Package ‘Davies’

May 26, 2016

Title The Davies Quantile Function
Version 1.1-9
Author Robin K. S. Hankin
Description Various utilities for the Davies distribution.
Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>
License GPL-2
Repository CRAN
Date/Publication 2016-05-26 09:21:09
NeedsCompilation no

R topics documented:

Davies .. 2
davies.moment 3
davies.start .. 5
expected.gld ... 6
fit.davies.p ... 7
Gld .. 8
least.squares 9
likelihood ... 10
objective ... 11
ozturk ... 12
plotcf ... 13
rstupid .. 14
twolines.vert 15
x00m700p4 .. 16

Index 17
Davies distribution

The Davies distribution

Description

Density, distribution function, quantile function and random generation for the Davies distribution

Usage

ddavies(x, params)
pdavies(x, params)
q davies(p, params)
r davies(n, params)

Arguments

x quantile
p vector of probabilities
n number of observations. If \text{length}(n) > 1, the length is taken to be the number required

params A three-member vector holding C, λ_1 and λ_2

Details

The Davies distribution is defined in terms of its quantile function:

$$Cp^{\lambda_1}/(1 - p)^{\lambda_2}$$

It does not have a closed-form probability density function or cumulative density function, so numerical solution is used.

Value

Function ddavies() gives the density, pdavies() gives the distribution function, q davies() gives the quantile function, and r davies() generates random deviates.

Author(s)

Robin K. S. Hankin

References

See Also

Gld, fit.davies.p, least.squares, skewness

Examples

params <- c(10, 0.1, 0.1)
X <- seq(from=4, to=20, by=0.2)
P <- seq(from=1e-3, to=1-1e-3, len=50)

rdavies(n=5, params)
least.squares(rdavies(100, params))
plot(p'avies(x, params))

plot(p, qdavies(p, params))
plot(x, ddavies(x, params), type="b")

davies.moment
Moments of the Davies distribution

Description

Moments of order statistics of random variables drawn from a Davies distribution

Usage

davies.moment(n=1, i=1, order=1, params)
M(order, params)
u(mu(params)
expected.value(n, i, params)
expected.value.approx(n, i, params)
variance(params)
skewness(params)
kurtosis(params)

Arguments

params A three-member vector holding C, λ_1 and λ_2
n The number of observations
i Return information about the i-th order statistic (ie $i = 1$ means the smallest, $i = n$ means the biggest)
order The order (eg order=2 gives the square)
Details

Function `davies.moment(n,i,order=r)` gives the \(r \)-th moment of the \(i \)-th order statistic of \(n \) observations. The following aliases are just newbie wrappers with \(n = i = 1 \) (ie moments of one observation from a Davies distribution):

- \(M() \) gives the \(r \)-th moment for \(n = i = 1 \)
- \(mu() \) gives the first moment of a Davies distribution (ie the mean)
- \(variance() \) gives the second central moment of a Davies distribution
- \(skewness() \) gives the normalized skewness of a Davies distribution
- \(kurtosis() \) gives the normalized kurtosis of a Davies distribution

Author(s)

Robin K. S. Hankin

See Also

`expected.value`, `expected.gld`

Examples

```r
params <- c(10,0.1,0.1)
davies.moment(n=100,i=99,2,params) # ie the second moment of the 99th smallest
# observation of 100 drawn from a Davies
# distribution with parameters p

mean(rdavies(1e6,params)) - mu(params)

# now reproduce the S-K graph:

f <- function(x,y){c(skewness(c(1,x,y)),kurtosis(c(1,x,y)))}
g <- function(j,vector,pp,qq=1){points(t(sapply(vector,f,y=j)),type="l",col="black",lty=qq)}

vector <- c((0:300)/100 , (0:300)/10000 , seq(from=3,to=10,len=100))
vector <- sort(unique(vector))

plot(t(sapply((0:10)/10,f,y=0)),
     xlim=c(-3,3),ylim=c(0,10),
     type="n",xlab="skewness",ylab="kurtosis")
g(0.001,vector,"red",qq=1)
g(0.01,vector,"yellow",qq=2)
g(0.02,vector,"green",qq=3)
g(0.05,vector,"blue",qq=4)
g(0.1 ,vector,"purple",qq=5)
g(0.14,vector,"black",qq=6)

x <- seq(from=-3,to=3,len=30)
points(x,x^2+1,type="l",lwd=2)
```
Description

Gives a “start” value for the optimization routines. Uses heuristics that seem to work.

