Package ‘DoubleCone’

February 19, 2015

Type Package

Title Test against parametric regression function

Version 1.0

Date 2013-10-24

Author Mary C Meyer, Bodhisattva Sen

Maintainer Mary C Meyer <meyer@stat.colostate.edu>

Description Performs hypothesis tests concerning a regression function in a least-squares model, where the null is a parametric function, and the alternative is the union of large-dimensional convex polyhedral cones.

License GPL-2 | GPL-3

Depends graphics, grDevices, stats, utils, coneproj, Matrix, MASS

NeedsCompilation no

Repository CRAN

Date/Publication 2013-11-22 22:02:24

R topics documented:

 DoubleCone-package .. 2
 adhd ... 2
 ageconst .. 3
 derby ... 5
 doubconetest ... 5
 partlintest .. 7

Index 9
DoubleCone-package Test against a Parametric Function

Description

Given a response and predictors, the null hypothesis of a parametric regression function is tested versus a large-dimensional alternative in the form of a union of polyhedral convex cones.

Details

- **Package**: DoubleCone
- **Type**: Package
- **Version**: 1.0
- **Date**: 2013-10-24
- **License**: GPL-2 | GPL-3

The `doubconetest` function is the generic version. The user provides an irreducible constraint matrix that defines two convex cones; the intersection of the cones is the null space of the matrix. The function provides a p-value for the test that the expected value of a vector is in the null space using the double-cone alternative.

Given a vector \(y \) and a design matrix \(X \), the `agconst` function performs a test of the null hypothesis that the expected value of \(y \) is constant versus the alternative that it is monotone (increasing or decreasing) in each of the predictors.

The function `partlintest` performs a test of a linear model versus a partial linear model, using a double-cone alternative.

Author(s)

Mary C Meyer and Bodhisattva Sen
Maintainer: Mary C Meyer <meyer@stat.colostate.edu>

References

TBA

adhda

Sub-clinical ADHD behaviors and classroom functioning in school-age children

Description

Observations on children aged 9-11 in classroom settings, for a study on the effects of sub-clinical hyperactive and inattentive behaviors on social and academic functioning.
Usage

data(adhd)

Format

A data frame with 686 observations on the following 4 variables.

sex 1=boy; 2=girl
ethn 1=Colombian, 2=African American, 3=Hispanic American, 5=European American
hypb Classroom hyperactive behavior level
fcn A measure of social and academic functioning

Source

Brewis, A.A. Schmidt, K.L., and Meyer, M.C. (2000) ADHD-type behavior and harmful dysfunc-

Examples

data(adhd)
plot(adhd$hypb, adhd$fcn)

Description

Given a response and 1-3 predictors, the function will test the null hypothesis that the response
and predictors are not related (i.e., regression function is constant), against the alternative that the
regression function is monotone in each of the predictors. For one predictor, the alternative set
is a double cone; for two predictors the alternative set is a quadruple cone, and an octuple cone
alternative is used when there are three predictors.

Usage

agconst(y, xmat, nsim = 1000)

Arguments

y A numeric response vector, length n
xmat an n by k design matrix, full column rank, where k=1,2, or 3.
nsim The number of data sets simulated under the null hypothesis, to estimate the null
distribution of the test statistic. The default is 1000, make this larger if a more
precise p-value is desired.
Details

For one predictor, the set of non-decreasing regression functions can be described by an n-dimensional convex polyhedral cone, and the set of non-increasing regression functions is the "opposite" cone. The one-dimensional null space is the intersection of these cones. For two predictors, the alternative set consists of four cones, defined by combinations of increasing/decreasing assumptions, and for three predictors we have eight cones.

