Package ‘GAD’

February 19, 2015

Type Package
Title GAD: Analysis of variance from general principles
Version 1.1.1
Date 2011-02-21
Author Leonardo Sandrini-Neto & Mauricio G. Camargo
Maintainer Leonardo Sandrini-Neto <leonardosandrini@gmail.com>
Depends R (>= 2.7.0), stats, matrixStats, R.methodsS3
Description This package analyses complex ANOVA models with any combination of orthogonal/nested and fixed/random factors, as described by Underwood (1997). There are two restrictions: (i) data must be balanced; (ii) fixed nested factors are not allowed. Homogeneity of variances is checked using Cochran's C test and 'a posteriori' comparisons of means are done using Student-Newman-Keuls (SNK) procedure.
License GPL (>= 2.0)
Repository CRAN
Date/Publication 2012-10-29 08:57:06
NeedsCompilation no

R topics documented:

GAD-package .. 2
as.fixed .. 3
as.random .. 4
C.test .. 5
estimates .. 6
gad .. 7
is.fixed .. 9
is.random .. 9
rats .. 10
rohlf95 ... 11
snails ... 12
snk.test .. 12
Description

This package contains functions for the analysis of any complex ANOVA models with any combination of orthogonal/nested and fixed/random factors, based on general principles described by Underwood (1997).

Details

Package: GAD
Type: Package
Version: 1.0
Date: 2010-09-14
License: GPL (>= 2.0)

Author(s)

Leonardo Sandrini-Neto (<leonardosandrini@gmail.com>)
Mauricio G. Camargo (<camargo.ufpr@gmail.com>)

Maintainer: leonardosandrini@gmail.com

References

See Also

gad, estimates.C.test, snk.test

Examples

#Example 1
library(GAD)
data(rohlf95)
CG <- as.fixed(rohlf95$cages)
MQ <- as.random(rohlf95$mosquito)
model <- lm(wing ~ CG + CG*MQ, data = rohlf95)
gad(model)
##
#Example 2
data(rats)
names(rats)
TR <- as.fixed(rats$treat)
RA <- as.random(rats$rat)
LI <- as.random(rats$Liver)
model <- lm(glycog ~ TR + RA%in%TR + LI%in%RA%in%TR, data=rats)
gad(model)
##
#Example 3
data(snails)
O <- as.random(snails$origin)
S <- as.random(snails$shore)
B <- as.random(snails$boulder)
C <- as.random(snails$cage)
model <- lm(growth ~ O + S + O*S + B%in%S + O*(B%in%S) + C%in%(O*(B%in%S)),
data = snails)
gad(model)

as.fixed

Encodes a vector as a "fixed factor"

Description

Assigns a class "fixed" to a vector

Usage

`as.fixed(x)`

Arguments

- `x`
a vector of data

Details

The function works the same way as `as.factor`, but assigns an additional class informing that it is a fixed factor.
as.random

Value
as.factor returns an object of class "factor" and "fixed".

Author(s)
Leonardo Sandrini-Neto (<leonardosandrini@gmail.com>)

See Also
as.random

Examples
library(GAD)
data(rohlf95)
CG <- as.fixed(rohlf95$cages)
MQ <- as.random(rohlf95$mosquito)

Description
Assigns a class "random" to a vector

Usage
as.random(x)

Arguments
x a vector of data

Details
The function works the same way as as.factor, but assigns an additional class informing that it is a random factor.

Value
as.factor returns an object of class "factor" and "random".

Author(s)
Leonardo Sandrini-Neto (<leonardosandrini@gmail.com>)

See Also
as.fixed
Examples

```r
library(GAD)
data(rohlf95)
CG <- as.fixed(rohlf95$cages)
MQ <- as.random(rohlf95$mosquito)
```

Description

Performs a Cochran’s test of the null hypothesis that the largest variance in several sampled variances are the same.

Usage

```r
C.test(object)
```

Arguments

- `object`: An object of class `lm`, containing the specified design.

Details

The test statistic is a ratio that relates the largest variance to the sum of the sampled variances.

Value

A list of class `htest` containing the following components:

- `statistic`: Cochran’s C test statistic
- `p.value`: The p-value of the test
- `alternative`: A character string describing the alternative hypothesis
- `method`: The character string Cochran test of homogeneity of variances
- `data.name`: A character string giving the name of the `lm` object
- `estimate`: Sample estimates of variances

Author(s)

Leonardo Sandrini-Neto (<leonardosandrini@gmail.com>)

See Also

gad
estimates

Examples

 library(GAD)
 data(rohlf95)
 cg <- as.fixed(rohlf95$cages)
 mq <- as.random(rohlf95$mosquito)
 model <- lm(wing ~ cg + mq%in%cg, data = rohlf95)
 C.test(model)

estimates Estimates of an ANOVA design

Description

This function is used to construct the mean squares estimates of an ANOVA design, considering the complications imposed by nested/orthogonal and fixed/random factors.

