Package ‘GAMens’

March 2, 2016

Type Package

Title Applies GAMbag, GAMrsm and GAMens Ensemble Classifiers for Binary Classification

Version 1.2

Date 2016-02-26

Author Koen W. De Bock, Kristof Coussement and Dirk Van den Poel

Maintainer Koen W. De Bock <K.DeBock@ieseg.fr>

Depends R (>= 2.4.0), splines, gam, mlbench, caTools

Description Ensemble classifiers based upon generalized additive models for binary classification (De Bock et al. (2010) <DOI:10.1016/j.csda.2009.12.013>). The ensembles implement Bagging (Breiman (1996) <DOI:10.1023/A:1018054314350>), the Random Subspace Method (Ho (1998) <DOI:10.1109/34.709601>), or both, and use Hastie and Tibshirani’s (1990) generalized additive models (GAMs) as base classifiers. Once an ensemble classifier has been trained, it can be used for predictions on new data. A function for cross validation is also included.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2016-03-02 01:56:37

R topics documented:

- GAMens ... 2
- GAMens.cv ... 4
- predict.GAMens ... 6

Index 9
GAMens

Applies the GAMbag, GAMrsm or GAMens ensemble classifier to a data set

Description

Fits the GAMbag, GAMrsm or GAMens ensemble algorithms for binary classification using generalized additive models as base classifiers.

Usage

GAMens(formula, data, rsm_size=2, autoform=FALSE, iter=10, df=4, bagging=TRUE, rsm=TRUE, fusion="avgagg")

Arguments

- **formula**: a formula, as in the `gam` function. Smoothing splines are supported as nonparametric smoothing terms, and should be indicated by s. See the documentation of s in the `gam` package for its arguments. The GAMens function also provides the possibility for automatic formula specification. See 'details' for more information.
- **data**: a data frame in which to interpret the variables named in formula.
- **rsm_size**: an integer, the number of variables to use for random feature subsets used in the Random Subspace Method. Default is 2. If `rsm=FALSE`, the value of `rsm_size` is ignored.
- **autoform**: if `FALSE` (default), the model specification in `formula` is used. If `TRUE`, the function triggers automatic `formula` specification. See 'details' for more information.
- **iter**: an integer, the number of base classifiers (GAMs) in the ensemble. Defaults to `iter=10` base classifiers.
- **df**: an integer, the number of degrees of freedom (df) used for smoothing spline estimation. Its value is only used when `autoform = TRUE`. Defaults to `df=4`. Its value is ignored if a formula is specified and `autoform` is `FALSE`.
- **bagging**: enables Bagging if value is `TRUE` (default). If `FALSE`, Bagging is disabled. Either `bagging`, `rsm` or both should be `TRUE`.
- **rsm**: enables Random Subspace Method (RSM) if value is `TRUE` (default). If `FALSE`, RSM is disabled. Either `bagging`, `rsm` or both should be `TRUE`.
- **fusion**: specifies the fusion rule for the aggregation of member classifier outputs in the ensemble. Possible values are 'avgagg' (default), 'majvote', 'w.avgagg' or 'w.majvote'.
Details

The GAMens function applies the GAMbag, GAMrsm or GAMens ensemble classifiers (De Bock et al., 2010) to a data set. GAMens is the default with (bagging=TRUE and rsm=TRUE. For GAMbag, rsm should be specified as FALSE. For GAMrsm, bagging should be FALSE.

The GAMens function provides the possibility for automatic formula specification. In this case, dichotomous variables in data are included as linear terms, and other variables are assumed continuous, included as nonparametric terms, and estimated by means of smoothing splines. To enable automatic formula specification, use the generic formula [response variable name]~. in combination with autoform = TRUE. Note that in this case, all variables available in data are used in the model. If a formula other than [response variable name]~. is specified then the autoform option is automatically overridden. If autoform=FALSE and the generic formula [response variable name]~. is specified then the GAMs in the ensemble will not contain nonparametric terms (i.e., will only consist of linear terms).

Four alternative fusion rules for member classifier outputs can be specified. Possible values are 'avgagg' for average aggregation (default), 'majvote' for majority voting, 'w.avgagg' for weighted average aggregation, or 'w.majvote' for weighted majority voting. Weighted approaches are based on member classifier error rates.

