Package ‘EMT’

February 19, 2015

Type Package

Title Exact Multinomial Test: Goodness-of-Fit Test for Discrete Multivariate data

Version 1.1

Date 2013-01-27

Author Uwe Menzel

Maintainer Uwe Menzel <uwemenzel@gmail.com>

Description The package provides functions to carry out a Goodness-of-fit test for discrete multivariate data. It is tested if a given observation is likely to have occurred under the assumption of an ab-initio model. A p-value can be calculated using different distance measures between observed and expected frequencies. A Monte Carlo method is provided to make the package capable of solving high-dimensional problems.

License GPL

LazyLoad yes

Repository CRAN

Date/Publication 2013-01-29 10:28:59

NeedsCompilation no

R topics documented:

EMT-package ... 2
EMT-internal .. 2
multinomial.test .. 3
plotMultinom .. 6

Index 8
EMT-package

Exact Multinomial Test: Goodness-of-Fit Test for Discrete Multivariate data

Description

The package provides functions to carry out a Goodness-of-fit test for discrete multivariate data. It is tested if a given observation is likely to have occurred under the assumption of an ab-initio model. A p-value can be calculated using different distance measures between observed and expected frequencies. A Monte Carlo method is provided to make the package capable of solving high-dimensional problems. The main user functions are `multinomial.test` and `plotMultinom`.

Details

```markdown
table

<table>
<thead>
<tr>
<th>Package</th>
<th>CCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>0.1</td>
</tr>
<tr>
<td>Date</td>
<td>2009-12-14</td>
</tr>
<tr>
<td>License</td>
<td>GPL</td>
</tr>
</tbody>
</table>
```

Author(s)

Uwe Menzel

Maintainer: Uwe Menzel <uwemenzel@gmail.com>

EMT-internal

Internal functions for the EMT package

Description

Internal functions for the EMT package

Usage

```r
ExactMultinomialTest(observed, prob, size, groups, numEvents)
ExactMultinomialTestChisquare(observed, prob, size, groups, numEvents)
MonteCarloMultinomialTest(observed, prob, size, groups, numEvents, ntrial, atOnce)
MonteCarloMultinomialTestChisquare(observed, prob, size, groups, numEvents, ntrial, atOnce)
chisqStat(observed, expected)
findVectors(groups, size)
```
Arguments

- **observed**: vector describing the observation: contains the *observed numbers* of items in each category.
- **prob**: vector describing the model: contains the *hypothesised probabilities* corresponding to each category.
- **expected**: vector containing the expected numbers of items in each category under the assumption that the model is valid.
- **size**: sample size, sum of the components of the vector `observed`.
- **groups**: number of categories in the experiment.
- **numEvents**: number of possible outcomes of the experiment.
- **ntrial**: number of simulated samples in the Monte Carlo approach.
- **atOnce**: a parameter of more technical nature. Determines how much memory is used for big arrays.

Details

These functions are not intended to be called by the user.

Description

This function runs a Goodness-of-fit test for discrete multivariate data. It is tested if a given observation is likely to have occurred under the assumption of an ab-initio model. A p-value can be calculated using different distance measures between observed and expected frequencies. A Monte Carlo method is provided to make the function capable of solving high-dimensional problems.

Usage

```
multinomial.test(observed, prob, useChisq = FALSE, MonteCarlo = FALSE, ntrial = 100000, atOnce = 10000)
```

Arguments

- **observed**: vector describing the observation: contains the *observed numbers* of items in each category.
- **prob**: vector describing the model: contains the *hypothesised probabilities* corresponding to each category.
- **useChisq**: if TRUE, Pearson’s chisquare is used as a distance measure between observed and expected frequencies.
- **MonteCarlo**: if TRUE, the Monte Carlo approach is used.
- **ntrial**: number of simulated samples in the Monte Carlo approach.
- **atOnce**: a parameter of more technical nature. Determines how much memory is used for big arrays.
Details

The Exact Multinomial Test is a Goodness-of-fit test for discrete multivariate data. It is tested if a given observation is likely to have occurred under the assumption of an ab-initio model. In the experimental setup belonging to the test, \(n \) items fall into \(k \) categories with certain probabilities (sample size \(n \) with \(k \) categories). The observation, described by the vector \(\text{observed} \), indicates how many items have been observed in each category. The model, described by the vector \(\text{prob} \), assigns to each category the hypothetical probability that an item falls into it. Now, if the observation is unlikely to have occurred under the assumption of the model, it is advisable to regard the model as not valid. The p-value estimates how likely the observation is, given the model. In particular, low p-values suggest that the model is not valid. The default approach used by \textit{multinomial.test} obtains the p-values by calculating the exact probabilities of all possible outcomes given \(n \) and \(k \), using the multinomial probability distribution function \texttt{dmultinom} provided by R. Then, by default, the p-value is obtained by summing the probabilities of all outcomes which are less likely than the observed outcome (or equally likely as the observed outcome), i.e. by summing all \(p(i) < p(\text{observed}) \) (distance measure based on probabilities). Alternatively, the p-value can be obtained by summing the probabilities of all outcomes connected with a chisquare no smaller than the chisquare connected with the actual observation (distance measure based on chisquare). The latter is triggered by setting \texttt{usechisq = TRUE}. Having a sample of size \(n \) in an experiment with \(k \) categories, the number of distinct possible outcomes is the binomial coefficient \(\binom{n+k-1}{k-1} \). This number grows rapidly with increasing parameters \(n \) and \(k \). If the parameters grow too big, numerical calculation might fail because of time or memory limitations. In this case, usage of the Monte Carlo approach provided by \textit{multinomial.test} is suggested. The Monte Carlo approach, activated by setting \texttt{MonteCarlo = TRUE}, simulates withdrawal of \(n_{\text{trial}} \) samples of size \(n \) from the hypothetical distribution specified by the vector \(\text{prob} \). The default value for \(n_{\text{trial}} \) is 100000 but might be incremented for big \(n \) and \(k \). The advantage of the Monte Carlo approach is that memory requirements and running time are essentially determined by \(n_{\text{trial}} \) but not by \(n \) or \(k \). By default, the p-value is then obtained by summing the relative frequencies of occurrence of unusual outcomes, i.e. of outcomes occurring less frequently than the observed one (or equally frequent as the observed one). Alternatively, as above, Pearson’s chisquare can be used as a distance measure by setting \texttt{useChisq = TRUE}. The parameter \texttt{atOnce} is of more technical nature, with a default value of 1000000. This value should be decremented for computers with low memory to avoid overflow, and can be incremented for large-CPU computers to speed up calculations. The parameter is only effective for Monte Carlo calculations.