Usage

 estimates(object)

Arguments

 object an object of class lm, containing the specified design with random and/or fixed factors

Details

Determines what each mean square estimates in an ANOVA design by a set of procedures originally described by Cornfield and Tukey (1956). This version is a modification proposed by Underwood (1997), which does not allow for the use of fixed nested factors. The steps involve the construction of a table of multipliers with a row for each source of variation and a column for each term in the model that is not an interaction. The mean square estimates for each source of variation is obtained by determining which components belong to each mean square and what is their magnitude. This enables the recognition of appropriate F-ratios.

Value

A list of length 3, containing the table of multipliers ($tm), the mean squares estimates ($mse) and the F-ratio versus ($f.versus) for the model.

Author(s)

Leonardo Sandrini-Neto (<leonardosandrini@gmail.com>)
References

See Also

gad, estimates

Examples

```r
# Example 1
library(GAD)
data(rohlf95)
CG <- as.fixed(rohlf95$cages)
MQ <- as.random(rohlf95$mosquito)
model_R <- lm(wing ~ CG + CG*MQ, data = rohlf95)
estimates(model_R)
##
##
# Example 2
data(snails)
O <- as.random(snails$origin)
S <- as.random(snails$shore)
B <- as.random(snails$boulder)
C <- as.random(snails$cage)
model_C <- lm(growth ~ O + S + O*S + B*in%S + O*(B*in%S) + C*in%(O*(B*in%S)),
             data = snails)
estimates(model_C)
```

gad
General ANOVA Design

Description

Fits a general ANOVA design with any combination of orthogonal/nested and fixed/random factors through function `estimates`

Usage

`gad(object)`

Arguments

- `object` an object of class `lm`, containing the specified design with random and/or fixed factors
Details

Function `gad` returns an analysis of variance table using the `estimates` function to identify the appropriate F-ratios and consequently p-values for any complex model of orthogonal or nested, fixed or random factors as described by Underwood(1997).

Value

An object of class "anova" inheriting from class "data.frame"

Author(s)

Leonardo Sandrini-Neto (<leonardosandrini@gmail.com>)

References

See Also

`estimates`

Examples

```r
#Example 1
library(GAD)
data(rohlf95)
CG <- as.fixed(rohlf95$cages)
MQ <- as.random(rohlf95$mosquito)
model <- lm(wing ~ CG + CG*MQ, data = rohlf95)
gad(model)

#Example 2
data(rats)
names(rats)
TR <- as.fixed(rats$treat)
RA <- as.random(rats$rat)
LI <- as.random(rats$Liver)
model <- lm(glycog ~ TR + RA*TR + LI*RA*TR, data=rats)
gad(model)

#Example 3
data(snails)
O <- as.random(snails$origin)
S <- as.random(snails$shore)
B <- as.random(snails$boulder)
C <- as.random(snails$cage)
model <- lm(growth ~ O + S + O*S + B*inS + O*(B*inS) + C*in%O*(B*inS),
data = snails)
gad(model)
```
is.fixed

Tests if a factor is fixed

Description

This function works the same way of is.factor.

Usage

is.fixed(x)

Arguments

x a vector of data

Value

is.fixed returns "TRUE" or "FALSE" depending on whether its argument is a fixed factor or not

Author(s)

Leonardo Sandrini-Neto (<leondosandrini@gmail.com>)

See Also

is.random

Examples

library(GAD)
data(rohlf95)
CG <- as.fixed(rohlf95$cages)
MQ <- as.random(rohlf95$mosquito)
is.fixed(CG)
is.random(MQ)

is.random

Tests if a factor is random

Description

This function works the same way of is.factor

Usage

is.random(x)
Arguments

x a vector of data

Value

is.fixed returns "TRUE" or "FALSE" depending on whether its argument is a fixed factor or not

Author(s)

Leonardo Sandrini-Neto (<leonardosandrini@gmail.com>)

See Also

is.fixed

Examples

library(GAD)
data(rohlf95)
CG <- as.fixed(rohlf95$cages)
MQ <- as.random(rohlf95$mosquito)
is.fixed(CG)
is.random(MQ)

rats

Dataset - Glycogen content of rat livers.

Description

Duplicate readings were made on each of three preparations of rat livers from each of two rats for three different treatments (Sokal & Rohlf, 1995).

Usage

data(rats)

Format

A data frame with 36 observations on the following 4 variables.

treat a fixed factor
rat a random factor nested in treat
liver sample size
glycog response variable
References

Examples

data(rats)

Description

Three different types of cage are tested on the growth of *Aedes intrudens*, a kind of mosquito pupae. In each one, four mosquitos are added and its wings measured twice. There are 24 observations (3 cages X 4 jars X 2 measures).

