Package ‘ExomeDepth’

May 15, 2016

Type Package
Title Calls Copy Number Variants from Targeted Sequence Data
Version 1.1.10
Date 2016-05-13
Depends R (>= 3.3.0)
Imports Biostrings, IRanges, Rsamtools, GenomicRanges (>= 1.23.0),
aod, VGAM (>= 0.8.4), methods, GenomicAlignments
Suggests knitr
VignetteBuilder knitr
Author Vincent Plagnol
Maintainer Vincent Plagnol <v.plagnol@ucl.ac.uk>
Description Calls copy number variants (CNVs) from targeted sequence data, typically exome sequencing experiments designed to identify the genetic basis of Mendelian disorders.
License GPL-3
NeedsCompilation yes
Repository CRAN
Date/Publication 2016-05-15 09:48:08

R topics documented:

ExomeDepth-package .. 2
AnnotateExtra .. 3
AnnotateExtra-methods ... 4
CallCNVs ... 4
Conrad.hg19.common.CNVs .. 5
count.everted.reads .. 6
countBam.everted ... 7
countBamInGRanges.exomeDepth 8
ExomeCount ... 9
ExomeDepth-class ... 10
exons.hg19 .. 11
Description

ExomeDepth uses read count data from exome or targeted sequencing experiments to call copy number variants.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>ExomeDepth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>0.1</td>
</tr>
<tr>
<td>Date</td>
<td>2012-02-01</td>
</tr>
<tr>
<td>License</td>
<td>What license is it under?</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>

The two key functions are: select.reference.set CallCNVs

Author(s)

Vincent Plagnol Maintainer: Vincent Plagnol <v.plagnol@ucl.ac.uk>

References

A robust model for read count data in exome sequencing experiments and implications for copy number variant calling, Bioinformatics, In Press
AnnotateExtra

Add annotations to an ExomeDepth object

Description

Takes annotations in the GRanges format and adds these to the CNV calls in the ExomeDepth object.

Usage

AnnotateExtra(x, reference.annotation, min.overlap = 0.5, column.name = "overlap")

Arguments

x An ExomeDepth object.

reference.annotation The list of reference annotations in GRanges format.

min.overlap The minimum fraction of the CNV call that is covered by the reference call to declare that there is a significant overlap.

column.name The name of the column used to store the overlap (in the slot CNV.calls).

Details

A recent version of GenomicRanges (> 1.8.10) is required. Otherwise the function will return a warning and not update the ExomeDepth object.

Value

A ExomeDepth object with the relevant annotations added to the CNVcalls slot.

Author(s)

Vincent Plagnol

References

A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Plagnol et al, Bioinformatics
AnnotateExtra-methods Additional annotations for ExomeDepth objects

Description
Takes a GRanges object, typically a list of reference calls, and add these annotations to a ExomeDepth object.

Methods

signature(x = "ExomeDepth")

CallCNVs Call CNV data from an ExomeDepth object.

Description
The function must be called on an ExomeDepth object. Likelihood data must have been precomputed which should have been done by default when the ExomeDepth object was created.

Usage
CallCNVs(x, chromosome, start, end, name, transition probability = 0.0001, expected.CNV.length = 50000)

Arguments

x An ExomeDepth object
chromosome Chromosome information for each exon (factor).
start Start (physical position) of each exon (numeric, must have the same length as the chromosome argument).
end End (physical position) of each exome (numeric, must have the same length as the chromosome argument).
name Name of each exon (character or factor).
transition.probability Transition probability of the hidden Markov Chain from the normal copy number state to either a deletion or a duplication. The default (0.0001) expect approximately 20 CNVs genome-wide.
expected.CNV.length The expectation for the length of a CNV. This value factors into the Viterbi algorithm that is used to compute the transition from one state to the next, which depends on the distance between exons.
Conrad.hg19.common.CNVs

Details

This function fits a hidden Markov model to the read depth data with three hidden states (normal, deletion, duplication).

Value

The same ExomeDepth object provided as input but with the slot CNVcalls containing a data frame with the output of the calling.

Author(s)

Vincent Plagnol

Description

Positions of common CNV calls (detected in a panel of 42 sample) from the Conrad et al paper (Nature 2010). This is build hg19 of the human genome.

Usage

data(Conrad.hg19)

Format

A data frame with common CNV calls.

Source

Conrad et al, Origins and functional impact of copy number variation in the human genome, Nature 2010
count.everted.reads
Count the number of everted reads for a set of BAM files.

Description
This is the ExomeDepth high level function that takes a GenomicRanges object, a list of indexed/sorted BAM files, and compute the number of everted reads in each of the defined bins.

