Package ‘GMMBoost’

February 19, 2015

Type Package
Title Likelihood-based Boosting for Generalized mixed models
Version 1.1.2
Date 2013-11-22
Author Andreas Groll
Maintainer Andreas Groll <groll@mathematik.uni-muenchen.de>
Description Likelihood-based Boosting for Generalized mixed models
Imports minqa, magic
License GPL-2
Repository CRAN
Date/Publication 2013-11-22 15:38:32
NeedsCompilation no

R topics documented:

bGAMM .. 2
bGAMMControl .. 4
bGLMM .. 5
bGLMMControl .. 7
GMMBoost ... 9
knee .. 9
OrdinalBoost .. 10
OrdinalBoostControl 12
soccer .. 13

Index 15
bGAMM

Fit Generalized Semiparametric Mixed-Effects Models

Description

Fit a semiparametric mixed model or a generalized semiparametric mixed model.

Usage

```r
bGAMM(fix=formula, add=formula, rnd=formula,
      data, lambda, family = NULL, control = list())
```

Arguments

- `fix` a two-sided linear formula object describing the fixed-effects part of the model, with the response on the left of a `~` operator and the terms, separated by `+` operators, on the right. For categorical covariables use `as.factor(.)` in the formula. Note, that the corresponding dummies are treated as a group and are updated blockwise.

- `add` a one-sided linear formula object describing the additive part of the model, with the additive terms on the right side of a `~` operator, separated by `+` operators. The smooth terms are expanded in B-spline basis functions, with a difference penalty applied on adjacent spline coefficients.

- `rnd` a two-sided linear formula object describing the random-effects part of the model, with the grouping factor on the left of a `~` operator and the random terms, separated by `+` operators, on the right.

- `data` the data frame containing the variables named in `formula`.

- `lambda` the smoothing parameter that controls the smoothness of the additive terms. The optimal smoothing parameter is a tuning parameter of the procedure that has to be determined, e.g. by use of information criteria or cross validation.

- `family` a GLM family, see `glm` and `family`. If `family` is missing then a linear mixed model is fit; otherwise a generalized linear mixed model is fit.

- `control` a list of control values for the estimation algorithm to replace the default values returned by the function `bGAMMControl`. Defaults to an empty list.

Value

Generic functions such as `print`, `predict`, `summary` and `plot` have methods to show the results of the fit. The `predict` function uses also estimates of random effects for prediction, if possible (i.e. for known subjects of the grouping factor). The `plot` function shows the estimated smooth functions. Single functions can be specified by a suitable vector in the `which` argument. Default is `which=NULL` and all smooth functions (up to a maximum of nine) are shown.

- `call` a list containing an image of the `bGLMM` call that produced the object.

- `coefficients` a vector containing the estimated fixed effects.
ranef a vector containing the estimated random effects.
spline.weights a vector containing the estimated spline coefficients.
StdDev a scalar or matrix containing the estimates of the random effects standard deviation or variance-covariance parameters, respectively.
fitted.values a vector of fitted values.
phi estimated scale parameter, if overdispersion=TRUE is used. Otherwise, it is equal to one.
HatMatrix hat matrix corresponding to the final fit.
IC a matrix containing the evaluated information criterion for the different covariates (columns) and for each boosting iteration (rows).
IC_sel a vector containing the evaluated information criterion for the selected covariate at different boosting iterations.
components a vector containing the selected components at different boosting iterations.
opt number of optimal boosting steps with respect to AIC or BIC, respectively, if OPT=TRUE. Otherwise, opt is equal to the number of iterations. Note, that the boosting algorithm is also stopped, if it has converged with respect to the parameter estimates [coefficients, ranef] or with respect to the IC_sel.
Deltamatrix a matrix containing the estimates of fixed and random effects (columns) for each boosting iteration (rows).
Q_long a list containing the estimates of the random effects standard deviation or variance-covariance parameters, respectively, for each boosting iteration.
fixerror a vector with standard errors for the fixed effects.
ranerror a vector with standard errors for the random effects.
smootherror a matrix with pointwise standard errors for the smooth function estimates.