Usage

data(rohlf95)

Format

A data frame with 24 observations on the following 4 variables.

cages a fixed factor with levels cage1 cage2 cage3
mosquito a random factor with levels m1 m2 m3 m4 nested in cages
measure sample size
wing response variable

References

Examples

data(rohlf95)
Description
This design was extracted from Underwood (1997) but data are artificial. Snails were transplanted from origin to different shores. Several boulders were used on each shore. Cages with snail of each origin on each boulder were replicated. All factors (origin, shore, boulder and cage) are random.

Usage
data(snails)

Format
A data frame with 240 observations on the following 6 variables.

- **origin**: a random factor with levels O1 O2
- **shore**: a random factor with levels S1 S2 S3 S4 orthogonal to origin
- **boulder**: a random factor with levels B1 B2 B3 nested in shore
- **cage**: a random factor with levels C1 C2 nested in the combination of boulder and origin
- **replicate**: Sample size
- **growth**: response variable

References

Examples
data(snails)

snk.test

Student-Newman-Keuls (SNK) procedure

Description
This function performs a SNK post-hoc test of means on the factors of a chosen term of the model, comparing among levels of one factor within each level of other factor or combination of factors.

Usage

```r
snk.test(object, term, among = NULL, within = NULL)
```
Arguments

- **object**: An object of class `lm`, containing the specified design.
- **term**: Term of the model to be analysed. Use `estimates` to see the right form to inform it.
- **among**: Specifies the factor which levels will be compared among. Need to be specified if the term to be analysed involves more than one factor.
- **within**: Specifies the factor or combination of factors that will be compared within level among.

Details

SNK is a stepwise procedure for hypothesis testing. First the sample means are sorted, then the pairwise studentized range (q) is calculated by dividing the differences between means by the standard error, which is based upon the average variance of the two sample.

Value

A list containing the standard error, the degree of freedom and pairwise comparisons among levels of one factor within each level of other(s) factor(s).

Author(s)

Mauricio G. Camargo (<camargo.ufpr@gmail.com>)
Leonardo Sandrini-Neto (<leonardosandrini@gmail.com>)

References

See Also

gad, estimates

Examples

```r
library(GAD)
data(rohlf95)
CG <- as.fixed(rohlf95$cages)
MQ <- as.random(rohlf95$mosquito)
model <- lm(wing ~ CG + CG%in%MQ, data = rohlf95)
gad(model)  # Check estimates to see model structure
estimates(model)

# Example using snails dataset
snk.test(model, term = 'CG:MQ', among = 'MQ', within = 'CG')
```

snk.test

Arguments

- **object**: An object of class `lm`, containing the specified design.
- **term**: Term of the model to be analysed. Use `estimates` to see the right form to inform it.
- **among**: Specifies the factor which levels will be compared among. Need to be specified if the term to be analysed involves more than one factor.
- **within**: Specifies the factor or combination of factors that will be compared within level among.

Details

SNK is a stepwise procedure for hypothesis testing. First the sample means are sorted, then the pairwise studentized range (q) is calculated by dividing the differences between means by the standard error, which is based upon the average variance of the two sample.

Value

A list containing the standard error, the degree of freedom and pairwise comparisons among levels of one factor within each level of other(s) factor(s).

Author(s)

Mauricio G. Camargo (<camargo.ufpr@gmail.com>)
Leonardo Sandrini-Neto (<leonardosandrini@gmail.com>)

References

See Also

gad, estimates

Examples

```r
library(GAD)
data(rohlf95)
CG <- as.fixed(rohlf95$cages)
MQ <- as.random(rohlf95$mosquito)
model <- lm(wing ~ CG + CG%in%MQ, data = rohlf95)
gad(model)  # Check estimates to see model structure
estimates(model)

# Example using snails dataset
snk.test(model, term = 'CG:MQ', among = 'MQ', within = 'CG')
```
O <- as.random(snails$origin)
S <- as.random(snails$shore)
B <- as.random(snails$boulder)
C <- as.random(snails$cage)
model <- lm(growth ~ O + S + O*S + B%in%S + O*(B%in%S) + C%in%(O*(B%in%S)),
data = snails)
gad(model)
Check estimates to see model structure
estimates(model)
snk.test(model, term = 'O')
snk.test(model, term = 'O:S', among = 'S', within = 'O')
if term O:S:B were significant, we could try
snk.test(model, term = 'O:S:B', among = 'B', within = 'O:S')
Index

*Topic datasets
 rats, 10
 rohlf95, 11
 snails, 12

*Topic design
 asNfixed, 3
 asNrandom, 4
 estimates, 6
 gad, 7
 GAD-package, 2
 isNfixed, 9
 isNrandom, 9

*Topic htest
 cNtest, 5
 snkNtest, 12

*Topic package
 GAD-package, 2

asNfixed, 3, 4
asNrandom, 4, 4
C.test, 2, 5
estimates, 2, 6, 7, 8, 13
gad, 2, 5, 7, 7, 13
GAD-package, 2
isNfixed, 9, 10
isNrandom, 9, 9
rats, 10
rohlf95, 11
snails, 12
snkNtest, 2, 12