Usage
```r
count.everted.reads(bed.frame = NULL, bed.file = NULL,
bam.files, index.files = bam.files,
min.mapq = 20, include.chr = FALSE)
```

Arguments
- `bed.frame` data.frame containing the definition of the regions. The first three columns must be chromosome, start, end.
- `bed.file` character file name. Target BED file with the definition of the regions. This file will only be used if no bed.frame argument is provided. No headers are assumed so remove them if they exist. Either a bed.file or a bed.frame must be provided for this function to run.
- `bam.files` character, list of BAM files to extract read count data from.
- `index.files` Optional character argument with the list of indexes for the BAM files, without the `.bai` suffix. If the indexes are simply obtained by adding .bai to the BAM files, this argument does not need to be specified.
- `min.mapq` numeric, minimum mapping quality to include a read.
- `include.chr` logical, if set to TRUE, this function will remove the string `chr` from the chromosome names of the target BED file.

Details
Everted reads are characteristic of the presence of duplications in a BAM files. This routine will parse a BAM files and the suggested use is to provide relatively large bins (for example gene based, and ExomeDepth has a genes.hg19 object that is appropriate for this) to flag the genes that contain such reads suggestive of a duplication. A manual check of the data using IGV is recommended to confirm that these reads are all located in the same DNA region, which would confirm the presence of a copy number variant.

Value
A data frame that contains the region and the number of identified reads in each bin.

Note
This function calls a lower level function called XXX that works on each single BAM file.
countBam.everted

Author(s)
Vincent Plagnol

References

See Also
getBAMCounts

Examples
```r
## Not run: test <- count.everted.reads (bed.frame = genes.hg19,
  bed.file = NULL,
  bam.files = bam.files,
  min.mapq = 20,
  include.chr = FALSE)

## End(Not run)
```

Description
This is a utility function that is called by the higher level count.everted.reads. It processes each BAM file individually to generate the count data.

Usage
```
countBam.everted(bam.file, granges, index = bam.file, min.mapq = 1)
```

Arguments
- `bam.file` BAM file that needs to be parsed
- `granges` Genomic Ranges object with the location of the bins for which we want to count the everted reads.
- `index` Index for the BAM files.
- `min.mapq` Minimum mapping quality to include reads.

Details
Most users will not use this function, and it will only be called by the higher level count.everted.reads. Nevertheless it may be useful on its own in some cases.
Value

A list with the number of reads in each bin.

Author(s)

Vincent Plagnol

See Also

count.everted.reads

countBamInGRanges

Compute read count data from BAM files.

Description

Parses a BAM file and count reads that are located within a target region defined by a GenomicRanges object.

Usage

countBamInGRanges(x, y, z, w)

Arguments

- `bam.file`: BAM file to be parsed
- `index`: Index of the BAM file, without the `.bai` suffix.
- `granges`: Genomic ranges object defining the bins
- `min.mapq`: Minimum read mapping quality (Phred scaled).
- `read.width`: For single end reads, an estimate of the fragment size. For paired reads, the fragment size can be directly computed from the paired alignment and this value is ignored.

Details

Largely derived from its equivalent function in the exomeCopy package.

Value

A GRanges object with count data.
Description

An example dataset of 4 exome samples, chromosome 1 only.

Usage

data(ExomeCount)

Format

A data frame with 25592 observations on the following 9 variables.

- chromosome: a character vector with chromosome names (only chromosome 1 in that case)
- start: Start of the exons
- end: End of the exons
- exons: a character vector with the exon names.
- camfid.032KA_sorted_unique.bam: a numeric vector of read count data.
- camfid.033ahw_sorted_unique.bam: a numeric vector of read count data.
- camfid.035if_sorted_unique.bam: a numeric vector of read count data.
- camfid.034pc_sorted_unique.bam: a numeric vector of read count data.
- GC: a numeric vector with the GC content.

Source

Dataset generated in collaboration with Sergey Nejentsev, University of Cambridge.

References

Paper currently under review.
Description

A class to hold the read count data that is used by ExomeDepth to call CNVs.

Objects from the Class

Objects can be created by calls of the form new("ExomeDepth", data = NULL, test, reference, formula = 'cbind(test, reference) ~ 1', subset.for.speed = NULL). data is optional and is only used if the formula argument refers to covariates (in which case these covariates must be included in the data frame). test and reference refer to the read count data for the test and reference samples. Creating a ExomeDepth object will automatically fit the beta-binomial model (using routines from the aod package) and compute the likelihood for the three copy number states (normal, deletion and duplication).

