Package ‘EstHer’

Type Package

Title Estimation of Heritability in High Dimensional Sparse Linear Mixed Models using Variable Selection

Version 1.0

Date 2015-07-16

Author Anna Bonnet and Celine Levy-Leduc

Maintainer Anna Bonnet <anna.bonnet@agroparistech.fr>

Description Our method is a variable selection method to select active components in sparse linear mixed models in order to estimate the heritability. The selection allows us to reduce the size of the data sets which improves the accuracy of the estimations. Our package also provides a confidence interval for the estimated heritability.

License GPL-2

Depends R (>= 2.10), glmnet, parallel, MASS

Imports Rcpp (>= 0.11.5)

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

Repository CRAN

Date/Publication 2015-07-23 16:32:59

R topics documented:

EstHer-package ... 2
bootstrap_corr ... 2
estim_herit ... 3
prod_cpp ... 4
Selvar ... 4
W ... 6
X ... 6
Y ... 7

Index 8
EstHer-package

Estimation of Heritability in High Dimensional Sparse Linear Mixed Models using Variable Selection

Description

Our method is a variable selection method which can be used to select active components in sparse linear mixed models in order to estimate the heritability. The selection allows us to reduce the size of the data sets which improves the accuracy of the estimations. Our package also provides a confidence interval for the estimated heritability.

Details

Package: EstHer
Type: Package
Version: 1.0
Date: 2015-07-16
License: GPL-2

~ An overview of how to use the package, including the most important functions ~

Author(s)

Anna Bonnet and Celine Levy-Leduc
Maintainer: Anna Bonnet <anna.bonnet@agroparistech.fr> ~ The author and/or maintainer of the package ~

References

bootstrap_corr

Computation of a confidence interval for the estimated heritability.

Description

This function is based on a non parametric bootstrap technique to compute a confidence interval for the heritability. The strength of this method is that it can deal with correlated observations.

Usage

bootstrap_corr(Y,Z,K,eta_hat,sigma2_hat,level,nb_cores)
estim_herit

Estimation of heritability in linear mixed models.

Arguments

- **Y** Vector of observations.
- **Z** Matrix of genetic informations.
- **K** number of subsamples of Y used to apply our bootstrap technique.
- **eta_hat** Estimator of the heritability.
- **sigma2_hat** Estimator of the variance involving the variances of the two random parts of the model.
- **level** Percentage of values which will be removed from the estimated heritabilities to build a confidence interval.
- **nb_cores** Number of cores of the computer. It is used for parallelizing the computations.

Value

- **CI_up** Upper bound of the confidence interval for the estimated heritability
- **CI_low** Lower bound of the confidence interval for the estimated heritability

Author(s)

Anna Bonnet and Celine Levy-Leduc

Description

The function computes heritability when the random effects follow either a Gaussian distribution or a mixture of a Dirac and a Gaussian distribution.

Usage

```
estim_herit(Y, Z)
```

Arguments

- **Y** vector of observations of size n
- **Z** matrix with n rows and N columns

Value

- **heritability** Heritability

Author(s)

Anna Bonnet
References

The method is developped in the paper "Heritability estimation in high dimensional linear mixed models" (A.Bonnet,vE.Gassiat, C.Levy-Leduc,2014)

prod_cpp Additional function

Description

This function is used for efficiently computing ZZ'.

Usage

prod_cpp(Z)

Arguments

Z A large matrix having n rows and N columns.

Value

The product ZZ'.

Author(s)

Anna Bonnet et Celine Levy-Leduc

Selvar Estimation of heritability in high dimensional sparse linear mixed models using variable selection.

Description

This function selects active components in sparse linear mixed models in order to estimate heritability. The selection allows us to reduce the size of the data sets which improves the accuracy of the estimations. Our package also provides a confidence interval for the estimated heritability.

Usage

Selvar(Y,Z,X,thresh_vect(nb_boot=80, nb_repli=50, CI_level=0.95, nb_cores=1))
Arguments

Y Vector of observations of size n.
Z Matrix with genetic information of size n x N.
X Matrix of fixed effects of size n x d.
thresh_vect Vector of thresholds in the stability selection step: the higher the threshold, the
 smallest the set of selected components.
nb_boot Number of subsamples of Y to apply our bootstrap technique. The value by
t default is 80.
nb_repli Number of replications in the stability selection. The value by default is 50.
CI_level Level of the confidence interval for the estimation of the heritability. The value
 by default is 0.95.
nb_cores Number of cores of the computer. It is used for parallelizing the computations.
 The value by default is 1.

Value

heritability Estimation of the heritability
CI_up Upper bound of the confidence interval for the estimated heritability
CI_low Lower bound of the confidence interval for the estimated heritability
selec_ind Indexes of the columns of the selected components

Author(s)

Anna Bonnet and Celine Levy-Leduc

Examples

library(EstHer)
data(Y)
data(W)
data(X)
Z=scale(W,center=TRUE,scale=TRUE)
res=Selvar(Y,Z,X,thresh_vect=c(0.7,0.8,0.9),nb_boot=80,nb_repli=50,CI_level=0.95,nb_cores=1)
res$heritability
res$CI_low
res$CI_up
Description
Matrix of size n x N with n=200 and N=5000

Usage
```
data("W")
```

Format
The format is: num [1:200, 1:5000] 0 0 1 0 0 0 0 1 0 ...

Examples
```
data(W)
## maybe str(W) ; plot(W) ...
```

X
Matrix of fixed effects

Description
Matrix of fixed effects of size n x d where n=200 and d=2

Usage
```
data("X")
```

Format
The format is: num [1:200, 1:2] 1 1 1 1 1 1 1 1 1 ...

Examples
```
data(X)
## maybe str(X) ; plot(X) ...
```
Description

Vector of observations of size n=200.

Usage

data("Y")

Format

The format is: num [1:200, 1] 6.196076 7.225162 9.662264 3.134030 5.404111 ...

Examples

data(Y)
maybe str(Y) ; plot(Y) ...
Index

*Topic **Heritability estimation**
 EstHer-package, 2
*Topic **datasets**
 \(W, 6\)
 \(X, 6\)
 \(Y, 7\)
*Topic **heritability**
 Selvar, 4
*Topic **linear mixed models**
 EstHer-package, 2
 Selvar, 4
*Topic **sparsity**
 EstHer-package, 2
*Topic **variable selection**
 EstHer-package, 2
 Selvar, 4

bootstrap_corr, 2
EstHer (EstHer-package), 2
EstHer-package, 2
estim_herit, 3

prod_cpp, 4
Selvar, 4

\(W, 6\)
\(X, 6\)
\(Y, 7\)