mu.diff.cutoff normal component with mean > mu.diff.cutoff was used to represent differential component.

sigma.diff.cutoff normal component with standard deviation > sigma.diff.cutoff was used to represent differential component.
Author(s)

Cenny Taslim <taslim.2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>, Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>

See Also

inudge.fit

Examples

library(DIME);
# generate simulated datasets with underlying uniform and 2-normal distributions
set.seed(1234);
N1 <- 1500; N2 <- 500; rmu <- c(-2.25,1.5); rsigma <- c(1,1);
re <- c(-0.45,0.45); a <- (-6); b <- 6;
chr4 <- list(c(runif(ceiling(rpi[1]*N1),min = a,max =b),
             rnorm(ceiling(rpi[2]*N1),rmu[1],rsigma[1]),
             rnorm(ceiling(rpi[3]*N1),rmu[2],rsigma[2])));
chr9 <- list(c(runif(ceiling(rpi[1]*N2),min = a,max =b),
             rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
             rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2])));
# analyzing chromosome 4 and 9
data <- list(chr4,chr9);

# fit iNUDGE model with 2 normal components and maximum iterations = 20
set.seed(1234);
test <- inudge.fit(data, K = 2, max.iter=20);
# vector of classification. 1 represents differential, 0 denotes non-differential
inudgeClass <- test$class;

inudge.fit Function for Fitting iNUDGE model parameters

Description

Function to estimate parameters for NUDGE model, mixture of uniform and k-normal. Parameters
are estimated using EM algorithm.

Usage

inudge.fit(data, avg = NULL, K = 2, weights = NULL, weights.cutoff = -1.345,
pi = NULL, mu = NULL, sigma = NULL, tol = 1e-5, max.iter = 2000, z = NULL)

Arguments

data an R list of vector of normalized intensities (counts). Each element can corre-
spond to particular chromosome. User can construct their own list containing
only the chromosome(s) they want to analyze.
option vector of mean data (or log intensities). Only required when any one of
huber weight (lower, upper or full) is selected.
K optional number of normal component that will be fitted in iNUDGE model.
weights optional weights to be used for robust fitting. Can be a matrix the same length
as data, or a character description of the huber weight method to be employed:
"lower" - only value below weights.cutoff are weighted,"upper" - only value
above weights.cutoff are weighted,"full" - both values above and below weights.cutoff
are weighted, if selected, mean of data (avg) is required.
weights.cutoff optional cutoff to be used with the Huber weighting scheme.
pi optional vector containing initial estimates for proportion of the iNUDGE mixture
components. The first entry is for the uniform component, the middle k
entries are for normal components.
mu optional vector containing initial estimates of the Gaussian means in iNUDGE
model.
sigma optional vector containing initial estimates of the Gaussian standard deviation
in (i)NUDGE model. Must have K entries.
tol optional threshold for convergence for EM algorithm to estimate iNUDGE
parameters.
max.iter optional maximum number of iterations for EM algorithm to estimate iNUDGE
parameters.
z optional 2-column matrix with each row giving initial estimate of probability of
the region being non-differential and a starting estimate for the probability of
the region being differential. Each row must sum to 1. Number of row must be
equal to data length.

Value
A list of object:

name the name of the model "iNUDGE"
pi a vector of estimated proportion of each components in the model
mu a vector of estimated Gaussian means for k-normal components.
sigma a vector of estimated Gaussian standard deviation for k-normal components.
K the number of normal components in the corresponding mixture model.
loglike the log likelihood for the fitted mixture model.
iter the actual number of iterations run by the EM algorithm.
fdr the local false discover rate estimated based on iNUDGE model.
phi a matrix of estimated iNUDGE mixture component function.
AIC Akaike Information Criteria.
BIC Bayesian Information Criteria.

Author(s)
Cenny Taslim <taslim.2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>,
Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>
See Also

`DIME`.