Slots

test: numeric, read count data for the test sample.
reference: numeric, read count data for the reference sample (usually a combination of samples).
formula: character, a character string describing the linear model linking test and reference. Typically this would be cbind(test, reference) ~ 1.
expected: The expected read count data for the test sample assuming normal copy number.
phi: The over-dispersion parameter of the binomial model. See the aod package for more details.
likelihood: A matrix of likelihood values, one column per copy number (deletion, normal, duplication).
annotations: A data.frame specifying the chromosome, start and end for the bins used in the read count computation.
CNV.calls: A data.frame describing the output of the CNV calling procedure.

Methods

CallCNVs signature(x = "ExomeDepth", transition.probability = "numeric", chromosome = "factor", start = "numeric", end = "numeric", name = "character"): Uses the pre-computed likelihood values and fits a hidden Markov Chain to the data to generated merged CNV calls.

AddAnnotations signature(object = "ExomeDepth", name = "character", chromosome = "factor", start = "numeric", end = "numeric"): This method is unlikely to be directly used but it can include the exon names, chromosome, start, end into the ExomeDepth object.

TestCNV signature(x = "ExomeDepth", chromosome = "factor", start = "numeric", end = "numeric", type = "character"): type must be either deletion of duplication. This function takes an ExomeDepth object and returns the Bayes factor in favor of a CNV at the specified location.

Author(s)

Vincent Plagnol
References

Paper recently submitted

See Also

select.reference.set CallCNVs aod

Examples

showClass("ExomeDepth")

```r
data(exons.hg19)
```

Description

Exon position extracted from the ensembl database version 71.

Usage

data(exons.hg19)

Format

A data frame with 192,379 observations on the following 4 variables.

- **chromosome** a factor with levels `1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3 4 5 6 7 8 9`
- **start** a numeric vector
- **end** a numeric vector
- **name** A character vector of names for the exon(s)

Source

Ensemble database version 71.
exons.hg19.X Positions of exons on build hg19 of the human genome and on chromosome X

Description
Exon position extracted from the ensembl database version 61 and on chromosome X only.

Usage
data(exons.hg19)

Format
A data frame of exons with the following 4 variables.
chromosome a factor with levels X Y
start a numeric vector
end a numeric vector
name A character vector of names for the exons

Source
Ensemble database version 71.

genes.hg19 Positions of genes on build hg19 of the human genome

Description
Exon position extracted from the ensembl database version 71.

Usage
data(genes.hg19)

Format
A data frame with 18,033 observations on the following 4 variables.
chromosome a factor with levels 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3 4 5 6 7 8 9
start a numeric vector
end a numeric vector
name A character vector of names for the gene(s)

Source
Ensemble database version 71.
get.power.betabinom

Estimate the power to compare two beta-binomial distributions.

Description

A power study useful in the context of ExomeDepth.

Usage

```r
get.power.betabinom(size, my.phi, my.p, my.alt.p, theory = FALSE, frequentist = FALSE, limit = FALSE)
```

Arguments

- `size` Number of samples from the beta-binomial distribution.
- `my.phi` Over-dispersion parameter.
- `my.p` Expected p under the null.
- `my.alt.p` Expected p under the alternative.
- `theory` logical, should a theoretical limit (large sample size) be used? Defaults to FALSE.
- `frequentist` logical, should a frequentist version be used? Defaults to FALSE.
- `limit` logical, should another large sample size limit be used? Defaults to FALSE.

Value

An expected Bayes factor.

Author(s)

Vincent Plagnol
getBamCounts

Get count data for multiple exomes

Description

Essentially a wrapper for the accessory function countBamInGRanges which only considers a single BAM file at a time.

Usage

getBamCounts(bed.frame = NULL,
bed.file = NULL,
bam.files,
index.files = bam.files,
min.mapq = 20,
read.width = 300,
include.chr = FALSE,
referenceFasta = NULL)

Arguments

- **bed.frame**: data.frame containing the definition of the regions. The first three columns must be chromosome, start, end.
- **bed.file**: character file name. Target BED file with the definition of the regions. This file will only be used if no bed.frame argument is provided. No headers are assumed so remove them if they exist. Either a bed.file or a bed.frame must be provided for this function to run.
- **bam.files**: character, list of BAM files to extract read count data from.
- **index.files**: Optional character argument with the list of indexes for the BAM files, without the `.bai` suffix. If the indexes are simply obtained by adding `.bai` to the BAM files, this argument does not need to be specified.
- **min.mapq**: numeric, minimum mapping quality to include a read.
- **read.width**: numeric, maximum distance between the side of the target region and the middle of the paired read to include the paired read into that region.
- **include.chr**: logical, if set to TRUE, this function will remove the string `chr` from the chromosome names of the target BED file.
- **referenceFasta**: character, file name for the reference genome in fasta format. If available, GC content will be computed and added to the output.