Value

- **pval**: The p-value for the test: H0: constant regression function
- **p1 through p8**: monotone fits – only p1 and p2 are returned for one predictor, etc.
- **thetahat**: The least-squares alternative fit – i.e., the projection onto the multiple-cone alternative

Author(s)

Mary C Meyer and Bodhisattva Sen

References

TBA

See Also

doubconetest,partlintest

Examples

```r
n=100
x1=runif(n); x2=runif(n); xmat=cbind(x1,x2)
mu=1:n; for(i in 1:n){mu[i]=20*max(x1[i]-2/3,x2[i]-2/3,0)^2}
x1g=1:21/22; x2g=x1g
par(mar=c(1,1,1,1))
y=mu+rnorm(n)
ans=agconst(y,xmat,nsim=0)
grfit=matrix(nrow=21,ncol=21)
for(i in 1:21){for(j in 1:21){
  if(sum(x1<=x1g[i]&x2>x2g[j])>0){
    if(sum(x1<=x1g[i]&x2<x2g[j])>0){
      f1=min(ans$thetahat[x1<=x1g[i]&x2>x2g[j]])
      f2=max(ans$thetahat[x1<=x1g[i]&x2<x2g[j]])
      grfit[i,j]=(f1+f2)/2
    }else{
      grfit[i,j]=min(ans$thetahat)
    }
  }else{
    grfit[i,j]=max(ans$thetahat)
  }
}}
persp(x1g,x2g,grfit,th=-50,tick="detailed",xlab="x1",ylab="x2",zlab="mu")

# to get p-value for test against constant function:
# ans=agconst(y,xmat,nsim=1000)
# ans$pval
```
derby

Kentucky Derby Winner Speed

Description

The Speeds of the Winning Horses in the Kentucky Derby, 1896-2012

Usage

```r
data(derby)
```

Format

A data frame with 117 observations on the following 4 variables.

- `speed`: winning speed
- `year`: year of race
- `cond`: track condition with levels `fast` good `heav` `mudd` `slop` `slow`
- `name`: Name of the winning horse

Source

www.kentuckyderby.com

Examples

```r
data(derby)
n=length(derby$year)
track=1:n+1
track[derby$cond=="good"]=2
track[derby$cond=="fast"]=3
plot(derby$year,derby$speed,col=track)
```

doubconetest

Test for a vector being in the null space of a double cone

Description

Given an n-vector y and the model y=m+e, and an m by n "irreducible" matrix amat, test the null hypothesis that the vector m is in the null space of amat.

Usage

```r
doubconetest(y, amat, nsim = 1000)
```
Arguments

y a vector of length n
amat an m by n "irreducible" matrix
nsim number of simulations to approximate null distribution – default is 1000, but choose more if a more precise p-value is desired

Details

The matrix amat defines a polyhedral convex cone of vectors x such that amat%*%x>=0, and also the opposite cone amat%*%x<=0. The linear space C is those x such that amat%*%x=0. The function provides a p-value for the null hypothesis that m=E(y) is in C, versus the alternative that it is in one of the two cones defined by amat.

Value

pval The p-value for the test
p0 The least-squares fit under the null hypothesis
p1 The least-squares fit to the "positive" cone
p2 The least-squares fit to the "negative" cone

Author(s)

Mary C Meyer and Bodhisattva Sen

References

See Also

agconst, partlintest

Examples

```r
# test against a constant function
n=100
x=1:n/n
mu=4-5*(x-1/2)^2
y=mu+rnorm(n)
amat=matrix(0,nrow=n-1,ncol=n)
for(i in 1:(n-1)){amat[i,i]=1; amat[i,i+1]=-1}
ans=doubconetest(y, amat)
ans$pval
plot(x,y,col="slategray");lines(x,mu,lty=3,col=3)
lines(x,ans$p1,col=2)
lines(x,ans$p2,col=4)
```
Tests linear versus partial linear model

Description

Given a response y, a predictor x, and covariates z, the model \(y = m(x) + b'z + e \) is considered, where e is a mean-zero random error. There are three options for the null hypothesis: \(h0=0 \) tests \(m(x) \) is constant; \(h0=1 \) tests \(m(x) \) is linear, and \(h0=2 \) tests \(m(x) \) is quadratic. The (respective) alternatives are: \(m(x) \) is increasing or decreasing, \(m(x) \) is convex or concave, and \(m(x) \) is hyper-convex or hyper-concave (referring to the third derivative of m).