Examples

```r
library(DIME);

generate simulated datasets with underlying uniform and 2-normal distributions
set.seed(1234);
N1 <- 1500; N2 <- 500; rmu <- c(-2.25, 1.5); rsigma <- c(1, 1);
ri <- c(0, 0.1, 0.45, 0.45); a <- -6; b <- 6;
chr4 <- list(c(runif(ceiling(ri[1]*N1), min = a, max = b),
 rnorm(ceiling(ri[2]*N1), rmu[1], rsigma[1]),
 rnorm(ceiling(ri[3]*N1), rmu[2], rsigma[2])));
chr9 <- list(c(runif(ceiling(ri[1]*N2), min = a, max = b),
 rnorm(ceiling(ri[2]*N2), rmu[1], rsigma[1]),
 rnorm(ceiling(ri[3]*N2), rmu[2], rsigma[2])));

analyzing chromosome 4 and 9
data <- list(chr4, chr9);

fit iNUDGE model with 2 normal components and maximum iterations = 20
set.seed(1234);
test <- inudgeNfit(data, k = 2, max.iter = 20);

Getting the best fitted iNUDGE model (parameters)
test$best$pi # estimated proportion of each component in iNUDGE
test$best$mu # estimated mean of the normal component(s) in iNUDGE
estimated standard deviation of the normal component(s) in iNUDGE
test$best$sigma
```

inudge.plot.comp  
Plot iNUDGE Individual Components

Description

Plot each estimated individual components of iNUDGE model (mixture of uniform and \( k \)-normal) fitted using `inudge.fit`.

Usage

```r
inudge.plot.comp(data, obj, new.plot = TRUE, legpos = NULL, xlim = NULL,
 ylim = NULL, xlab = NULL, ylab = NULL, main = NULL, lwd = NULL,...)
```

Arguments

- **data**
  - an \textbf{R} list of vector of normalized intensities (counts). Each element can correspond to particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.

- **obj**
  - a list object returned by `inudge.fit` function.
new.plot  optional logical variable on whether to create new plot.

legpos  optional vector of (x,y) location for the legend position

xlim  optional x-axis limit (see par).

ylim  optional y-axis limit (see par).

xlab  optional x-axis label (see par).

ylab  optional y-axis label (see par).

main  optional plot title (see par).

lwd  optional line width for lines in the plot (see par).

...  additional graphical arguments to be passed to methods (see par).

Details

The components representing differential data are denoted by asterisk (*) symbol on the plot legend.

Author(s)

Cenny Taslim <taslim.2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>, Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>

See Also

inudge.plot.mix, inudge.plot.comp, inudge.plot.fit, inudge.plot.qq, DIME.plot.fit, gng.plot.fit.

Examples

library(DIME);

# generate simulated datasets with underlying uniform and 2-normal distributions
set.seed(12);
N1 <- 1500; N2 <- 500; rmu <- c(-2.25,1.5); rsigma <- c(1,1);
ri <- c(-0.1, 0.45, 0.45); a <- 6; b <- 6;
chr4 <- list(c(-runif(ceiling(ri[1]*N1),min = a,max =b),
            rnorm(ceiling(ri[2]*N1),rmu[1],rsigma[1]),
            rnorm(ceiling(ri[3]*N1),rmu[2],rsigma[2])));
chr9 <- list(c(-runif(ceiling(ri[1]*N2),min = a,max =b),
            rnorm(ceiling(ri[2]*N2),rmu[1],rsigma[1]),
            rnorm(ceiling(ri[3]*N2),rmu[2],rsigma[2])));
# analyzing chromosome 4 and 9
data <- list(chr4,chr9);

# fit iNUDGE model with 2-normal components and maximum iterations = 20
set.seed(12);
bestInudge <- inudge.fit(data, K = 2, max.iter=20);

# plot individual components of iNUDGE
inudge.plot.comp(data,bestInudge);
# plot individual components of iNUDGE an it's mixture component on the same plot
inudge.plot.mix(bestInudge,resolution=1000,new.plot=FALSE);
inudge.plot.fit  Plot iNUDGE Goodness of Fit

Description

Plot the estimated iNUDGE mixture model fitted using inudge.fit along with its estimated individual components, superimposed on the histogram of the observation data. This plot shows how good the fit of the estimated model to the data.

Usage

inudge.plot.fit(data, obj, resolution = 100, breaks = 100, legpos = NULL, xlim = NULL, main = NULL,...)

