Package ‘FindAllRoots’
February 19, 2015

Type Package
Title Find all root(s) of the equation and Find root(s) of the equation by dichotomy
Version 1.0
Date 2012-07-13
Author Bingpei Wu & Jiajun He & Sijie Chen & Yangyang Liu
Maintainer Bingpei Wu<jianpeizhon@126.com>
Description Find all root(s) of the equation, including complex roots; Find root(s) of the equation by dichotomy. Besides, in dichotomy, more than one interval can be given at a time.
License GPL (>= 2)
Repository CRAN
Date/Publication 2012-07-23 05:40:17
NeedsCompilation no

R topics documented:

FindAllRoots-package .. 1
allroots ... 2
dichotomy ... 3
f ... 5

Index

FindAllRoots-package Find all root(s) of the equation and Find root(s) of the equation by dichotomy

Description

Find all root(s) of the equation, including complex roots; Find root(s) of the equation by dichotomy

Details
allroots

Package: FindAllRoots
Type: Package
Version: 1.0
Date: 2012-07-13
License: GPL (>= 2)

Author(s)
Bingpei Wu & Jiajun He & Sijie Chen & Yangyang Liu
Maintainer: Bingpei Wu<jianpeizhon@126.com>

References
a passage about finding all roots, whose author is Dequan Shang
a passage about finding root(s) of equation, whose author is Yong Ling

Examples
a=c(2,-1,-13,-1,-5)
b=c(4:0)
x1=c(1:10)
x2=c(2:11)
allroots(a,b)
dichotomy(x1,x2,a,b)

allroots
Find all roots of the equation, including complex roots.

Description
find all roots of the equation, including complex roots

Usage
allroots(a, b)

Arguments
a vector of coefficients of the equation
b vector of exponention of the equation, One one corresponding with a mentioned above

Details
a should be one one corresponding with b, or there might lead to wrong results
dichotomy

Value

all roots of the equation, including complex roots. Besides, the inaccuracy error of the roots is also given.

Author(s)

Bingpei Wu

References

a passage about finding all roots, whose author is Dequan Shang

Examples

```r
##-- Should be DIRECTLY executable !! ----
##--  Define data, use random,
##-- or do help(data=index) for the standard data sets.

a=c(2,-1,-13,-1,-5)
b=c(4:0)
allroots(a,b)

## The function is currently defined as
## function (a, b)
##{
##   a1 = a
##   b1 = b
##   n = length(b) - 1
##   a = a/a[1]
##   b = matrix(0, ncol = n, nrow = n)
##   for (i in 1:(n - 1)) b[i, i + 1] = 1
##   for (i in 1:n) b[n, i] = -a[n + 2 - i]
##   c = eigen(b)
##   print(c$values)
##   print("inaccuracy error")
##   print(f(c$values, a1, b1))
## }
```

dichotomy

Find root(s) of the equation by dichotomy

Description

Find root(s) of the equation by dichotomy. Besides, in dichotomy, more than one interval can be given at a time.

Usage

dichotomy(x1, x2, a, b, pert = 10^(-5), n = 1000, s = 0.1)
Arguments

- \(x_1 \): vector of left end point of interval(s)
- \(x_2 \): vector of right end point of interval(s)
- \(a \): vector of coefficients of the equation
- \(b \): vector of exponention of the equation, one corresponding with a mentioned above
- \(\text{pert} \): precision of root(s)
- \(n \): the algorithm runs \(n \) times at most in one interval and NA will be returned
- \(s \): assuming \(x_0 \) is midpoint of interval \([a,b]\). If \(f(x_0) \cdot f(a) > 0 \) and \(f(x_0) \cdot f(b) > 0 \), \(b \) will minus \(s \).

Details

If you want to find root(s) of the equation in \([a_1,b_1],[a_2,b_2],\ldots,[a_n,b_n]\), \(x_1 \) should be \(c(a_1,a_2,\ldots,a_n) \) and \(x_2 \) should be \(c(b_1,b_2,\ldots,b_n) \). If there is no root in \([a_1,b_1]\), but there is a root in \([\min(a_1,b_1-n\cdot s),\max(a_1,b_1-n\cdot s)]\), the algorithm can still find the root. So the returned root may not in \([a_n,b_n]\) that you give but must be in \([\min(a_1,b_1-n\cdot s),\max(a_1,b_1-n\cdot s)]\).

Value

the root(s) of the equation that the difference between returned root(s) and the real root(s) of the equation is less than 10e-6

Author(s)

Bingpei Wu

References

a passage about finding root(s) of equation, whose author is Yong Ling

Examples

```r
### Should be DIRECTLY executable !! ----
### => Define data, use random,  
### or do help(data=index) for the standard data sets.
# a=c(2,-1,-13,-1,-5)  
# b=c(4:0)  
# x1=c(1:10)  
# x2=c(2:11)  
# dichotomy(x1,x2,a,b)  

# The function is currently defined as  
function (x1, x2, a, b, pert = 10^(-5), n = 1000, s = 0.1) {  
ex0 = rep(NA, length(x1))  
for (i in 1:length(x1)) {  
  if (f(x1[i], a, b) == 0) {  
    ex0[i] = (a[i] + b[i]) / 2  
  }  
  else {  
    f0 = f(x0[i], a, b)  
    x0[i] = x0[i] + pert  
    while (abs(f0 * f(x0[i], a, b)) > 10^(-6)) {  
      x0[i] = x0[i] + pert  
    }  
  }  
}  
return(ex0)  
}```
```r
x0[i] = x1[i]
if (f(x2[i], a, b) == 0)
x0[i] = x2[i]
if (f(x[i], a, b) != 0 & f(x2[i], a, b) != 0) {
 x0[i] = (x1[i] + x2[i])/2
 k = 1
 while ((abs(f(x0[i], a, b)) >= pert) & (k < n)) {
 if (f(x0[i], a, b) == 0)
 break
 if (f(x1[i], a, b) * f(x0[i], a, b) < 0)
 x2[i] = x0[i]
 if (f(x2[i], a, b) * f(x0[i], a, b) < 0)
 x1[i] = x0[i]
 if (x1[i] != x0[i] & x2[i] != x0[i])
 x2[i] = x2[i] - s
 x0[i] = (x1[i] + x2[i])/2
 k = k + 1
 if (k == 1000)
 x0[i] = NA
 }
}
x0
```

---

**f**

*function returning one function value, or a vector of function values.*

---

**Description**

function returning one function value, or a vector of function values.

**Usage**

```r
f(x, a, b)
```

**Arguments**

- **x**: either one value or a vector containing the x-value(s)
- **a**: vector of coefficients of the equation
- **b**: vector of exponention of the equation, one corresponding with a mentioned above

**Details**

the function f that estimates the function values will be called as f(x, ...). If x is a vector, then the first argument passed to f should also be a vector.
Value

the value(s) of the function equation, one function value, or a vector of function values.

Author(s)

Bingpei Wu

Examples

```r
Should be DIRECTLY executable !! ----
Define data, use random,
or do help(data=index) for the standard data sets.
a = c(2, -1, -13, -1, -5)
b = c(4:0)
x = c(1:3)
f(x, a, b)

The function is currently defined as
function (x, a, b)
{
z = 0
for (i in 1:length(b)) z = z + a[i] * x^(b[i])
z
}
```
Index

*Topic package
  FindAllRoots-package, 1

allroots, 2

dichotomy, 3

f, 5
FindAllRoots(FindAllRoots-package), 1
FindAllRoots-package, 1