Usage

```r
davies.start(x, threeps=c(0.1,0.5,0.9), small = 0.01)
```

Arguments

- `x`: dataset to be used
- `threeps`: a three-element vector representing the quantiles to be balanced. The default values balance the first and ninth deciles and the median. These seem to work for me pretty well; YMMV
- `small`: a “small” value to be used for λ_1 and λ_2 because using exactly zero is inappropriate

Details

Returns a “start” value of the parameters for use in one of the Davies fitting routines `maximum.likelihood()` or `least.squares()`.

Uses three heuristic methods (one assuming $\lambda_1 = \lambda_2$, one with $\lambda_1 = 0$, and one with $\lambda_2 = 0$). Returns the best one of the three, as measured by `objective()`.

Author(s)

Robin K. S. Hankin

See Also

`least.squares`, `maximum.likelihood`, `objective`
expected.gld

Examples

```r
d <- rchisq(40,1)
davies.start(d)
least.squares(d)

params <- c(10, 0.1, -0.1)
x <- rdavies(100, params)
davies.start(x)

f <- function(threeps){objective(davies.start(x,threeps),x)}
(jj<optim(c(0.1,0.5,0.9),f))
davies.start(x, jj$par)
least.squares(x)

# not bad at all.
```

expected.gld

expected value of the Generalized Lambda Distribution

Description

Returns the expected value of the Generalized Lambda Distribution

Usage

```r
expected.gld(n=1, i=1, params)
expected.gld.approx(n=1, i=1, params)
```

Arguments

- `n` Number of observations
- `i` Order statistic: `i = 1` means the smallest of `n`, and `n = i` means the largest
- `params` The four parameters of a GLD distribution

Details

expected.gld and expected.approx return the exact and approximate values of the expected value of a Generalized Lambda Distribution RV.

Exploits the fact that the gld quantile function is the sum of a constant and two davies quantile functions

Author(s)

Robin K. S. Hankin
References

A. Ozturk and R. F. Dale, “Least squares estimation of the parameters of the generalized lambda distribution”, Technometrics 1985, 27(1):84 [it does not appear to be possible, as of R-2.9.1, to render the diacritic marks in the first author’s names in a nicely portable way]

See Also

Gld, expected.value

Examples

params <- c(4.114, 0.1333, 0.0193, 0.1588)
mean(rgld(1000, params))
expected.gld(n=1, i=1, params)
expected.gld.approx(n=1, i=1, params)

f <- function(n){apply(matrix(rgld(n+n, params), 2, n), 2, min)}
f(n) gives the smaller of 2 rgld RVs, n times.

mean(f(1000))
expected.gld(n=2, i=1, params)
expected.gld.approx(n=2, i=1, params)

plot(1:100, expected.gld.approx(n=100, i=1:100, params)-expected.gld(n=100, i=1:100, params))
not bad, eh?yyyyyyyyy, but the parameters given by Ozturk give
an almost zero second derivative for d(qgld)/dp, so the good agreement
isn’t surprising really. Observe that the error is minimized at about
p=0.2, where the point of inflection is.

fit.davies.p

Fits and plots Davies distributions to datasets

Description

A newbie wrapper (and pretty-printer) for maximum.likelihood() and least.squares(). Draws an empirical quantile function (fit.davies.p()) or PDF (fit.davies.q()) and the dataset

Usage

fit.davies.p(x , print.fit=FALSE, use.q=TRUE , params=NULL, small=1e-5 , ...)
fit.davies.q(x , print.fit=FALSE, use.q=TRUE , params=NULL, ...)

Arguments

x dataset to be fitted and plotted
print.fit Boolean with TRUE meaning print details of the fit
use.q Boolean with TRUE meaning use least.squares() (rather than maximum.likelihood())
params: three-element vector holding the three parameters of the davies dataset. If NULL, determine the parameters using the method indicated by use.q

small: small positive number showing range of quantiles to plot

Value

If print.fit is TRUE, return the optimal parameters

Author(s)

Robin K. S. Hankin

See Also

least.squares, *maximumlikelihood*

Examples

```r
fit.davies.q(rchisq(100, 1))
fit.davies.p(exp(rnorm(100)))

data(x00m700p)
fit.davies.q(x00m700p)
```

Gld

The Generalized Lambda Distribution

Description

Density, distribution function, quantile function and random generation for the Generalized Lambda Distribution

Usage

```r
dgld(x, params)
dgld.p(x, params)
pgld(q, params)
qgld(p, params)
rgld(n, params)
```