Details

This function is largely a copy of a similar one available in the exomeCopy package.

Value

A GenomicRanges object that stores the read count data for the BAM files listed as argument.
Author(s)

Vincent Plagnol

References

exomeCopy R package.

Examples

```r
## Not run:
load(exons.hg19)

my.counts <- getBamCounts(bed.frame = exonpos,
                        bam.files = my.bam,
                        referenceFasta = 'human_g1k_v37.fasta')

## End(Not run)
```

initialize-methods

~~ Methods for Function initialize ~~

Description

~~ Methods for function initialize ~~

Methods

signature(.Object = "ExomeDepth")

plot-methods

Plotting function for ExomeDepth objects

Description

Plot function for the ExomeDepth class

Arguments

- `x`: ExomeDepth object
- `sequence`: character, Name of the sequence/chromosome of the region to plot (for example "chr5" would be typical)
- `xlim`: numeric of size 2, start and end position of the region to plot
- `ylim`: numeric of size 2, range for the y-axis
qbetabinom

count.threshold numeric, minimum number of reads in the reference set to display a point in the plot
with.gene logical, Should the gene information (obtained from the annotation data) be plotted under the read depth plot?
col character, Colour for the line displaying the read depth ratio for each exon

Methods
signature(x = "ExomeDepth", sequence, xlim, ylim = NULL, count.threshold = 10, ylab = 'Observed by expected read ratio', xlab = 'GL type = GL pch = GKGL withNgene = falseL col = GredGLNNNI

qbetabinom Quantile for betabin function

Description
Quantile function for the betabinomal distribution using the p/phi parameterisation.

Usage
qbetabinom(p, size, phi, prob)

Arguments
p Point of the distribution from which one is looking for the quantile
size Sample size of the random variable
phi Over-dispersion parameter
prob Mean probability of the binomial distribution

Details
Filling a gap in the VGAM package.

Value
A real number corresponding to the quantile p.

Author(s)
Vincent Plagnol

See Also
VGAM R package.
qbetabinom.ab

Quantile function for the beta-binomial distribution

Description

Standard qbetabinomial.ab function which is missing from the VGAM package.

Usage

qbetabinom.ab(p, size, shape1, shape2)

Arguments

- p: Mean value of the beta-binomial distribution.
- size: Size of the beta-binomial.
- shape1: First parameter of the beta distribution for p.

Value

A quantile of the distribution.

See Also

VGAM package.

select.reference.set

Combine multiple samples to optimize the reference set in order to maximise the power to detect CNV.

Description

The power to detect copy number variant (CNVs) from targeted sequence data can be maximised if the most appropriate set of sequences is used as reference. This function is designed to combine multiple reference exomes in order to build the best reference set.

Usage

select.reference.set(test.counts, reference.counts, bin.length = NULL, n.bins.reduced = 0, data = NULL, formula = 'cbind(test, reference) ~ 1', phi.bins = 1)
Arguments

test.counts: Read count data for the test sample (numeric, typically a vector of integer values).

reference.counts: Matrix of read count data for a set of additional samples that can be used as a comparison point for the test sample.

bin.length: Length (in bp) of each of the regions (often exons, but not necessarily) that were used to compute the read count data (i.e. what is provided in the argument test.counts of this function). If not provided all bins are assumed to have equal length.

n.bins.reduced: This optimization function can be slow when applied genome-wide. For the purpose of building the reference sample, it is not necessary to use the full data. The number provided by this argument specifies the number of regions (typically exons) that will be sub-sampled (using a grid) to optimise the reference set. I find that 10,000 is largely sufficient for exome data.

data: Defaults to NULL: A data frame of covariates that can be included in the model.

formula: Defaults to 'cbind(test, reference) ~ 1'. This formula will be used to fit the read count data. Covariates present in the data frame (for example GC content) can be included in the right hand side of the equation. If covariates are provided they must be provided as arguments (in the data frame "data").

phi.bins: Numeric integer (typically 1, 2, or 3) that specifies the number of windows where the over-dispersion parameter phi can vary. It defaults to 1, i.e. a single over-dispersion parameter, independently of read depth.

Value

reference.choice: character: list of samples selected as optimum reference set.

summary.stats: A data frame summarizing the output of this computation, including expected Bayes factor, Rs statistic (see reference for explanation) for multiple choices of reference set.

