Package ‘Digiroo2’

February 19, 2015

Type Package

Title An application programming interface for generating null models of social contacts based on individuals' space use

Version 0.6

Date 2013-02-21

Author Ross Dwyer, Emily Best and Anne Goldizen

Maintainer Ross Dwyer <ross.dwyer@uq.edu.au>

Description Digiroo2 is an R package developed by researchers at the University of Queensland to investigate association patterns and social structure in wild animal populations. Proximity between individuals is generally considered to be an appropriate proxy for associations and pairwise association indices are the most widely used technique for analysing animal social structure. However, little attention is given to identifying how patterns of spatial overlap affect these association patterns. For example, do individuals associate randomly with others with whom they share home ranges, or do some individuals go out of their way to associate with or avoid particular individuals? This program builds a null model of random associations based on an individual's space use determined using home range methodologies. Random points may be generated within a specified home range contour or according to the Utilization Distribution (UD). Expected associations of individuals are extracted based on probability of occurrence and the proximity between home range weighted random points. Association matrices can be generated from multiple permutations for analysis using SOCPROG 2.4 (Whitehead 2009) to create 'expected' pairwise half-weight association indices (HWIs). These may be compared with the 'observed' HWIs from field observations to reveal whether pairs of animals associate more (= attraction) or less (= avoidance) than expected by chance.

Depends R (>= 2.14.0), maptools, spatstat, spdep

Suggests adehabitatHR, raster
Description

Digiroo2 is an R package developed by researchers at the University of Queensland to investigate association patterns and social structure in wild animal populations. Proximity between individuals is generally considered to be an appropriate proxy for associations and pairwise association indices are the most widely used technique for analysing animal social structure. However, little attention is given to identify how patterns of spatial overlap affect these association patterns (Carter et al. 2009). For example, do individuals associate randomly with others with whom they share home ranges, or do some individuals go out of their way to associate with or avoid particular individuals? This program uses home range methodologies to build a null model of space use with individuals exhibiting a 'random' social structure. Random points may be generated within a specified home range contour or according to the Utilization Distribution (UD). Expected associations of individuals are extracted based on probability of occurrence and the proximity between home range weighted random points. Association matrices can be generated from multiple permutations for analysis using SOCPROG 2.4 (Whitehead 2009) to create 'expected' pairwise half-weight association indices (HWIs). These may be compared with the 'observed' HWIs from field observations to reveal whether pairs of animals associate more (= attraction) or less (= avoidance) than expected by chance.

Details

- **Package**: Digiroo2
- **Type**: Package
- **Version**: 0.6

Digiroo2-package

An application programming interface for generating null models of social contacts based on individuals' space use

Index

<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Digiroo2-package</td>
<td>2</td>
</tr>
<tr>
<td>fAssocmatrix</td>
<td>3</td>
</tr>
<tr>
<td>fAssocplot</td>
<td>5</td>
</tr>
<tr>
<td>fAssoctable</td>
<td>7</td>
</tr>
<tr>
<td>fDrawfigure</td>
<td>8</td>
</tr>
<tr>
<td>fRanXY</td>
<td>9</td>
</tr>
<tr>
<td>Roos</td>
<td>10</td>
</tr>
<tr>
<td>StudyArea</td>
<td>11</td>
</tr>
</tbody>
</table>
Author(s)
Ross Dwyer, Emily Best and Anne Goldizen, Behavioural Ecology Research Group (BERG), School of Biological Sciences, University of Queensland, Queensland, Australia.
Maintainer: Ross Dwyer <ross.dwyer@uq.edu.au>