Arguments

- `x, q`: vector of quantiles
- `p`: vector of probabilities
- `n`: In function `rgld()`, the number of observations. If `length(n) > 1`, the length is taken to be the number required
- `params`: vector of parameters: `params[1] = lambda1 et seq`
Details

The Generalized Lambda distribution has quantile function

\[f(x) = \lambda_1 + (p^{\lambda_3} - (1 - p)^{\lambda_4})/\lambda_2 \]

Value

Function \(\text{dgld}() \) gives the density, \(\text{dgld.p}() \) gives the density in terms of the quantile, \(\text{pgld}() \) gives the distribution function, \(\text{qgld}() \) gives the quantile function, and \(\text{rgld}() \) generates random deviates.

References

See Also

Davies, expected.gld

Examples

```r
params <- c(4.114, 0.1333, 0.0193, 0.1588)  # taken straight from some paper

gld.rv <- rgld(100, params)

hist(gld.rv)
fit.davies.q(gld.rv)  # remember the Davies distn has 3 DF and the GLD 4...
```

least.squares
Finds the optimal Davies distribution for a dataset

Description

Finds the best-fit Davies distribution using either the least-squares criterion (\(\text{least.squares}() \)) or maximum likelihood (\(\text{maximum.likelihood}() \))

Usage

```r
least.squares(data, do.print = FALSE, start.v = NULL)
maximum.likelihood(data, do.print = FALSE, start.v = NULL)
```
Arguments

data: dataset to be fitted
do.print: Boolean with TRUE meaning print a GFM
start.v: A suitable starting vector of parameters c(C,lambda1,lambda2), with default NULL meaning to use start()

Details

Uses optim() to find the best-fit Davies distribution to a set of data.

Value

Returns the parameters C, \lambda_1, \lambda_2 of the best-fit Davies distribution to the dataset data.

Note

BUGS: can be screwed with bad value for start.v. Function maximum.likelihood() can be very slow. It might be possible to improve this by using some sort of hot-start for optim().

Author(s)

Robin K. S. Hankin

See Also

davies.start, optim, objective, likelihood

Examples

```r
p <- c(10, 0.1, 0.1)
d <- rdavies(50, p)

system.time(print(maximum.likelihood(d)))
  # observe how long this takes.
  # The time is taken in repeated calls
  # to pdavies(), which uses uniroot().

system.time(print(least.squares(d)))
  # Much faster.
```

Description

Likelihood of observing data, on the hypothesis of their coming from a Davies distribution of parameters params.

Function neg.log.likelihood() gives minus the loglikelihood.
objective

Usage

```
likelihood(params, data)
```

Arguments

- **params**: Parameters of the Davies distribution
- **data**: dataset for which the likelihood is computed

Author(s)

Robin K. S. Hankin

See Also

- `davies`

Examples

```r
p1 <- c(10, 0.1, 0.1)
p2 <- c(10, 0.4, 0.1)
d <- rdavies(100, p1)
likelihood(p1, d)
likelihood(p2, d)  # should be smaller.
neg.log.likelihood(p1, rstupid(100))  # should be large negative.
```

The objective function for fitting the Davies distribution

Description

The “distance” of a dataset from a particular Davies distribution

Usage

```
objective(params, dataset)
objective.approx(params, dataset)
```

Arguments

- **params**: A three-member vector holding C, λ_1 and λ_2
- **dataset**: The dataset to be considered

Details

Used by the `fit.davies.p()` and `fit.davies.q()` functions
Value

`objective` returns the “distance” of a dataset from a particular Davies distribution as measured by the sums of the squares of the differences between observed (dataset) and expected (expected.value()) values.

`objective.approx()` uses `expected.approx()` rather than `expected()` to calculate expectations, as per equation 6.

Author(s)

Robin K. S. Hankin

See Also

`fit.davies.p, fit.davies.q`

Examples

```r
params <- c(10, 0.1, 0.1)
x <- rdavies(100, params)
objective(params, x)
objective.approx(params, x)
objective(least.squares(x), x)
objective(davies.start(x), x)
```

Description

A four-element vector giving the parameters used by Ozturk.

Usage

```r
data(x00m700p4)
```

References

See Also

`expected.gld`
Examples

data(ozturk)
hist(rgld(100,ozturk))

Description
Plots sorted p-values showing which ones would have been rejected

Usage
plotcf(y, q=0.05)

Arguments

y dataset
q p-value of critical region

Details
Sorts p-values and plots the order statistic. Useful for investigating a statistical test by using it when the null hypothesis is KNOWN to be true, just to check if the probability of rejection really is alpha. Also can be used when H0 is wrong, showing what beta is.