Author(s)
Andreas Groll <andreas.groll@stat.uni-muenchen.de>

References

See Also
bGAMMControl

Examples

data("soccer")

gamml <- bGAMM(points ~ ball.possession + tackles,
 - transfer.spendings + transfer.receits
 + unfair.score + ave.attend + sold.out,
bgammcontrol

Control Values for bgamm fit

Description

The values supplied in the function call replace the defaults and a list with all possible arguments is returned. The returned list is used as the control argument to the bgamm function.

Usage

bgammcontrol(nue=0.1, add.fix=NULL, start=NULL, q_start=NULL, opt=TRUE, nbasis=20, spline.degree=3, diff.ord=2, sel.method="aic", steps=500, method="EM", overdispersion=FALSE)

Arguments

nue weakness of the learner. Choose 0 < nue <= 1. Default is 0.1.
add.fix a vector specifying smooth terms, which are excluded from selection.
start a vector containing starting values for fixed and random effects of suitable length. Default is a vector full of zeros.
q_start a scalar or matrix of suitable dimension, specifying starting values for the random-effects variance-covariance matrix. Default is a scalar 0.1 or diagonal matrix with 0.1 in the diagonal.
opt logical scalar. When TRUE the estimates at the optimal number of boosting steps, chosen by information criteria, are derived. If FALSE, the estimates at the maximal number of boosting steps are derived. Default is TRUE.
nbasis the number of b-spline basis functions for the modeling of smooth terms. Default is 20.
spline.degree the degree of the B-spline polynomials. Default is 3.
diff.ord the order of the difference penalty; must be lower than the degree of the B-spline polynomials (see previous argument). Default is 2.
sel.method two different information criteria, "aic" or "bic", can be chosen, on which the selection step is based on. Default is "aic".
steps the number of boosting iterations. Default is 500.
two methods for the computation of the random-effects variance-covariance parameter estimates can be chosen, an EM-type estimate and an REML-type estimate. The REML-type estimate uses the \texttt{bobyqa} function for optimization. Default is \texttt{EM}.

overdispersion logical scalar. If FALSE, no scale parameter is derived, if TRUE, in each boosting iteration a scale parameter is estimated by use of Pearson residuals. This can be used to fit overdispersed Poisson models. Default is FALSE.

Value

a list with components for each of the possible arguments.

Author(s)

Andreas Groll <andreas.groll@stat.uni-muenchen.de>

See Also

\texttt{bGAMM}, \texttt{bobyqa}

Examples

C decrease the maximum number of boosting iterations
C and use BIC for selection
\texttt{bGAMMControl(steps = 100, sel.method = "BIC")}

Fit Generalized Mixed-Effects Models

Description

Fit a linear mixed model or a generalized linear mixed model.

Usage

\texttt{bGLMM(fix=formula, rnd=formula, data, family = NULL, control = list())}

Arguments

fix a two-sided linear formula object describing the fixed-effects part of the model, with the response on the left of a \texttt{~} operator and the terms, separated by \texttt{+} operators, on the right. For categorical covariables use \texttt{as.factor(.)} in the formula. Note, that the corresponding dummies are treated as a group and are updated blockwise.

rnd a two-sided linear formula object describing the random-effects part of the model, with the grouping factor on the left of a \texttt{~} operator and the random terms, separated by \texttt{+} operators, on the right.
data the data frame containing the variables named in formula.
family a GLM family, see glm and family. If family is missing then a linear mixed model is fit; otherwise a generalized linear mixed model is fit.
control a list of control values for the estimation algorithm to replace the default values returned by the function bGLMMControl. Defaults to an empty list.

Value

Generic functions such as print, predict and summary have methods to show the results of the fit. The predict function uses also estimates of random effects for prediction, if possible (i.e. for known subjects of the grouping factor).
call a list containing an image of the bGLMM call that produced the object.
coefficients a vector containing the estimated fixed effects
ranef a vector containing the estimated random effects.
StdDev a scalar or matrix containing the estimates of the random effects standard deviation or variance-covariance parameters, respectively.
fitted.values a vector of fitted values.
phi estimated scale parameter, if overdispersion=TRUE is used. Otherwise, it is equal to one.
HatMatrix hat matrix corresponding to the final fit.
IC a matrix containing the evaluated information criterion for the different covariates (columns) and for each boosting iteration (rows).
IC_sel a vector containing the evaluated information criterion for the selected covariate at different boosting iterations.
components a vector containing the selected components at different boosting iterations.
opt number of optimal boosting steps with respect to AIC or BIC, respectively, if OPT=TRUE. Otherwise, opt is equal to the number of iterations. Note, that the boosting algorithm is also stopped, if it has converged with respect to the parameter estimates [coefficients,ranef] or with respect to the IC_sel.
Deltamatrix a matrix containing the estimates of fixed and random effects (columns) for each boosting iteration (rows).
Q_long a list containing the estimates of the random effects standard deviation or variance-covariance parameters, respectively, for each boosting iteration.
fixerror a vector with standrad errors for the fixed effects.
ranerror a vector with standrad errors for the random effects.