Arguments

data  an R list of vector of normalized intensities (counts). Each element can correspond to particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.

obj  a list object returned by inudge.fit function.

resolution  optional bandwidth used to estimate the density function. Higher number smoother curve.

breaks  optional see hist, breaks parameters for histogram plot.

legpos  optional vector of (x,y) location for the legend position

xlim  optional x-axis limit (see par).

main  optional plot title (see par).

...  additional graphical arguments to be passed to methods (see par).

Details

The components representing differential data are denoted by asterisk (*) symbol on the plot legend.

See Also

gng.plot.comp, gng.plot.mix, hist

Examples

library(DIME);
# generate simulated datasets with underlying uniform and 2-normal distributions
set.seed(1234);
N1 <- 1500; N2 <- 500; rmu <- c(-2.25,1.5); rsigma <- c(1,1);
ypi <- c(.1,.45,.45); a <- (-6); b <- 6;
chr4 <- list(c(-runif(ceiling(ypi[1]*N1)),min = a,max = b),
            rnorm(ceiling(ypi[2]*N1),rmu[1],rsigma[1]),
            rnorm(ceiling(ypi[3]*N1),rmu[2],rsigma[2]));
chr9 <- list(c(-runif(ceiling(rpi[1]*N2),min = a, max = b),
      rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
      rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2])));
# analyzing chromosome 4 and 9
data <- list(chr4,chr9);

# fit iNUDGE model with 2-normal components and maximum iterations = 20
set.seed(1234);
bestinudge <- inudge.fit(data, K = 2, max.iter=20);

# Goodness of fit plot
inudge.plot.fit(data,bestinudge,legpos=c(-6,0.3),ylim=c(0,0.3),breaks=40);

---

**inudge.plot.mix**

*Plot iNUDGE Mixture Component Function*

**Description**

Plot each estimated individual components of iNUDGE mixture model fitted using `inudge.fit`.

**Usage**

inudge.plot.mix(obj, amplify = 1, resolution = 100, new.plot = TRUE, ...)

**Arguments**

- `obj` a list object returned by `inudge.fit` function.
- `amplify` optional scaling factor for visualization purposes.
- `resolution` optional bandwidth used to estimate the density function. Higher number makes a smoother curve.
- `new.plot` optional logical variable on whether to create new plot.
- `...` additional graphical arguments to be passed to methods (see `par`).

**See Also**

`inudge.plot.comp, inudge.plot.fit, inudge.plot.qq, DIME.plot.fit, gng.plot.fit`.

**Examples**

library(DIME)

# generate simulated datasets with underlying uniform and 2-normal distributions
set.seed(1234);
N1 <- 1500; N2 <- 500; rmu <- c(-2.25,1.5); rsigma <- c(1,1);
ri <- c(10,.45,.45); a <- (-6); b <- 6;
chr4 <- list(c(-runif(ceiling(rpi[1]*N1),min = a, max = b),
      rnorm(ceiling(rpi[2]*N1),rmu[1],rsigma[1])));
inudge.plot.qq  QQ-plot of GNG model vs. observed data

Description

Produces a QQ-plot for visual inspection of quality of fit with regards to the uniform Gaussian (iNUDGE) mixture model estimated using the function inudge.fit

Usage

inudge.plot.qq(data, obj, resolution = 10, xlab = NULL, ylab = NULL, main = NULL, pch = NULL, ...)  

Arguments

data  an R list of vector of normalized intensities (counts). Each element can correspond to particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.

obj  a list object returned by gng.fit function.

resolution  optional number of points used to sample the estimated density function.

xlab  optional x-axis label (see par).

ylab  optional y-axis label (see par).

main  optional plot title (see par).

pch  optional plotting symbol to use (see par).

...  additional graphical arguments to be passed to methods (see par).

See Also

inudge.fit, qqplot
Examples

library(DIME);

# generate simulated datasets with underlying uniform and 2-normal distributions
set.seed(1234);
N1 <- 1500; N2 <- 500; rmu <- c(-2.25, 1.5); rsigma <- c(1, 1);
rsigma <- c(10, 45, 45); a <- (-6); b <- 6;
chr4 <- list(c(-runif(ceiling(rpi[1]*N1), min = a, max = b),
             rnorm(ceiling(rpi[2]*N1), rmu[1], rsigma[1]),
             rnorm(ceiling(rpi[3]*N1), rmu[2], rsigma[2])));
chr9 <- list(c(-runif(ceiling(rpi[1]*N2), min = a, max = b),
              rnorm(ceiling(rpi[2]*N2), rmu[1], rsigma[1]),
              rnorm(ceiling(rpi[3]*N2), rmu[2], rsigma[2])));
# analyzing chromosome 4 and 9
data <- list(chr4, chr9);