Author(s)

Vincent Plagnol

References

Key paper currently under review.
Methods for Function show

Description

Methods for function show

Methods

signature(object = "ExomeDepth")

somatic.CNV.call Call somatic variants between healthy and disease tissues.

Description

Use read depth data from targeted sequencing experiments to call CNV between a tumor and matched healthy tissue.

Usage

somatic.CNV.call(normal, tumor, prop.tumor = 1, chromosome, start, end, names)

Arguments

normal Read count data (numeric vector) for the normal tissue.
tumor Read count data (numeric vector) for the tumor.
prop.tumor Proportion of the tumour DNA in the tumour sample (between 0 and 1, and less than 1 if there is normal tissue in the tumor sample).
chromosome Chromosome information for the bins.
start Start position of each bin (typically in bp).
end End position of each bin.
names Names for each bin (typically exon names but any way to track the bins will do).

Details

Experimental function at this stage.

Value

An ExomeDepth object with CNV calls.

Note

Absolutely experimental, not the main function from the package.
Author(s)
V. Plagnol

References
A robust model for read count data in exome sequencing experiments and implications for copy
number variant calling. Bioinformatics, In Press

TestCNV

Computes the Bayes Factor in favour of a CNV defined by position and type.

Description

Test what evidence supports the presence of a CNV in an ExomeDepth object.

Usage

`TestCNV(x, chromosome, start, end, type)`

Arguments

- `x`: ExomeDepth object containing the likelihood information.
- `chromosome`: Chromosome data (factor)
- `start`: Start of the putative CNV
- `end`: End of the putative CNV
- `type`: character, Should be either 'deletion' or 'duplication'

Value

A Bayes factor assessing the evidence in favour of the CNV.

viterbi.hmm

Computes the Viterbi path for a hidden markov model

Description

Estimates the most likely path for a hidden Markov Chain using the maximum likelihood Viterbi
algorithm.

Usage

`viterbi.hmm(transitions, loglikelihood, positions, expected.CNV.length)`
Arguments

- **transitions**: Transition matrix
- **loglikelihood**: numeric matrix containing the loglikelihood of the data under the possible states
- **positions**: Positions of the exons
- **expected.CNV.length**: Expected length of CNV calls, which has an impact on the transition matrix between CNV states.

Details

Standard forward-backward Viterbi algorithm using a precomputed matrix of likelihoods.

Value

- **comp1**: Description of `comp1`
- **comp2**: Description of `comp2`

Author(s)

Vincent Plagnol
Index

*Topic \textasciitilde textasciitilde textasciitilde other possible keyword(s) \textasciitilde textasciitilde textasciitilde
initialize-methods, 15
show-methods, 19
*Topic classes
ExomeDepth-class, 10
*Topic datasets
Conrad.hg19.common.CNVs, 5
ExomeCount, 9
exons.hg19, 11
exons.hg19.X, 12
genes.hg19, 12
*Topic methods
AnnotateExtra-methods, 4
initialize-methods, 15
plot-methods, 15
show-methods, 19
*Topic package
ExomeDepth-package, 2
AddAnnotations,ExomeDepth-method (ExomeDepth-class), 10
AnnotateExtra, 3
AnnotateExtra,ExomeDepth-method (AnnotateExtra-methods), 4
AnnotateExtra-methods, 4
CallCNVs, 4
CallCNVs,ExomeDepth-method (ExomeDepth-class), 10
Conrad.hg19.common.CNVs, 5
count.everted.reads, 6
countBam.everted, 7
countBamInGRanges.exomeDepth, 8
ExomeCount, 9
ExomeDepth (ExomeDepth-package), 2
ExomeDepth-class, 10
ExomeDepth-package, 2
exons.hg19, 11
exons.hg19.X, 12
genes.hg19, 12
get.power.betabinom, 13
getBamCounts, 14
initialize,ExomeDepth-method (initialize-methods), 15
initialize-methods, 15
plot,ANY-method (plot-methods), 15
plot,ExomeDepth,ANY-method (plot-methods), 15
plot,ExomeDepth-method (plot-methods), 15
plot-methods, 15
plot.ExomeDepth (plot-methods), 15
qbetabinom, 16
qbetabinom.ab, 17
select.reference.set, 17
show,ExomeDepth-method (show-methods), 19
show-methods, 19
somatic.CNV.call, 19
TestCNV, 20
TestCNV,ExomeDepth-method (ExomeDepth-class), 10
viterbi.hmm, 20