Author(s)

Andreas Groll <andreas.groll@stat.uni-muenchen.de>

References

bGLMMControl

See Also
bGLMMControl

Examples

data("soccer")
linear mixed models
lm1 <- bGLMM(points ~ transfer.spendings + I(transfer.spendings^2) + ave.unfair.score + transfer.receits + ball.possession + tackles + ave.attend + sold.out, rnd = list(team=-1), data = soccer)

lm2 <- bGLMM(points~transfer.spendings + I(transfer.spendings^2) + ave.unfair.score + transfer.receits + ball.possession + tackles + ave.attend + sold.out, rnd = list(team=-1 + ave.attend), data = soccer, control = list(steps=10, lin=c("(Intercept)" ,"ave.attend"), method="REML", nue=1, sel.method="bic"))

linear mixed models with categorical covariates
lm3 <- bGLMM(points~transfer.spendings + I(transfer.spendings^2) + as.factor(red.card) + as.factor(yellow.red.card) + transfer.receits + ball.possession + tackles + ave.attend + sold.out, rnd = list(team=-1), data = soccer, control = list(steps=10))

generalized linear mixed model
glm1 <- bGLMM(points~transfer.spendings + I(transfer.spendings^2) + ave.unfair.score + transfer.receits + ball.possession + tackles + ave.attend + sold.out, rnd = list(team=-1), family = poisson(link = log), data = soccer, control = list(start=c(5,rep(0,3))))

bGLMMControl

Control Values for bGLMM fit

Description
The values supplied in the function call replace the defaults and a list with all possible arguments is returned. The returned list is used as the control argument to the bGLMM function.

Usage
bGLMMControl(nue=0.1, lin="(Intercept)", start=NULL, q_start=NULL, OPT=TRUE, sel.method="aic", steps=500, method="EM", overdispersion=FALSE, print.iter=TRUE)
Arguments

- **nue**: weakness of the learner. Choose $0 < \text{nue} \leq 1$. Default is 0.1.
- **lin**: a vector specifying fixed effects, which are excluded from selection.
- **start**: a vector containing starting values for fixed and random effects of suitable length. Default is a vector full of zeros.
- **q_start**: a scalar or matrix of suitable dimension, specifying starting values for the random-effects variance-covariance matrix. Default is a scalar 0.1 or diagonal matrix with 0.1 in the diagonal.
- **OPT**: logical scalar. When TRUE the estimates at the optimal number of boosting steps, chosen by information criteria, are derived. If FALSE, the estimates at the maximal number of boosting steps are derived. Default is TRUE.
- **sel.method**: two different information criteria, "aic" or "bic", can be chosen, on which the selection step is based on. Default is "aic".
- **steps**: the number of boosting iterations. Default is 500.
- **method**: two methods for the computation of the random-effects variance-covariance parameter estimates can be chosen, an EM-type estimate and an REML-type estimate. The REML-type estimate uses the bobyqa function for optimization. Default is EM.
- **overdispersion**: logical scalar. If FALSE, no scale parameter is derived, if TRUE, in each boosting iteration a scale parameter is estimated by use of Pearson residuals. This can be used to fit overdispersed Poisson models. Default is FALSE.
- **print.iter**: logical. Should the number of iterations be printed? Default is TRUE.

Value

a list with components for each of the possible arguments.

Author(s)

Andreas Groll <andreas.groll@stat.uni-muenchen.de>

See Also

bGLMM, bobyqa

Examples

```r
# decrease the maximum number of boosting iterations
# and use BIC for selection
bGLMMControl(steps = 100, sel.method = "BIC")
```
Description

Likelihood-based Boosting for Generalized mixed models

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>GMMBoost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.1.2</td>
</tr>
<tr>
<td>Date</td>
<td>2013-11-22</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>

for loading a dataset type `data(nameofdataset)`

Author(s)

Andreas Groll

References

Special thanks goes to Manuel Eugster, Sebastian Kaiser, Fabian Scheipl and Felix Heinzl, who helped to create this package and whose insightful advices helped to improve the package.

