Package ‘FisherEM’

February 19, 2015

Type Package
Title The Fisher-EM algorithm
Version 1.4
Date 2013-06-21
Author Charles Bouveyron and Camille Brunet
Maintainer Camille Brunet <camille.brunet@gmail.com>
Depends MASS,elasticnet
Description The FisherEM package provides an efficient algorithm for the unsupervised classification of high-dimensional data. This FisherEM algorithm models and clusters the data in a discriminative and low-dimensional latent subspace. It also provides a low-dimensional representation of the clustered data. A sparse version of Fisher-EM algorithm is also provided.
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2013-06-28 18:44:30

R topics documented:

FisherEM-package .. 2
fem .. 2
fem.ari ... 5
plot.fem ... 5
sfem ... 6
summary.fem ... 8

Index 10
Description

The FisherEM package provides an efficient algorithm for the unsupervised classification of high-dimensional data. This FisherEM algorithm models and clusters the data in a discriminative and low-dimensional latent subspace. It also provides a low-dimensional representation of the clustered data.

Details

Package: FisherEM
Type: Package
Version: 1.2
Date: 2012-07-09
License: GPL-2
LazyLoad: yes

Author(s)

Charles Bouveyron and Camille Brunet
Maintainer: Camille Brunet <camille.brunet@gmail.com>

References

Description

The Fisher-EM algorithm is a subspace clustering method for high-dimensional data. It is based on the Gaussian Mixture Model and on the idea that the data lives in a common and low dimensional subspace. An EM-like algorithm estimates both the discriminative subspace and the parameters of the mixture model.
Usage

fem(Y,K=2:6,model='AkjB',method='reg',crit='icl',maxit=50,eps=1e-6,init='kmeans',
nstart=25,Tinit=c(),kernel='',disp=F)

Arguments

Y
The data matrix. Categorical variables and missing values are not allowed.

K
An integer vector specifying the numbers of mixture components (clusters) among
which the model selection criterion will choose the most appropriate number of
groups. Default is 2:6.

model
A vector of discriminative latent mixture (DLM) models to fit. There are 12
"AkBk", "AjBk", "AjB", "ABk", "AB". The option "all" executes the Fisher-
EM algorithm on the 12 DLM models and select the best model according to
the maximum value obtained by model selection criterion.

method
The method use for the fitting of the projection matrix associated to the discrim-
inative subspace. Three methods are available: 'svd', 'reg' and 'gs'. The 'reg'
method is the default.

crit
The model selection criterion to use for selecting the most appropriate model for
the data. There are 3 possibilities: "bic", "aic" or "icl". Default is "icl".

maxit
The maximum number of iterations before the stop of the Fisher-EM algorithm.

eps
The threshold value for the likelihood differences to stop the Fisher-EM algo-
rithm.

init
The initialization method for the Fisher-EM algorithm. There are 4 options:
"random" for a randomized initialization, "kmeans" for an initialization by the
kmeans algorithm, "hclust" for hierarchical clustering initialization or "user"
for a specific initialization through the parameter "Tinit". Default is "kmeans".
Notice that for "kmeans" and "random", several initializations are asked and the
initialization associated with the highest likelihood is kept (see "nstart").

nstart
The number of restart if the initialization is "kmeans" or "random". In such a
case, the initialization associated with the highest likelihood is kept.

Tinit
A n x K matrix which contains posterior probabilities for initializing the algo-
rithm (each line corresponds to an individual).

kernel
It enables to deal with the n < p problem. By default, no kernel (""") is used. But
the user has the choice between 3 options for the kernel: "linear", "sigmoid" or
"rbf".

disp
If true, some messages are printed during the clustering. Default is false.

Value

A list is returned:

K
The number of groups.

c1s
the group membership of each individual estimated by the Fisher-EM algorithm.

P
the posterior probabilities of each individual for each group.
U The loading matrix which determines the orientation of the discriminative subspace.
mean The estimated mean in the subspace.
my The estimated mean in the observation space.
prop The estimated mixture proportion.
D The covariance matrices in the subspace.
aic The value of the Akaike information criterion.
bic The value of the Bayesian information criterion.
icl The value of the integrated completed likelihood criterion.
loglik The log-likelihood values computed at each iteration of the FEM algorithm.
ll the log-likelihood value obtained at the last iteration of the FEM algorithm.
method The method used.
call The call of the function.
plot Some information to pass to the plot.fem function.
crit The model selection criterion used.

Author(s)
Charles Bouveyron and Camille Brunet

References

See Also
sfem, plot.fem, fem.ari, summary.fem

Examples

data(iris)
res = fem(iris[, -5], K=2:5, model='AkB')
summary(res)
plot(res)
fem.ari(res, as.numeric(iris[, 5]))
fem.ari

Adjusted Rand index

Description

The function computes the adjusted Rand index (ARI) which allows to compare two clustering partitions.

Usage

```r
fem.ari(x, y)
```

Arguments

- `x`: A 'fem' object containing the first partition to compare.
- `y`: The second partition to compare (as vector).

Value

- `ari`: The value of the ARI.

See Also

- fem, sfem, plot.fem, summary.fem

Examples

```r
data(iris)
res <- fem(iris[, -5], K=2:5, model='AkB')
summary(res)
plot(res)
fem.ari(res, as.numeric(iris[, 5]))
```

The plot function for 'fem' objects.

Description

This function plots different information about 'fem' objects such as model selection, log-likelihood evolution and visualization of the clustered data into the discriminative subspace fitted by the Fisher-EM algorithm.