Value

An object of class GAMens, which is a list with the following components:

- **GAMs**: the member GAMs in the ensemble.
- **formula**: the formula used to create the GAMens object.
- **iter**: the ensemble size.
- **df**: number of degrees of freedom (df) used for smoothing spline estimation.
- **rsm**: indicates whether the Random Subspace Method was used to create the GAMens object.
- **bagging**: indicates whether bagging was used to create the GAMens object.
- **rsm_size**: the number of variables used for random feature subsets.
- **fusion_method**: the fusion rule that was used to combine member classifier outputs in the ensemble.
- **probs**: the class membership probabilities, predicted by the ensemble classifier.
- **class**: the class predicted by the ensemble classifier.
- **samples**: an array indicating, for every base classifier in the ensemble, which observations were used for training.
- **weights**: a vector with weights defined as (1 - error rate). Usage depends upon specification of fusion_method.

Author(s)

Koen W. De Bock <K.DeBock@ieseg.fr>, Kristof Coussement <K.Coussement@ieseg.fr> and Dirk Van den Poel <Dirk.VandenPoel@ugent.be>
References

See Also

predict.GAMens, GAMens.cv

Examples

```r
## Load data (mlbench library should be loaded)
library(mlbench)
data(Ionosphere)

## Train a GAMens ensemble,
## estimated using 4 nonparametric terms and 2 linear terms
Ionosphere.GAMens <- GAMens(Class~s(V3,4)+s(V4,4)+s(V5,3)+s(V6,5)+V7+V8,
                           Ionosphere ,3 , autoform=FALSE, iter=10 )

## Calculate AUC (for function colAUC, load caTools library) for the GAMens model
library(caTools)
GAMens.auc <- colAUC(Ionosphere.GAMens[[9]], Ionosphere["Class"]="good",
                     plotROC=FALSE)
```

GAMens.cv Runs v-fold cross validation with GAMbag, GAMrsm or GAMens ensemble classifier

Description

In v-fold cross validation, the data are divided into v subsets of approximately equal size. Subsequently, one of the v data parts is excluded while the remainder of the data is used to create a GAMens object. Predictions are generated for the excluded data part. The process is repeated v times.

Usage

GAMens.cv(formula, data, cv, rsm_size=2, autoform=FALSE, iter=10,
df=4, bagging=TRUE, rsm=TRUE, fusion="avgagg")
Arguments

- **formula**: a formula, as in the `gam` function. Smoothing splines are supported as nonparametric smoothing terms, and should be indicated by `s`. See the documentation of `s` in the `gam` package for its arguments. The `GAMens` function also provides the possibility for automatic formula specification. See 'details' for more information.
- **data**: a data frame in which to interpret the variables named in `formula`.
- **cv**: An integer specifying the number of folds in the cross-validation.
- **rsm_size**: an integer, the number of variables to use for random feature subsets used in the Random Subspace Method. Default is 2. If `rsm=False`, the value of `rsm_size` is ignored.
- **autoform**: if `FALSE` (by default), the model specification in `formula` is used. If `TRUE`, the function triggers automatic formula specification. See 'details' for more information.
- **iter**: an integer, the number of base (member) classifiers (GAMs) in the ensemble. Defaults to `iter=10` base classifiers.
- **df**: an integer, the number of degrees of freedom (df) used for smoothing spline estimation. Its value is only used when `autoform = TRUE`. Defaults to `df=4`. Its value is ignored if a formula is specified and `autoform` is `FALSE`.
- **bagging**: enables Bagging if value is `TRUE` (default). If `FALSE`, Bagging is disabled. Either `bagging`, `rsm` or both should be `TRUE`.
- **rsm**: enables Random Subspace Method (RSM) if value is `TRUE` (default). If `FALSE`, `rsm` is disabled. Either `bagging`, `rsm` or both should be `TRUE`.
- **fusion**: specifies the fusion rule for the aggregation of member classifier outputs in the ensemble. Possible values are 'avgagg' for average aggregation (default), 'majvote' for majority voting, 'w.avgagg' for weighted average aggregation based on base classifier error rates, or 'w.majvote' for weighted majority voting.

Value

An object of class `GAMens.cv`, which is a list with the following components:

- **foldpred**: a data frame with, per fold, predicted class membership probabilities for the left-out observations.
- **pred**: a data frame with predicted class membership probabilities.
- **foldclass**: a data frame with, per fold, predicted classes for the left-out observations.
- **class**: a data frame with predicted classes.
- **conf**: the confusion matrix which compares the real versus predicted class memberships, based on the `class` object.

