Package ‘ExactCIdiff’

February 19, 2015

Version 1.3
Date 2013-05-05
Title Inductive Confidence Intervals for the difference between two proportions
Author Guogen Shan <guogen.shan@unlv.edu>, Weizhen Wang <weizhen.wang@wright.edu>
Maintainer Guogen Shan <guogen.shan@unlv.edu>
Depends R (>= 1.8.0)
Description This is a package for exact Confidence Intervals for the difference between two independent or dependent proportions.
License GPL (>= 2)

URL http://www.r-project.org,
 http://www.wright.edu/~weizhen.wang/wanghome.htm,
 http://faculty.unlv.edu/gshan/

NeedsCompilation no
Repository CRAN
Date/Publication 2013-07-04 18:54:21

R topics documented:

 Exact one-sided and two-sided 1-alpha confidence interval for two dependent proportions 2
 Exact one-sided and two-sided 1-alpha confidence interval two independent proportions . 3
 Exact one-sided and two-sided 1-alpha confidence interval, main functions 5

Index 6
Description

Three exact confidence intervals (two-sided, smallest lower one-sided and smallest upper one-sided) of level 1-alpha are constructed for \(p_1 - p_2 \), the difference of two dependent proportions.

A random vector \((n_{11}, n_{12}, n_{21}, n_{22})\) follows multinomial\((N, p_{11}, p_{12}, p_{21}, p_{22})\) where \(N = n_{11} + n_{12} + n_{21} + n_{22}, \)

and \(p_1 - p_2 = (p_{11} + p_{12}) - (p_{11} + p_{21}) = p_{12} - p_{21}. \)

Let \(t = n_{11} + n_{22}. \) Intervals \([L(n_{12}, t, n_{21}), 1], [-1, U(n_{12}, t, n_{21})]\) and \([L(n_{12}, t, n_{21}), U(n_{12}, t, n_{21})]\) are of interest.

This package can be used to calculate these intervals using an inductive method developed by Wang (2012).

Usage

```r
PairedCI(n12, t, n21, conf.level, CItype, precision, grid.one, grid.two)
```

Arguments

- `n12`: the number of subjects in the paired study who have success from the treatment and failure from the control.
- `t`: the number of subjects in the paired study who have the same results from the treatment and control, \(t = n_{11} + n_{22} \).
- `n21`: the number of subjects in the paired study who have success from the control and failure from the treatment.
- `conf.level`: confidence level, 95% is the default value.
- `CItype`: \{"Lower", "Upper", "Two.sided"\}, lower one-sided confidence interval \([L, 1]\), upper one-sided confidence interval \([-1, U]\), two-sided confidence interval \([L, U]\), "Two.sided" is the default value.
- `precision`: Precision of the confidence interval, default is 0.00001 rounded to 5 decimals.
- `grid.one`: two-step grid search algorithm is used. `grid.one` is the number of points for searching the global maximum of the tail probability in the first step. 30 is the default value.
- `grid.two`: `grid.two` is the number of points for searching the global maximum of the tail probability in the second step. 20 is the default value.

Details

An inductive construction is carried out to obtain one-sided interval. At each step we rank sample point by its potential confidence interval and then select the one with the shortest interval. The difference of the two proportions is the parameter of interest. There is a nuisance parameter in the tail probability (Eq (8) in Wang 2012). The nuisance parameter is eliminated by the maximization originally proposed by Buehler (1957). A two-step grid search algorithm is applied to find the
maximum. The first step is to roughly identify a neighbor area of the global maximization of the tail probability, more points used more accurate results achieved. We recommend to use grid.one at least 30 to have accurate confidence intervals. The second step is to search for maximum within that smaller neighbor area, and grid.two should be at least 20. We find that this two-step grid search algorithm works much more accurate and efficient than the traditional one-step grid search algorithm. 1-alpha two-sided interval is equal to the intersection of two 1-alpha/2 one-sided intervals.

Details and more examples see: http://www.wright.edu/~weizhen.wang/software/ExactTwoProp/examples.pdf

Value

PairedCI gives the estimate of \((p1-p2)\), which is \((n12/-n21)/(n12+t+n21)\), and the exact confidence interval.

Author(s)

Guogen Shan<Guogen.Shan@unlv.edu>, and Weizhen Wang<weizhen.wang@wright.edu>

References

Examples

```r
# Lower one-sided confidence intervals in Table 1 of Wang 2012
PairedCI(3,1,0,conf.level=0.95,Ctype="Lower")
PairedCI(2,0,2,conf.level=0.95,Ctype="Lower")

# Upper one-sided confidence intervals for the difference of two dependent proportions
PairedCI(3,1,0,Ctype="Upper",conf.level=0.95)
PairedCI(1,1,2,Ctype="Upper",conf.level=0.9,grid.one=40,grid.two=25)

# Two-sided 90% confidence intervals
PairedCI(3,1,0,Ctype='Two.sided',conf.level=0.9)
```
Description

Three exact confidence intervals (two-sided, smallest lower one-sided and smallest upper one-sided) of level 1-alpha are constructed for p1-p2, the difference of two independent proportions.