Usage

```r
## S3 method for class 'fem'
plot(x, frame=0, crit=c(), ...)
```
Arguments

x The fem object.
frame 0: all plots; 1: selection of the number of groups; 2: log-likelihood; projection of the data into the discriminative subspace.
crit The model selection criterion to display. Default is the criterion used in the 'fem' function ('icl' by default).
... Additional options to pass to the plot function.

See Also

fem, sfem, fem.ari, summary.fem

Examples

data(iris)
res = fem(iris[,,-5],K=2:6,model='AkB')
summary(res)
plot(res)
fem.ari(res,as.numeric(iris[,5]))

sfem The sparse Fisher-EM algorithm

Description

The sparse Fisher-EM algorithm is a sparse version of the Fisher-EM algorithm. The sparsity is introduced within the F step which estimates the discriminative subspace. The sparsity on U is obtained by adding a l1 penalty to the optimization problem of the F step.

Usage

sfem(Y,K=2:6,model='AkjB',method='reg',crit='icl',maxit=50,eps=1e-6,init='kmeans', nstart=25,Tinit=c(),kernel='',disp=F,l1=0.1,l2=0,nbit=2)

Arguments

Y The data matrix. Categorical variables and missing values are not allowed.
K An integer vector specifying the numbers of mixture components (clusters) among which the model selection criterion will choose the most appropriate number of groups. Default is 2:6.
model A vector of discriminative latent mixture (DLM) models to fit. There are 12 different models: "DkBk", "DkB", "DBk", "DB", "AkjBk", "AkjB", "AkBk", "AkBk", "AjBk", "AjB", "ABk", "AB". The option "all" executes the Fisher-EM algorithm on the 12 DLM models and select the best model according to the maximum value obtained by model selection criterion.
method

The method used for fitting the projection matrix associated to the discriminative subspace. Three methods are available: 'svd', 'reg' and 'gs'. The 'reg' method is the default.

crit

The model selection criterion to use for selecting the most appropriate model for the data. There are 3 possibilities: "bic", "aic" or "icl". Default is "icl".

maxit

The maximum number of iterations before the stop of the Fisher-EM algorithm.

eps

The threshold value for the likelihood differences to stop the Fisher-EM algorithm.

init

The initialization method for the Fisher-EM algorithm. There are 4 options: "random" for a randomized initialization, "kmeans" for an initialization by the kmeans algorithm, "hclust" for hierarchical clustering initialization or "user" for a specific initialization through the parameter "Tinit". Default is "kmeans". Notice that for "kmeans" and "random", several initializations are asked and the initialization associated with the highest likelihood is kept (see "nstart").

nstart

The number of restart if the initialization is "kmeans" or "random". In such a case, the initialization associated with the highest likelihood is kept.

Tinit

A n x K matrix which contains posterior probabilities for initializing the algorithm (each line corresponds to an individual).

kernel

It enables to deal with the n < p problem. By default, no kernel (""") is used. But the user has the choice between 3 options for the kernel: "linear", "sigmoid" or "rbf".

disp

If true, some messages are printed during the clustering. Default is false.

l1

The l1 penalty value (lasso) which has to be in [0,1]. A small value (close to 0) leads to a very sparse loading matrix whereas a value equals to 1 corresponds to no sparsity. Default is 0.1.

l2

The l2 penalty value (elasticnet). Defaults is 0 (no regularization).

nbit

The number of iterations for the lasso procedure. Defaults is 2.

Value

A list is returned:

K

The number of groups.

cls

the group membership of each individual estimated by the Fisher-EM algorithm.
P

the posterior probabilities of each individual for each group.
U

The loading matrix which determines the orientation of the discriminative subspace.
mean

The estimated mean in the subspace.
my

The estimated mean in the observation space.
prop

The estimated mixture proportion.
D

The covariance matrices in the subspace.
aic

The value of the Akaike information criterion.
bic

The value of the Bayesian information criterion.
icl | The value of the integrated completed likelihood criterion.
loglik | The log-likelihood values computed at each iteration of the FEM algorithm.
ll | the log-likelihood value obtained at the last iteration of the FEM algorithm.
method | The method used.
call | The call of the function.
plot | Some information to pass to the plot.fem function.
crit | The model selection criterion used.
l1 | The l1 value.
l2 | The l2 value.

Author(s)
Charles Bouveyron and Camille Brunet

References

See Also
fem, plot.fem, fem.ari, summary.fem

Examples
```r
data(iris)
res = sfem(iris[,,-5],K=3,model='AkB',l1=seq(.01,.3,.05))
summary(res)
plot(res)
fem.ari(res,as.numeric(iris[,5]))
```

summary.fem | The summary function for 'fem' objects.

Description
This function summarizes 'fem' objects. It in particular indicates which DLM model has been chosen and displays the loading matrix 'U' if the original dimension is smaller than 10.

Usage
```r
## S3 method for class 'fem'
summary(object,...)
```
Arguments

object The fem object.

Additional options to pass to the summary function.

See Also

fem, sfem, fem.ari, plot.fem

Examples

data(iris)
res = fem(iris[, -5], K=2:5, model='AkB')
summary(res)
plot(res)
fem.ari(res, as.numeric(iris[, 5]))
Index

fem, 2
fem.ari, 5
FisherEM (FisherEM-package), 2
FisherEM-package, 2
plot.fem, 5
sfem, 6
summary.fem, 8