See Also

`bGLMM, OrdinalBoost, bGAMM`

knee

Clinical pain study on knee data

Description

The knee data set illustrates the effect of a medical spray on the pressure pain in the knee due to sports injuries.

Usage

data(soccer)
Format

A data frame with 381 patients, each with three replicates, and the following 7 variables:

- `pain` the magnitude of pressure pain in the knee given in 5 categories (1: lowest pain; 5: strongest pain).
- `time` the number of replication
- `id` number of patient
- `th` the therapy (1: spray; 0: placebo)
- `age` age of the patient in years
- `sex` sex of the patient (1: male; 0: female)
- `pain.start` the magnitude of pressure pain in the knee at the beginning of the study

References

See Also

`ordinalboost`.

OrdinalBoost
Fit Generalized Mixed-Effects Models

Description

Fit a generalized linear mixed model with ordinal response.

Usage

`OrdinalBoost(fix=formula, rnd=formula, data, model="sequential", control=list())`

Arguments

- `fix` a two-sided linear formula object describing the fixed-effects part of the model, with the response on the left of a `~` operator and the terms, separated by `+` operators, on the right. For categorical covariables use `as.factor(.)` in the formula. Note, that the corresponding dummies are treated as a group and are updated blockwise

- `rnd` a two-sided linear formula object describing the random-effects part of the model, with the grouping factor on the left of a `~` operator and the random terms, separated by `+` operators, on the right.

- `data` the data frame containing the variables named in formula.
Two models for repeatedly assessed ordinal scores, based on the threshold concept, are available, the "sequential" and the "cumulative" model. Default is "sequential".

A list of control values for the estimation algorithm to replace the default values returned by the function `OrdinalBoostControl`. Defaults to an empty list.

Generic functions such as `print`, `predict` and `summary` have methods to show the results of the fit. The `predict` function shows the estimated probabilities for the different categories for each observation, either for the data set of the `OrdinalBoost` object or for `newdata`. Default is `newdata=NULL`. It uses also estimates of random effects for prediction, if possible (i.e. for known subjects of the grouping factor).

A list containing an image of the `OrdinalBoost` call that produced the object.

A vector containing the estimated fixed effects.

A vector containing the estimated random effects.

A scalar or matrix containing the estimates of the random effects standard deviation or variance-covariance parameters, respectively.

A vector of fitted values.

Hat matrix corresponding to the final fit.

A matrix containing the evaluated information criterion for the different covariates (columns) and for each boosting iteration (rows).

A vector containing the evaluated information criterion for the selected covariate at different boosting iterations.

A vector containing the selected components at different boosting iterations.

Number of optimal boosting steps with respect to AIC or BIC, respectively, if `OPT=TRUE`. Otherwise, `opt` is equal to the number of iterations. Note, that the boosting algorithm is also stopped, if it has converged with respect to the parameter estimates [coefficients, ranef] or with respect to the IC_sel.

A matrix containing the estimates of fixed and random effects (columns) for each boosting iteration (rows).

A list containing the estimates of the random effects standard deviation or variance-covariance parameters, respectively, for each boosting iteration.

A vector with standard errors for the fixed effects.

A vector with standard errors for the random effects.

Andreas Groll <andreas.groll@stat.uni-muenchen.de>

OrdinalBoostControl

See Also

OrdinalBoostControl

Examples

```r
data(knee)

# fit a sequential model
# (here only one step is performed in order to
# save computational time)

glm1 <- OrdinalBoost(pain ~ time + th + age + sex, rnd = list(id=1),
                      data = knee, model = "sequential", control = list(steps=1))

# see also demo("OrdinalBoost-knee") for more extensive examples
```

OrdinalBoostControl Control Values for OrdinalBoost fit

Description

The values supplied in the function call replace the defaults and a list with all possible arguments is returned. The returned list is used as the control argument to the bGLMM function.