X follows Binomial(n1,p1), Y follows Binomial(n2,p2) and X and Y are independent. Intervals [L(X,Y),1], [-1,U(X,Y)] and [L(X,Y),U(X,Y)] are of interest.

This package can be used to calculate these intervals using an inductive method developed by Wang (2010).

Usage

\texttt{BinomCI(n1,n2,x,y,conf.level,CItype,precision,grid.one,grid.two)}

Arguments

\begin{itemize}
 \item \texttt{n1} \hspace{1cm} the number of trials in the first group in the parallel two-arm study
 \item \texttt{n2} \hspace{1cm} the number of trials in the second group in the parallel two-arm study
 \item \texttt{x} \hspace{1cm} the number of successes from the first group in the parallel two-arm study
 \item \texttt{y} \hspace{1cm} the number of successes from the second group in the parallel two-arm study
 \item \texttt{conf.level} \hspace{1cm} Confidence level, 95\% is the default value.
 \item \texttt{CItype} \hspace{1cm} c("Lower","Upper","Two.sided"), lower one-sided confidence interval [L,1], upper one-sided confidence interval [-1,U], two-sided confidence interval [L,U], "Two.sided" is the default value
 \item \texttt{precision} \hspace{1cm} Precision of the confidence interval, default is 0.00001 rounded to 5 decimals
 \item \texttt{grid.one} \hspace{1cm} two-step grid search algorithm is used. \texttt{grid.one} is the number of points for searching the global maximum of the tail probability in the first step. 30 is the default value
 \item \texttt{grid.two} \hspace{1cm} \texttt{grid.two} is the number of points for searching the global maximum of the tail probability in the second step. 20 is the default value
\end{itemize}

Details

An inductive construction is carried out to obtain one-sided interval. At each step we rank sample point by its potential confidence interval and then select the one with the shortest interval. The difference of the two proportions is the parameter of interest. There is a nuisance parameter in the tail probability (Eq (6) in Wang 2010). The nuisance parameter is eliminated by the maximization originally proposed by Buehler (1957). A two-step grid search algorithm is applied to find the maximum. The first step is to roughly identify a neighbor area of the global maximization of the tail probability, more points used more accurate results achieved. We recommend to use \texttt{grid.one} at least 30 to have accurate confidence intervals. The second step is to search for maximum within that smaller neighbor area, and \texttt{grid.two} should be at least 20. We find that this two-step grid search algorithm works much more accurate and efficient than the traditional one-step grid search algorithm. 1-alpha two-sided interval is equal to the intersection of two 1-alpha/2 one-sided intervals.

Details and more examples see: http://www.wright.edu/~weizhen.wang/software/ExactTwoProp/examples.pdf
Value

BinomCI gives the estimate of (p_1-p_2), which is $x/n_1-y/n_2$, and the exact confidence interval.

Author(s)

Guogen Shan<Guogen.Shan@unlv.edu>, and Weizhen Wang<weizhen.wang@wright.edu>

References

Examples

```
#lower one-sided confidence interval with n1=4,n2=1,x=2,and y=0 in Wang 2010
BinomCI(4,1,2,0,Ctype="Lower")

#Upper one-sided confidence interval with n1=4,n2=1,x=2,and y=0.
BinomCI(4,1,2,0,Ctype="Upper")

#Two-sided 90% confidence intervals
BinomCI(5,5,4,2,conf.level=0.9,Ctype='Two.sided')
```

Description

The function BinomialCI and PairedCI are the called functions for the main function BinomCI and PairedCI, respectively.
Index

BinomCI (Exact one-sided and two-sided 1-alpha confidence interval two independent proportions), 3
BinomialCIOne (Exact one-sided and two-sided 1-alpha confidence interval, main functions), 5

Exact one-sided and two-sided 1-alpha confidence interval for two dependent proportions, 2
Exact one-sided and two-sided 1-alpha confidence interval two independent proportions, 3
Exact one-sided and two-sided 1-alpha confidence interval, main functions, 5

PairedCI (Exact one-sided and two-sided 1-alpha confidence interval for two dependent proportions), 2
PairedCIOne (Exact one-sided and two-sided 1-alpha confidence interval, main functions), 5