References

fAssocmatrix

Extract expected associations over multiple permutations

Description
This function combines the functions fRanXY, dnearneigh and fassoctable, to enable the user to extract repeated expected associations over multiple permutations. Unlike fassoctable, this function operates in a single step where the user is only required to input the home range of interest, the association distance threshold Gprox and those individuals to be used in the analysis. The user is offered the flexibility to include all individuals in the analysis, or a series of possible combinations of individuals based on mean group size and probability of occurrence. The output table generated by this function creates a series of ‘expected’ associations according to what would be expected if individuals within a population distributed themselves at random within their home range. The output table is a data frame with a permutation number, a group identifier (i.e. those individuals occurring within a defined distance threshold) and the individual id. Each line in a single permutation corresponds to a unique individual. Note, the running time of this function is positively related to the number of associations in the system. Running time can be decreased by reducing the number of permutations iperm, limiting numbers of individuals contained in the study iid or by decreasing the maximum association distance threshold Gprox.

Usage
fAssocmatrix(sPerm, Gprox, iextract, iid)
Arguments

sPerm
a sequence of numbers representing the number of permutations to be run. If 100 permutations are to be run, `iPerm=1:100`

Gprox
a numeric field representing the distance threshold (max) for an association to occur

iextract
either a `SpatialPolygonsDataFrame` or a `SpatialGridDataFrame` object. This determines whether points are sampled from within a bounding area or according to a probability surface

iID
either a sequence of numbers (=IDs) or a matrix

Value

Permutation
a numeric vector containing the permutation number

Group
a numeric vector representing the group id. Individuals which occur within the distance threshold (i.e. between 0 and `Gprox`) have the same group number

IDs
a character vector containing the identity of the animal within each group. IDs will be unique within each permutation

Author(s)

Ross Dwyer <ross.dwyer@uq.edu.au>

See Also

`fRanXY`, `fAssoctable`, `fAssocmatrix`, `fAssocplot`, `dneigh`

Examples

```r
## Load required packages
library(adehabitatHR)

## Load data
data(StudyArea)
data(Roos)

## Convert df into a spatial points df object
coordinates(Roos) <- ~x+y

## Estimation of UD and KUD 95% for the 10 animals
ud <- kernelUD(Roos,h="href",same4all=TRUE)
ver95 <- getverticeshr(ud,95,unin = c("m"),unout=c("ha"))
udsgdf <- as(estUDm2spixdf(ud),"SpatialGridDataFrame")

## Run 1 permutation using only the first 5 individuals using random points taken
## from within each individuals 95% KUD.
## Associations are determined if individuals are within 50 m from one another
fAssocmatrix(sPerm=1,
    Gprox=50,
```
fAssocplot

Plot the random points and the corresponding association matrix

Description

This function plots the output data spatially, allowing the user to visualise the random locations generated for individuals and the resulting associations defined by group memberships. This map can be plotted with or without individual ID labels.

Usage

```r
fAssocplot(dnndata, idataxy, iplotnames = FALSE)
```
Arguments

dnndata a nb type object
idataxy A SpatialPointsDataFrame object containing the random locations of the animals
iplotnames logical. Whether or not the user wants the animal IDs printed on the association plot. Default = FALSE

Author(s)

Ross Dwyer <ross.dwyer@uq.edu.au>

See Also

fAssocitable, fAssocmatrix, dnearneigh

Examples

```r
## Load required packages
library(adehabitatHR)

## Load the data
data(StudyArea)
data(Roos)

## Convert into a spatial object
coordinates(Roos) <- ~x+y

## Estimation of UD and KUD 95% for the 10 animals
ud <- kernelUD(Roos,h="href",same4all=TRUE)
ver95 <- getverticeshr(ud,95,unin = c("m"),unout=c("ha"))
udsgdf <- as(estUDm2spixdf(ud),"SpatialGridDataFrame")

## For all 10 individuals, extract probability weighted random points
## falling within their respective utilisation distributions
ranXY <- fRanXY(1:10,udsgdf)
coordinates(ranXY) <- ~x+y

## Run Nearest neighbour function with those interactions < 50 m to generate the nb object
## See ?dnearneigh in the spdep package for more information
Gprox <- 50
dnn_digi <- dnearneigh(ranXY,0,Gprox,row.names=as.character(ranXY$ID))

## Plot and visualise these groups with and without animal IDS
fAssocplot(dnn_digi,ranXY,iplotnames=TRUE)
fAssocplot(dnn_digi,ranXY,iplotnames=FALSE)
```
fAssocTable