Author(s)

Koen W. De Bock <K.DeBock@ieseg.fr>, Kristof Coussement <K.Coussement@ieseg.fr> and Dirk Van den Poel <Dirk.VandenPoel@ugent.be>
References

See Also

predict.GAMens, GAMens

Examples

```r
## Load data: mlbench library should be loaded!
library(mlbench)
data(Sonar)

## Compare AUC classification performance of a GAMens ensemble
## using all variables in the Sonar dataset, based on 5-fold
## cross validation runs
Sonar.cv.GAMens <- GAMens.cv(Class~s(V1,4)+s(V2,3)+s(V3,4)+V4+V5+V6,
                            Sonar ,5, 4 , autoform=FALSE, iter=5 )

## Calculate AUCs (for function colAUC, load caTools library)
library(caTools)
GAMens.cv.auc <- colAUC(Sonar.cv.GAMens[[2]], Sonar["Class"]="R",
                         plotROC=FALSE)
```

predict.GAMens

`predict.GAMens` Predicts from a fitted GAMens object (i.e., GAMbag, GAMrsm or GAMens classifier).

Description

Generates predictions (classes and class membership probabilities) for observations in a dataframe using a GAMens object (i.e., GAMens, GAMrsm or GAMbag classifier).

Usage

```r
## S3 method for class 'GAMens'
predict(object, data,...)
```
predict.GAMens

Arguments

- `object`: fitted model object of `GAMens` class.
- `data`: data frame with observations to generate predictions for.
- `...`: further arguments passed to or from other methods.

Value

An object of class `predict.GAMens`, which is a list with the following components:

- `pred`: the class membership probabilities generated by the ensemble classifier.
- `class`: the classes predicted by the ensemble classifier.
- `conf`: the confusion matrix which compares the real versus predicted class memberships, based on the `class` object. Obtains value NULL if the test data is unlabeled.

Author(s)

Koen W. De Bock <K.DeBock@ieseg.fr>, Kristof Coussement <K.Coussement@ieseg.fr> and Dirk Van den Poel <Dirk.VandenPoel@ugent.be>

References

See Also

`GAMens`, `GAMens.cv`

Examples

```r
## Load data, mbench library should be loaded!
library(mbench)
data(Sonar)

## Select indexes for training set observations
idx <- c(sample(1:97, 60), sample(98:208, 70))

## Train GAMrsm using all variables in Sonar dataset. Generate predictions
## for test set observations.
Sonar.GAMrsm <- GAMens(Class~., Sonar[idx,], autoform=TRUE, iter=10,
                        bagging=FALSE, rsm=TRUE)
```
Sonar.GAMrsm.predict <- predict.GAMens(Sonar.GAMrsm, Sonar[-idx,])

Load data mlbench library should be loaded!
library(mlbench)
data(Ionosphere)
Ionosphere_s <- Ionosphere[order(Ionosphere[,35]),]

Select indexes for training set observations
idx <- c(sample(1:97, 60), sample(98:208, 70))

Train a GAMrsm ensemble classifier
using using 4 nonparametric terms and 2 linear terms in the
Ionosphere dataset
Ionosphere.GAMrsm <- GAMens(Class~s(V3,4)+s(V4,4)+s(V5,3)+s(V6,5)+V7+V8,
Ionosphere[idx,,], autoform=FALSE, iter=10, bagging=FALSE, rsm=TRUE)

Ionosphere.GAMrsm.predict <- predict.GAMens(Ionosphere.GAMrsm,
Ionosphere[-idx,])

Calculate AUC (for function colAUC, load caTools library) for the GAMrsm model
library(caTools)

GAMrsm.auc <- colAUC(Ionosphere.GAMrsm.predict[,1],
Ionosphere[-idx,"Class"]=="good", plotROC=FALSE)
Index

*Topic **classif**
 GAMens, 2
 GAMens.cv, 4
 predict.GAMens, 6

*Topic **models**
 GAMens, 2
 GAMens.cv, 4
 predict.GAMens, 6

GAMens, 2, 6, 7
GAMens.cv, 4, 4, 7

predict.GAMens, 4, 6, 6