Value

- \textbf{id} \hspace{1cm} textual description of the method used.
- \textbf{size} \hspace{1cm} sample size \(n \), equals the sum of the components of the vector \(\text{observed} \).
- \textbf{groups} \hspace{1cm} number of categories \(k \) in the experiment, equals the number of components of the vector \(\text{observed} \).
- \textbf{stat} \hspace{1cm} textual description of the distance measure used.
- \textbf{allProb} \hspace{1cm} vector containing the probabilities (rel. frequencies for the Monte Carlo approach) of all possible outcomes (might be huge for big \(n \) and \(k \)).
- \textbf{ntrial} \hspace{1cm} number of trials if the Monte Carlo approach was used, \texttt{NULL} otherwise.
- \textbf{p.value} \hspace{1cm} the calculated p-value rounded to four significant digits.
multinomial.test

Note

For two categories \(k = 2 \), the test is called Exact Binomial Test.

Author(s)

Uwe Menzel <uwemenzel@gmail.com>

References

See Also

The Multinomial Distribution: dmultinom

Examples

```r
## Load the EMT package:
library(EMT)

## Input data for a three-dimensional case:
observed <- c(5, 2, 1)  # observed data: 5 items in category one, 2 items in category two, 1 item in category three
prob <- c(0.25, 0.5, 0.25)  # model: hypothetical probability that an item falls into category one, two, or three

## Calculate p-value using default options:
out <- multinomial.test(observed, prob)
# p.value = 0.0767

## Plot the probabilities for each event:
plotMultinom(out)

## Calculate p-value for the same input using Pearson's chisquare as a distance measure:
out <- multinomial.test(observed, prob, useChisq = TRUE)
# p.value = 0.0596; not the same!

## Test the hypothesis that all sides of a dice pop up with the same probability (a 6-dimensional problem):
pdice = 1/6
prob <- c(pdice, pdice, pdice, pdice, pdice, pdice)  # the model, determined by the hypothetical probabilities
observed <- c(4, 5, 2, 7, 0, 1)  # the observation consisting of 19 throws (= sample size)
out <- multinomial.test(observed, prob)
# p.value = 0.0357; better get another dice, this one seems to be biased
plotMultinom(out, showmax = 10000)
```
the same problem using a Monte Carlo approach:
we have about 40.000 outcomes and choose at least 400000 trials (probably to be increased):
out <- multinom.test(observed, prob, MonteCarlo = TRUE, ntrial = 400000)
p.value = 0.0343 ; takes a few minutes on a laptop with 2 GB memory, 1.5 GHz speed
plotMultinom(out, showmax = 5000)

plotMultinom

Plot the Probability distribution for the Exact Multinomial Test

Description

This function takes the results of multinom.test as input and plots the calculated probability distribution.

Usage

plotMultinom(listmultinom, showmax = 50)

Arguments

 listmultinom a list created by running the function multinom.test.
 showmax maximum number of bars to show in the plot (to avoid long tails).

Details

The function multinom.test creates an output list that is used as input in plotMultinom to depict some results. If the default approach was used, the figure shows the exact probabilities of all possible outcomes of the experiment. If the Monte Carlo approach was used, the relative frequencies of the outcomes are shown as occurred during the simulated withdrawals. The probabilities/relative frequencies are shown in descending order from the left to the right.

Value

The first argument (listMultinom) is returned without modification.

Note

For better visibility, the parameter showmax excludes very long right tails from the plot. However, the default value of showmax should be incremented to get a significant plot if the number of possible outcomes is big.

Author(s)

Uwe Menzel <uwemenzel@gmail.com>
See Also

The Multinomial Distribution: multinomial.test

Examples

```r
## Load the EMT package:
library(EMT)

## input and calculation of p-values:
observed <- c(5, 2, 1)
prob <- c(0.25, 0.5, 0.25)
out <- multinomial.test(observed, prob)

## Plot the probability distribution:
plotMultinom(out)
plotMultinom(out, showmax = 30) # suppress part of the tail in the plot
```
Index

*Topic **htest**
 EMT-package, 2
 multinomial.test, 3
 plotMultinom, 6

*Topic **multivariate**
 EMT-package, 2
 multinomial.test, 3
 plotMultinom, 6

chisqStat (EMT-internal), 2

dmultinom, 4, 5

EMT (EMT-package), 2
EMT-internal, 2
EMT-package, 2
ExactMultinomialTest (EMT-internal), 2
ExactMultinomialTestChisquare (EMT-internal), 2

findVectors (EMT-internal), 2

MonteCarloMultinomialTest (EMT-internal), 2
MonteCarloMultinomialTestChisquare (EMT-internal), 2
multinomial.test, 3, 7

plotMultinom, 6