Usage

```
partlintest(x, y, zmat, h0 = 0, nsim = 1000)
```

Arguments

- **x**: a vector of length n; this is the main predictor of interest
- **y**: a vector of length n; this is the response
- **zmat**: an n by k matrix of covariates, should be full column rank.
- **h0**: An indicator of what null hypothesis is to be tested: \(h0=0 \) for the null hypothesis: \(m(x) \) is constant; \(h0=1 \) tests \(m(x) \) is linear, and \(h0=2 \) tests \(m(x) \) is quadratic.
- **nsim**: The number of simulations used in creating the null distribution of the test statistic. The default is nsim=1000, if a more precise p-value is desired, make nsim larger.

Details

For the constant null hypothesis, the alternative fit is either the monotone increasing or monotone decreasing fit – whichever minimizes the sum of squared residuals. For the linear null hypothesis, the alternative fit is either convex or concave, and for the quadratic null hypothesis, the alternative fit is constrained so that the third derivative is either positive or negative over the range of x-values.

Value

- **pval**: The p-value for the test
- **\(p0 \)**: The null hypothesis fit
- **\(p1 \)**: The "positive" fit
- **\(p2 \)**: The "negative" fit

Author(s)

Mary C Meyer and Bodhisattva Sen
References

TBA

See Also

agconst, doubconetest

Examples

data(derby)
n=length(derby$speed)
zmat=matrix(0,nrow=n,ncol=2); zvec=1:n*0+1
zmat[derby$cond=="good",1]=1; zvec[derby$cond=="good"]=2
zmat[derby$cond=="fast",2]=1; zvec[derby$cond=="fast"]=3
ans=partlintest(derby$year,derby$speed,zmat,h0=2)
ans$pval
par(mar=c(4,4,1,1)); par(mfrow=c(1,2))
plot(derby$year,derby$speed,col=zvec,pch=zvec)
points(derby$year,ans$p0,pch=20,col=zvec)
title("Null fit")
legend(1980,51.6,pch=3:1,col=3:1,legend=c("fast","good","slow"))
plot(derby$year,derby$speed,col=zvec,pch=zvec)
points(derby$year,ans$p1,pch=20,col=zvec)
title("Alternative fit")
data(adhd)
n=length(adhd$sex)
zmat=matrix(0,nrow=n,ncol=2)
zmat[adhd$sex==1,1]=1
zmat[adhd$ethn<5,2]=1
ans=partlintest(adhd$hypb,adhd$fcn,zmat,h0=1)
ans$pval
cols=c("pink3","lightskyblue3")
plot(adhd$hypb,adhd$fcn,col=cols[zmat[,1]+1],pch=zmat[,2]+1,
xlab="Hyperactive behavior level",ylab="Social and Academic Function Score")
cols2=c(2,4)
points(adhd$hypb,ans$p1,col=cols2[zmat[,1]+1],pch=20)
Index

*Topic cone projection
doobconetest, 5

*Topic datasets
dhd, 2
derby, 5

*Topic hypothesis test
doobconetest, 5

*Topic model test
tagconst, 3

*Topic monotone regression
doobconetest, 5

*Topic multiple isotonic regression
tagconst, 3

*Topic package
 DoubleCone-package, 2

*Topic partial linear test
 partlintest, 7

*Topic semiparametric
 partlintest, 7

adhd, 2
tagconst, 3, 6, 8

derby, 5
doobconetest, 4, 5, 8
DoubleCone (DoubleCone-package), 2
DoubleCone-package, 2
partlintest, 4, 6, 7