Convert nearest neighbour object into a dataset of expected groups which is compatible with SOCPROG 2.4

Description

This function converts a nearest neighbour (codenb) object into a format which can be accepted by the SOCPROG 2.4 program (Whitehead 2009). The output table generated by this function creates a series of 'expected' associations according to what would be expected if individuals within a population distributed themselves at random within their home range. Random points may be determined within a home range polygon or according to a probability surface within an individual’s utilisation distribution. The output table is a dataframe with a group identifier (i.e. those individuals occurring within a defined distance threshold) and each line corresponding to a different individual. Note, the running time of this function is positively related to the number of associations in the system. Running time can be decreased by reducing the numbers of individuals contained in the study or by decreasing the association distance range in variables d1 and d2.

Usage

fAssocTable(dnda)

Arguments

- dnda: a nb type object

Value

Group: a numeric vector containing the group identifier
IDS: a character vector containing the individuals in the study

Author(s)

Ross Dwyer <ross.dwyer@uq.edu.au>

See Also

fAssocMatrix, fAssocPlot

Examples

```r
## Load required packages
library(adehabitatHR)

## Load study data
data(StudyArea)
data(Roos)
```
Convert into a spatial object
coordinates(Roos) <- ~x+y

Estimation of UD and KUD 95% for the 10 animals
ud <- kernelUD(Roos,h="href",same4all=TRUE)
ver95 <- getverticeshr(ud,95,unin = c("m"),unout=c("ha"))
udsgdf <- as(estUDm2spixdf(ud),'SpatialGridDataFrame')

For all 10 individuals, extract probability weighted random points
falling within their respective utilisation distributions
ranXY <- fRanXY(1:10,udsgdf)
coordinates(ranXY) <- ~x+y

Run Nearest neighbour function with those interactions < 50 m to generate the nb object
See ?dneareiggh in the spdep package for more information
Gprox <- 50
dnn_digi <- dneareigh(ranXY,d1=0,d2=Gprox, row.names=as.character(ranXY$ID))

Convert random points into a dataset of expected groups by detecting associations
by proximity and converting them into a format accepted by SOCPROG 2.4
fAssoctable(dnn_digi)

fDrawfigure

Plot the location of the random point falling within an individual’s home range

Description

fDrawfigure extracts either a random point or a probability weighted random point falling within a specified home range. The random point, the observed locations, the specified ud vertice or the utilisation distribution can be plotted on a user-defined background.

Usage

fDrawfigure(x, iextract, idataxy = NULL, istudy = NULL)

Arguments

- `x` a numeric vector representing the individual to be plotted. This number relates to order in which animals are listed within the iextract object
- `iextract` either a SpatialPolygonsDataFrame object containing the vertice of interest or a SpatialGridDataFrame object containing the utilisation distribution of interest
- `idataxy` an optional dataframe containing the animal locations
- `istudy` optional background layer for the points to be plotted. This can be a spatial polygon object, a raster or blank = NULL

Author(s)

Ross Dwyer <ross.dwyer@uq.edu.au>
Examples

```r
## Load required packages
library(adehabitatHR)

## Load study data
data(StudyArea)
data(Roos)

# Subset the data for only 1 individual
RooSubid <- 'Stripes'
RooSub <- subset(Roos,Roos$ID==RooSubid)
RooSub$ID <- as.character(RooSub$ID)

coordinates(RooSub) <- ~x+y

## Estimation of UD and KUD 95% for 1 animal
ud <- kernelUD(RooSub,h=’href’,same4all=TRUE)
ver95 <- getverticeshr(ud,95,unin = c(”m”),unout=c(”ha”))
udsgdf <- as(estUEm2spixdf(ud),”SpatialGridDataFrame”)

## Extract random points falling within animal #1's KUD 95%
fDrawfigure(1,ver95,RooSub,StudyArea)

## Extract probability-weighted random points falling within
## animal #1's UD and draw on map of the study area.
fDrawfigure(1,udsgdf,RooSub,StudyArea)
```