Usage

```r
OrdinalBoostControl(nue=0.1, lin=NULL, katvar=NULL, start=NULL, q_start=NULL,
OPT=TRUE, sel.method="aic", steps=100, method="EM", maxIter=500,
print.iter.final=FALSE, eps.final=1e-5)
```

Arguments

- **nue**: weakness of the learner. Choose $0 < \text{nue} \leq 1$. Default is 0.1.
- **lin**: a vector specifying fixed effects, which are excluded from selection.
- **katvar**: a vector specifying category-specific covariates, which are also excluded from selection.
- **start**: a vector containing starting values for fixed and random effects of suitable length. Default is a vector full of zeros.
- **q_start**: a scalar or matrix of suitable dimension, specifying starting values for the random-effects variance-covariance matrix. Default is a scalar 0.1 or diagonal matrix with 0.1 in the diagonal.
- **OPT**: logical scalar. When TRUE the estimates at the optimal number of boosting steps, chosen by information criteria, are derived. If FALSE, the estimates at the maximal number of boosting steps are derived. Default is TRUE.
soccer

sel.method two different information criteria, "aic" or "bic", can be chosen, on which the
selection step is based on. Default is "aic".
steps the number of boosting iterations. Default is 100.
method two methods for the computation of the random-effects variance-covariance pa-
rameter estimates can be chosen, an EM-type estimate and an REML-type esti-
timate. The REML-type estimate uses the bobyqa function for optimization.
Default is EM.
maxIter the number of iterations for the final Fisher scoring reestimation procedure. Default is 500.
print.iter.final logical. Should the number of iterations in the final re-estimation step be
printed? Default is FALSE.
eps.final controls the speed of convergence in the final re-estimation. Default is 1e-5.

Value
a list with components for each of the possible arguments.

Author(s)
Andreas Groll <andreas.groll@stat.uni-muenchen.de>

See Also
OrdinalBoost, bobyqa

Examples

decrease the maximum number of boosting iterations
and use BIC for selection
OrdinalBoostControl(steps = 10, sel.method = "BIC")

soccerGerman Bundesliga data for the seasons 2008-2010

Description

The soccer data contains different covariables for the teams that played in the first German soccer

Usage
data(soccer)
Format

A data frame with 54 observations on the following 16 variables.

- **pos**: the final league rank of a soccer team at the end of the season
- **team**: soccer teams
- **points**: number of the points a team has earned during the season
- **transfer.spending**: the amount (in Euro) that a team has spent for new players at the start of the season
- **transfer.receits**: the amount (in Euro) that a team has earned for the selling of players at the start of the season
- **yellow.card**: number of the yellow cards a team has received during the season
- **yellow.red.card**: number of the yellow-red cards a team has received during the season
- **red.card**: number of the red cards a team has received during the season
- **unfair.score**: unfairness score which is derived by the number of yellow cards (1 unfairness point), yellow-red cards (2 unfairness points) and red cards (3 unfairness points) a team has received during the season
- **ave.unfair.score**: average unfairness score per match
- **ball.possession**: average percentage of ball possession per match
- **tackles**: average percentage of head-to-head duels won per match
- **capacity**: capacity of the team’s soccer stadium
- **total.attend**: total attendance of a soccer team for the whole season
- **ave.attend**: average attendance of a soccer team per match
- **sold.out**: number of stadium sold outs during a season

References

We are grateful to Jasmin Abedieh for providing the German Bundesliga data, which were part of her bachelor thesis.

See Also

- **bGLMM,bGAMM**.
Index

*Topic **Boosting, Variable selection, Generalized linear mixed model, Generalized additive mixed model**
 - GMMBoost, 9
*Topic **datasets**
 - knee, 9
 - soccer, 13
*Topic **methods**
 - bGAMM, 2
 - bGLMM, 5
 - OrdinalBoost, 10
*Topic **models**
 - bGAMM, 2
 - bGLMM, 5
 - OrdinalBoost, 10
*Topic **GMMBoost, 9**
 - bGAMM, 2, 5, 9, 14
 - bGAMMControl, 3, 4
 - bGLMM, 5, 8, 9, 14
 - bGLMControl, 7, 7
 - bobyqa, 5, 8, 13
 - family, 2, 6
 - glm, 2, 6
 - GMMBoost, 9
 - knee, 9
 - OrdinalBoost, 9, 10, 10, 13
 - OrdinalBoostControl, 12, 12
 - soccer, 13