# fit iTUDGE model with 2-normal components and maximum iteration = 20
set.seed(1234);
bestinudge <- nudge.fit(data, K=2, max.iter=20)

# QQ-plot
inudge.plot.qq(data, bestinudge);

---

nudge.classify  Classification Based on NUDGE Model

Description

Classifies observed data into differential and non-differential groups based on NUDGE model.

Usage

nudge.classify(data, obj, obj.cutoff = 0.1, obj.sigma.diff.cutoff = NULL,
                obj.mu.diff.cutoff = NULL)

Arguments

data  an R list of vector of normalized intensities (counts). Each element can correspond to particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.

obj  a list object returned by nudge.fit function.

obj.cutoff  optional local fdr cutoff for classifying data into differential and non-differential groups based on NUDGE model.

obj.sigma.diff.cutoff  optional cut-off for standard deviation of the normal component in NUDGE model to be designated as representing differential.
obj.mu.diff.cutoff

optional cut-off for standard deviation of the normal component in NUDGE model to be designated as representing differential.

Value

A list object passed as input with additional element $class containing vector of classifications for all the observations in data. A classification of 1 denotes that the data is classified as differential with fdr < obj.cutoff.

mu.diff.cutoff  normal component with mean > mu.diff.cutoff was used to represent differential component.

sigma.diff.cutoff  normal component with standard deviation > sigma.diff.cutoff was used to represent differential component.

Author(s)

Cenny Taslim <taslim.2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>, Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>

See Also

nudge.fit

Examples

library(DIME);
# generate simulated datasets with underlying uniform and 1-normal components
set.seed(1234);
N1 <- 1500; N2 <- 500; rmu <- c(1.5); rsigma <- c(1);
ri <- c(10, 90); a <- (-6); b <- 6;
chr1 <- c(runif(ceiling(ri[1]*N1), min = a, max = b),
norm(ceiling(ri[2]*N1), rmu[1], rsigma[1]));
chr2 <- c(runif(ceiling(ri[1]*N2), min = a, max = b),
norm(ceiling(ri[2]*N2), rmu[2], rsigma[2]));
# analyzing chromosome 1 and 4
data <- list(chr1, chr2);

# fit NUDGE model with maximum iterations = 20 only
set.seed(1234);
test <- nudge.fit(data, max.iter=20)
# vector of classification. 1 represents differential, 0 denotes non-differential
nudgeClass <- test$class;
nudge.fit  
*Function for Fitting NUDGE model parameters*

**Description**

Function to estimate parameters for both NUDGE model, mixture of uniform and 1-normal. Parameters are estimated using EM algorithm.

**Usage**

```r
nudge.fit(data, avg = NULL, weights = NULL, weights.cutoff = -1.345,
pi = NULL, mu = NULL, sigma = NULL, tol = 1e-5, max.iter = 2000, z = NULL)
```

**Arguments**

- **data**: an R list of vector of normalized intensities (counts). Each element can correspond to a particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.
- **avg**: optional vector of mean data (or log intensities). Only required when any one of huber weight (lower, upper or full) is selected.
- **weights**: optional weights to be used for robust fitting. Can be a matrix the same length as data, or a character description of the huber weight method to be employed: "lower" - only value below weights.cutoff are weighted, "upper" - only value above weights.cutoff are weighted, "full" - both values above and below weights.cutoff are weighted. If selected, mean of data (avg) is required.
- **weights.cutoff**: optional cutoff to be used with the Huber weighting scheme.
- **pi**: optional vector containing initial estimates for proportion of the NUDGE mixture components. The first entry is for the uniform component, the middle k entries are for normal components.
- **mu**: optional vector containing initial estimates of the Gaussian means in NUDGE model.
- **sigma**: optional vector containing initial estimates of the Gaussian standard deviation in (i)NUDGE model. Must have K entries.
- **tol**: optional threshold for convergence for EM algorithm to estimate NUDGE parameters.
- **max.iter**: optional maximum number of iterations for EM algorithm to estimate NUDGE parameters.
- **z**: optional 2-column matrix with each row giving initial estimate of probability of the region being non-differential and a starting estimate for the probability of the region being differential. Each row must sum to 1. Number of row must be equal to data length.
Value
A list of object:

name  the name of the model "NUDGE"
pi    a vector of estimated proportion of each components in the model
mu    a vector of estimated Gaussian means for k-normal components.
sigma a vector of estimated Gaussian standard deviation for k-normal components.
loglike the log likelihood for the fitted mixture model.
iter  the actual number of iterations run by the EM algorithm.
fdr   the local false discover rate estimated based on NUDGE model.
phi   a matrix of estimated NUDGE mixture component function.
AIC   Akaike Information Criteria.
BIC   Bayesian Information Criteria.

Author(s)
Cenny Taslim <taslim.2@osu.edu>, with contributions from Abbas Khalili <khalili@stat.ubc.ca>, Dustin Potter <potterdp@gmail.com>, and Shili Lin <shili@stat.osu.edu>

See Also
DIME, gng.fit, inudge.fit

Examples
library(DIME);
# generate simulated datasets with underlying uniform and 1-normal components
set.seed(1234);
N1 <- 1500; N2 <- 500; rmu <- c(1.5); rsigma <- c(1);
ripsi <- c(-10,.90); a <- (-6); b <- 6;
chr1 <- c(-runif(ceiling(ripsi[1]*N1),min = a,max =b),
 rnorm(ceiling(ripsi[2]*N1),rmu[1],rsigma[1]));
chr4 <- c(-runif(ceiling(ripsi[1]*N2),min = a,max =b),
 rnorm(ceiling(ripsi[2]*N2),rmu[1],rsigma[1]));
# analyzing chromosome 1 and 4
data <- list(chr1,chr4);

# fit NUDGE model with maximum iterations = 20 only
set.seed(1234);
bestNudge <- nudge.fit(data, max.iter=20);

# Getting the best fitted NUDGE model (parameters)
bestNudge$pi # estimated proportion of each component in NUDGE
bestNudge$mu # estimated mean of the normal component(s) in NUDGE
# estimated standard deviation of the normal component(s) in NUDGE
nudge.plot.comp  Plot NUDGE Individual Components

Description

Plot each estimated individual components of NUDGE model (mixture of uniform and 1-normal) fitted using nudge.fit.

Usage

nudge.plot.comp(data, obj, new.plot = TRUE, legpos = NULL, xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL, main = NULL, lwd = NULL, ...)

Arguments

data an R list of vector of normalized intensities (counts). Each element can correspond to a particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.

obj a list object returned by nudge.fit function.

new.plot an R list of vector of normalized intensities (counts). Each object can correspond to particular chromosome that one want to fit.

legpos optional vector of (x,y) location for the legend position

xlim optional x-axis limit (see par).

ylim optional y-axis limit (see par).

xlab optional x-axis label (see par).

ylab optional y-axis label (see par).

main optional plot title (see par).

lwd optional line width for lines in the plot (see par).

Additional graphical arguments to be passed to methods (see par).

Details

The components representing differential data are denoted by asterisk (*) symbol on the plot legend.

See Also

nudge.plot.mix, inudge.plot.comp, nudge.plot.fit, nudge.plot.qq, DIME.plot.fit, gng.plot.fit.
Examples

library(DIME);
# generate simulated datasets with underlying uniform and 1-normal components
set.seed(1234);
N1 <- 1500; N2 <- 500; rmu <- c(1.5); rsigma <- c(1);
ripsi <- c(10, 90); a <- (-6); b <- 6;
chr1 <- c(runif(ceiling(ripsi[1]*N1),min = a,max =b),
          rnorm(ceiling(ripsi[2]*N1),rmu[1],rsigma[1]));
chr4 <- c(runif(ceiling(ripsi[1]*N2),min = a,max =b),
          rnorm(ceiling(ripsi[2]*N2),rmu[1],rsigma[1]));
# analyzing chromosome 1 and 4
data <- list(chr1,chr4);

# fit NUDGE model with maximum iterations = 20
set.seed(1234);
bestNudge <- nudge.fit(data, max.iter=20);

# plot individual components of NUDGE
nudge.plot.comp(data,bestNudge);

nudge.plot.fit  
Plot NUDGE Goodness of Fit

Description

Plot the estimated NUDGE mixture model fitted using nudge.fit along with it's estimated individual components, superimposed on the histogram of the observation data. This plot shows how good the fit of the estimated model to the data.