Author(s)
Robin K. S. Hankin

Examples

f.H0.T <- function(n,free=5){t.test(rnorm(n,mean=free))$p.value}
f.H0.F <- function(n,free=5){t.test(rnorm(n,mean=free,df=free))$p.value}

plotcf(sapply(1:100,f.H0.T)) # should reject about 5: thus
 # probability of a type I error is
 # about 0.05 (as it should be; this
 # is an exact test)
plotcf(sapply(1:100,f.H0.F)) # should reject about 80: thus
 # probability of a type II error is
 # about 0.2 for this H.A.
rstupid

\(\frac{A \text{ stupid PDF} \quad}{\quad} \)

Description

a contrived PDF that cannot be closely approximated by a Davies distribution

Usage

\(\text{rstupid(n, a = 1, b = 2, c = 3, d = 4)} \)

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of observations</td>
</tr>
<tr>
<td>a</td>
<td>start of first uniform bit</td>
</tr>
<tr>
<td>b</td>
<td>end of first uniform bit</td>
</tr>
<tr>
<td>c</td>
<td>start of second uniform bit</td>
</tr>
<tr>
<td>d</td>
<td>end of second uniform bit</td>
</tr>
</tbody>
</table>

Details

The stupid distribution is composed of two separate uniform distributions: one from \(a \) to \(b \), and one from \(c \) to \(d \). It is specifically designed to be NOT fittable to any Davies distribution.

You could probably come up with a more stupid distribution if you tried

Author(s)

Robin K. S. Hankin

See Also

Davies

Examples

```r
stupid <- rstupid(500)
fit.davies.q(stupid)
```
Description

Plots two lines and shades the bit in between them

Usage

twolines.vert(p, y1, y2, ...)

Arguments

p vector of quantiles
y1 First set of ordinates
y2 Second set of ordinates
... Extra arguments, passed to segments(), for the vertical lines

Details

Plots p against y1, and p against y2, and shades the bit in between using vertical lines. This is useful for comparing two order statistics

Author(s)

Robin K. S. Hankin

See Also

Davies, qqplot

Examples

twolines.vert(1:100, sort(rnorm(100)), sort(rnorm(100)))
params <- c(10, 0.1, 0.1)
twolines.vert(1:100, sort(rdavies(100, params)), sort(rdavies(100, params)))
Peak concentration for 100 instantaneous releases

Description
This data set gives the peak concentration for 100 independent instantaneous releases of neutral-buoyancy gas in a windtunnel.

Usage
data(x00m700p4)

Format
A vector containing 100 observations

References
D. J. Hall and others 1991. *Repeat variability in instantaneously released heavy gas clouds—some wind tunnel model experiments*. Technical Report LR 804 (PA), Warren Spring Laboratory, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2BX.

Examples
data(x00m700p4)
fit.davies.q(x00m700p4)
Index

*Topic datasets
 ozturk, 12
 x00m700p4, 16
*Topic distribution
 Davies, 2
 davies.moment, 3
 davies.start, 5
 expected.gld, 6
 fit.davies.p, 7
 Gld, 8
 least.squares, 9
 likelihood, 10
 objective, 11
 plotcf, 13
 rstupid, 14
 twolines.vert, 15
 Davies (Davies), 2
 davies.moment, 3
 davies.start, 5, 10
 ddavies (Davies), 2
 dgld (Gld), 8
 expected.gld, 4, 6, 9, 12
 expected.value, 4, 7
 expected.value (davies.moment), 3
 fit.davies.p, 3, 7, 12
 fit.davies.q, 12
 fit.davies.q (fit.davies.p), 7
 Gld, 3, 7, 8
 gld (Gld), 8
 kurtosis (davies.moment), 3
 least.squares, 3, 5, 8, 9
 likelihood, 10, 10
 M (davies.moment), 3

maximum.likelihood, 5, 8
maximum.likelihood (least.squares), 9
mu (davies.moment), 3
neg.log.likelihood (likelihood), 10
objective, 5, 10, 11
optim, 10
ozturk, 12
pdavies (Davies), 2
pgld (Gld), 8
plotcf, 13
qdavies (Davies), 2
qgld (Gld), 8
qqplot, 15
rdavies (Davies), 2
rgld (Gld), 8
rstupid, 14
skewness, 3
skewness (davies.moment), 3
twolines.vert, 15
variance (davies.moment), 3
x00m700p4, 16