fRanXY

Extract random points from within an individual’s home range

Description

Extracts either either a random point from a home range vertice (i.e. a SpatialPolygonsDataFrame object) or a probability-weighted random point from a Utilisation Distribution (i.e. a SpatialGridDataFrame object)

Usage

`fRanXY(x, iextract)`

Arguments

- **x**: a numeric vector representing the individuals of interest. This number relates to order in which animals are listed within the iextract object
- **iextract**: either a SpatialPolygonsDataFrame object containing the vertice of interest or a SpatialGridDataFrame object containing the utilisation distribution of interest
Author(s)
Ross Dwyer <ross.dwyer@uq.edu.au>

Examples

```r
## Load required packages
library(adehabitatHR)
library(raster)

## Load study data
data(StudyArea)
data(Roos)

coordinates(Roos) <- ~x+y

## Estimation of UD and KUD 95% for the 10 animals
ud <- kernelUD(Roos,href="href",same4all=TRUE)
ver95 <- getverticeshr(ud,95,unin = c("m"),unout=c("ha"))

## Conversion from a adehabitat UDM object into a sgdf object
udsgdf <- as(estUDm2spixdf(ud),"SpatialGridDataFrame")

## For 3 animals, extract a random point falling within their respective KUD 95%
franXY(1:3,ver95)

## For 3 animals, extract a probability weighted random point falling within
## their respective utilisation distributions
franXY(1:3,udsgdf)
```

Description

This GPS dataset contains the locations of 10 Eastern grey kangaroos *Macropus giganteus* monitored between 05/01/2010 to 21/12/2011 in South East Queensland, Australia. Data supplied E.C. Best from the School of Biological Sciences, University of Queensland, Australia.

Usage

data(Roos)

Format

A data frame containing GPS location data of individual sightings of *M. giganteus* with the following 3 variables.

ID a character vector giving the identity of each kangaroo
StudyArea

x a numeric vector containing the x coordinate of each individual
y a numeric vector containing the y coordinate of each individual

Details

The coordinates are given in meters GDA94/MGA zone 55

Source

www.berglabs.org

Examples

```r
## Load required packages
library(adehabitatHR)

## Load study data
data(Roos)

## Convert df into a spatial points df object
coordinates(Roos) <- ~x+y

## Plot observed location data with individual kangaroos by colour
plot(Roos, col='red')

## Estimation of UD for the 10 kangaroos
ud <- kernelUD(Roos, same4all=TRUE)

## Plot the UD for the 10 kangaroos
image(ud)
```

StudyArea

The study site at Sundown National Park, Queensland, Australia.

Description

This dataset contains a spatial polygon of the study area at Sundown National Park

Usage

data(StudyArea)

Details

This S4 class dataset contains a SpatialPolygonsDataFrame object of the study area at Sundown National Park.
The coordinates are given in meters GDA94/MGA zone 55.
Examples

```r
## Load required packages
library(maptools)

## Load study data
data(StudyArea)

## Plot study area polygon
plot(StudyArea, border=2)
```
Index

*Topic datasets
 Roos, 10
 StudyArea, 11

*Topic package
 Digiroo2-package, 2

Digiroo2 (Digiroo2-package), 2
Digiroo2-package, 2
dnearneigh, 4, 6

fAssocmatrix, 3, 4, 6, 7
fAssocplot, 4, 5, 7
fAssoctable, 4, 6, 7
fDrawfigure, 8
fRanXY, 4, 9

Roos, 10

StudyArea, 11