Usage

nudge.plot.fit(data, obj, resolution = 100, breaks = 100, 
xlim = NULL, legpos = NULL, ...)

Arguments

data  an R list of vector of normalized intensities (counts). Each element can correspond to a particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.
obj  a list object returned by nudge.fit function.
resolution  optional bandwidth used to estimate the density function. Higher number smoother curve.
breaks  optional see hist, breaks parameters for histogram plot.
xlim  optional limit for the x-axis.
legpos  optional vector of (x,y) location for the legend position
...  additional graphical arguments to be passed to methods (see par).
Details

The components representing differential data are denoted by asterisk (*) symbol on the plot legend.

See Also

nudge.plot.comp, nudge.plot.mix, hist

Examples

library(DIME);
# generate simulated datasets with underlying uniform and 1-normal components
set.seed(1234);
N1 <- 1500; N2 <- 500; rmu <- c(1.5); rsigma <- c(1);
ri <- c(.10,.90); a <- (-6); b <- 6;
chr1 <- c(-runif(ceiling(rpi[1]*N1),min = a,max = b),
  rnorm(ceiling(rpi[2]*N1),rmu[1],rsigma[1]));
chr4 <- c(-runif(ceiling(rpi[1]*N2),min = a,max = b),
  rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]));
# analyzing chromosome 1 and 4
data <- list(chr1,chr4);

# fit NUDGE model with maximum iterations = 20
set.seed(1234);
bestNudge <- nudge.fit(data, max.iter=20);

# goodness of fit plot
nudge.plot.fit(data,bestNudge,breaks=40);

---

nudge.plot.mix  

**Plot NUDGE Mixture Component Function**

**Description**

Plot each estimated individual components of NUDGE mixture model fitted using nudge.fit.

**Usage**

nudge.plot.mix(obj, amplify = 1, resolution = 100, new.plot = TRUE, ...)

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>a list object returned by nudge.fit function.</td>
</tr>
<tr>
<td>amplify</td>
<td>optional scaling factor for visualization purposes.</td>
</tr>
<tr>
<td>resolution</td>
<td>optional bandwidth used to estimate the density function. Higher number makes a smoother curve.</td>
</tr>
<tr>
<td>new.plot</td>
<td>optional logical variable on whether to create new plot.</td>
</tr>
<tr>
<td>...</td>
<td>additional graphical arguments to be passed to methods (see par).</td>
</tr>
</tbody>
</table>
nudge.plot.qq

See Also

nudge.plot.comp, nudge.plot.fit, nudge.plot.qq, DIME.plot.fit, gng.plot.fit.

Examples

library(DIME);
# generate simulated datasets with underlying uniform and 1-normal components
set.seed(1234);
N1 <- 1500; N2 <- 500; rmu <- c(1.5); rsigma <- c(1);
ri <- c(10, 90); a <- (-6); b <- 6;
chr1 <- c(-runif(ceiling(ri[1]*N1),min = a,max =b),
   rnorm(ceiling(ri[2]*N1),rmu[1],rsigma[1]));
chr4 <- c(-runif(ceiling(ri[1]*N2),min = a,max =b),
   rnorm(ceiling(ri[2]*N2),rmu[1],rsigma[1]));
# analyzing chromosome 1 and 4
data <- list(chr1,chr4);

# fit NUDGE model with maximum iterations = 20 only
bestNudge <- nudge.fit(data, max.iter=20);

# plot estimated iNUDE model imposed on the histogram of observed data
hist(unlist(data),freq=FALSE,breaks=40);
nudge.plot.mix(bestNudge,resolution=1000,new.plot=FALSE,col="red");

nudge.plot.qq

QQ-plot of GNG model vs. observed data

Description

Produces a QQ-plot for visual inspection of quality of fit with regards to the uniform Gaussian (NUDE) mixture model estimated using the function `nudge.fit`

Usage

nudge.plot.qq(data, obj, resolution = 10, xlab = NULL, ylab = NULL, main = NULL, pch = NULL, ...)

Arguments

data an R list of vector of normalized intensities (counts). Each element can correspond to a particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.

obj a list object returned by `gng.fit` function.

resolution optional number of points used to sample the estimated density function.

xlab optional x-axis label (see par).

ylab optional y-axis label (see par).
nudge.plot.qq

main

optional plot title (see par).

pch

optional plotting character, i.e., symbol to use (see par).

...

additional graphical arguments to be passed to methods (see par).

See Also

nudge.fit, qqplot

Examples

library(DIME)

# generate simulated datasets with underlying uniform and 1-normal components
set.seed(1234);
N1 <- 1500; N2 <- 500; rmu <- c(1.5); rsigma <- c(1);
ypi <- c(1:10, .90); a <- (-6); b <- 6;
chr1 <- c(-runif(ceiling(ypi[1]*N1), min = a, max =b),
        rnorm(ceiling(ypi[2]*N1), rmu[1], rsigma[1]));
chr4 <- c(-runif(ceiling(ypi[1]*N2), min = a, max =b),
        rnorm(ceiling(ypi[2]*N2), rmu[1], rsigma[1]));
# analyzing chromosome 1 and 4
data <- list(chr1, chr4);

# fit NUDGE model with maximum iterations = 20
set.seed(1234);
bestNudge <- nudge.fit(data, max.iter=20);

# QQ-plot
nudge.plot.qq(data, bestNudge);
Index

*Topic Graphics
  DIME.plot.fit, 11
  gng.plot.fit, 17
*Topic aplot
  DIME.plot.fit, 11
  gng.plot.comp, 16
  gng.plot.fit, 17
  gng.plot.mix, 19
  gng.plot.qq, 20
  inudge.plot.comp, 25
  inudge.plot.fit, 27
  inudge.plot.mix, 28
  inudge.plot.qq, 29
  nudge.plot.comp, 34
  nudge.plot.fit, 35
  nudge.plot.mix, 36
  nudge.plot.qq, 37
*Topic dplot
  gng.plot.comp, 16
  gng.plot.mix, 19
  gng.plot.qq, 20
  inudge.plot.comp, 25
  inudge.plot.fit, 27
  inudge.plot.mix, 28
  inudge.plot.qq, 29
  nudge.plot.comp, 34
  nudge.plot.fit, 35
  nudge.plot.mix, 36
  nudge.plot.qq, 37
*Topic methods
  DIME, 3
  DIME.classify, 9
  gng.classify, 12
  inudge.classify, 22
  nudge.classify, 30
*Topic models
  gng.fit, 13
  inudge.fit, 23
  nudge.fit, 32

*Topic package
  DIME-package, 2
  DIME, 3, 10, 11, 15, 25, 33
  DIME-package, 2
  DIME.classify, 9
  DIME.package (DIME-package), 2
  DIME.plot (DIME.plot.fit), 11
  DIME.plot.fit, 11, 16, 19, 26, 28, 34, 37
  DIME_package (DIME-package), 2
  gng.classify, 12
  gng.fit, 8, 12, 13, 13, 16–20, 25, 29, 33, 37
  gng.plot.comp, 16, 16, 18, 19, 27
  gng.plot.fit, 11, 16, 17, 19, 20, 26, 28, 34, 37
  gng.plot.mix, 16, 18, 19, 27
  gng.plot.qq, 16, 19, 20
  hist, 18, 27, 35, 36
  huber, 21
  inudge.classify, 22
  inudge.fit, 8, 15, 22, 23, 27, 29–29, 33
  inudge.plot.comp, 25, 26, 28, 34
  inudge.plot.fit, 11, 16, 19, 26, 27, 28
  inudge.plot.mix, 26, 28
  inudge.plot.qq, 26, 28, 29
  nudge.classify, 30
  nudge.fit, 8, 15, 25, 30, 31, 32, 34–38
  nudge.plot.comp, 34, 36, 37
  nudge.plot.fit, 34, 35, 37
  nudge.plot.mix, 34, 36, 36
  nudge.plot.qq, 34, 37, 37
  par, 11, 16, 18–20, 26–29, 34–38
  qqplot, 29, 38

39