Package ‘GSA’

January 31, 2019

Title Gene Set Analysis
Version 1.03.1
Author Brad Efron and R. Tibshirani
Description Gene Set Analysis.
Maintainer Rob Tibshirani <tibs@stat.stanford.edu>
Suggests impute
License LGPL

URL http://www.stat.stanford.edu/~tibs/GSA
Repository CRAN
Date/Publication 2019-01-31 17:27:39 UTC
NeedsCompilation no

R topics documented:

GSA ... 2
GSA.correlate .. 5
GSA.func .. 6
GSA.genescores .. 9
GSA.listsets .. 11
GSA.make.features .. 12
GSA.plot .. 14
GSA.read.gmt ... 15

Index 17
Description

Determines the significance of pre-defined sets of genes with respect to an outcome variable, such as a group indicator, a quantitative variable or a survival time.

Usage

```
GSA(x,y, genesets, genenames, method=c("maxmean","mean","absmean"), resp.type=c("Quantitative","Two class unpaired","Survival","Multiclass"), censoring.status=NULL, random.seed=NULL, knn.neighbors=10, s0=NULL, s0.perc=NULL, minsize=15, maxsize=500, restand=TRUE, restand.basis=c("catalog","data"), nperms=100, xl.mode=c("regular","firsttime","next20","lasttime"), xl.time=NULL, xl.prevfit=NULL)
```

Arguments

- **x**: Data x: p by n matrix of features (expression values), one observation per column (missing values allowed); y: n-vector of outcome measurements.
- **y**: Vector of response values: 1,2 for two class problem, or 1,2,3 ... for multiclass problem, or real numbers for quantitative or survival problems.
- **genesets**: Gene set collection (a list).
- **genenames**: Vector of genenames in expression dataset.
- **method**: Method for summarizing a gene set: "maxmean" (default), "mean" or "absmean".
- **resp.type**: Problem type: "quantitative" for a continuous parameter; "Two class unpaired"; "Survival" for censored survival outcome; "Multiclass" : more than 2 groups, coded 1,2,3...; "Two class paired" for paired outcomes, coded -1,1 (first pair), -2,2 (second pair), etc.
- **censoring.status**: Vector of censoring status values for survival problems, 1 mean death or failure, 0 means censored.
- **random.seed**: Optional initial seed for random number generator (integer).
- **knn.neighbors**: Number of nearest neighbors to use for imputation of missing features values.
- **s0**: Exchangeability factor for denominator of test statistic; Default is automatic choice.
- **s0.perc**: Percentile of standard deviation values to use for s0; default is automatic choice; -1 means s0=0 (different from s0.perc=0, meaning s0=zeroeth percentile of standard deviation values= min of sd values).
- **minsize**: Minimum number of genes in genesets to be considered.
maxsize Maximum number of genes in genesets to be considered
restand Should restandardization be done? Default TRUE,
restand.basis What should be used to do the restandardization? The set of genes in the gene-
sets ("catalog", the default) or the genes in the data set ("data")
nperms Number of permutations used to estimate false discovery rates
xl.mode Used by Excel interface
xl.time Used by Excel interface
xl.prevfit Used by Excel interface

Details
Carries out a Gene set analysis, as described in the paper by Efron and Tibshirani (2006). It differs
from a Gene Set Enrichment Analysis (Subramanian et al 2006) in its use of the "maxmean" statistic:
this is the mean of the positive or negative part of gene scores in the gene set, whichever is large
in absolute values. Efron and Tibshirani shows that this is often more powerful than the modified
KS statistic used in GSEA. GSA also does "restandardization" of the genes (rows), on top of the
permutation of columns (done in GSEA). Gene set analysis is applicable to microarray data and
other data with a large number of features. This is also the R package that is called by the "official"
SAM Excel package v3.0. The format of the response vector y and the calling sequence is illustrated
in the examples below. A more complete description is given in the SAM manual at http://www-
stat.stanford.edu/~tibs/SAM

Value
A list with components

GSA.scores Gene set scores for each gene set
GSA.scores.perm Matrix of Gene set scores from permutations, one column per permutation
fdr.lo Estimated false discovery rates for negative gene sets (negative means lower ex-
pression correlates with class 2 in two sample problems, lower expression cor-
relates with increased y for quantitative problems, lower expression correlates
with higher risk for survival problems)
fdr.hi Estimated false discovery rates for positive gene sets; positive is opposite of
negative, as defined above
pvalues.lo P-values for negative gene sets
pvalues.hi P-values for positive gene sets
stand.info Information from restandardization process
stand.info.star Information from restandardization process in permutations
ngenes Number of genes in union of gene sets
nperms Number of permutations used
gene.scores Individual gene scores (eg t-statistics for two class problem)
s0 Computed exchangeability factor
\[s_0.\text{perc} \] Computed percentile of standard deviation values. \(s_0 = s_0.\text{perc} \) percentile of the gene standard deviations

\[\text{call} \] The call to GSA

\[x \] For internal use

\[y \] For internal use

\[\text{genesets} \] For internal use

\[\text{genenames} \] For internal use

\[\text{r.obs} \] For internal use

\[\text{r.star} \] For internal use

\[\text{gs.mat} \] For internal use

\[\text{gs.ind} \] For internal use

\[\text{catalog} \] For internal use

\[\text{catalog.unique} \] For internal use

Author(s)

Robert Tibshirani

References

Examples

```
# two class unpaired comparison
# y must take values QLR
set.seed(100)
x <- matrix(rnorm(1000*20), ncol=20)
dd <- sample(1:1000, size=100)
u <- matrix(2*rnorm(100), ncol=10, nrow=100)
y <- c(rep(1,10), rep(2,10))

genenames <- paste("g", 1:1000, sep="")

# create some random gene sets
genesets <- vector("list", 50)
for(i in 1:50){
```
GSA.correlate 5

genomesets[[i]]=paste("g", sample(1:1000, size=30), sep="")
genset.names=baste("set", as.character(1:50), sep="")

GSA.obj<-GSA(x,y, genenames=genenames, genesets=genesets, resp.type="Two class unpaired", nperms=100)

GSA.listsets(GSA.obj, genaset.names=geneset.names,FDRcut=.5)

to use "real" gene set collection, we read it in from a gmt file:
#
geneset.obj<- GSA.read.gmt("file.gmt")
#
where file.gmt is a gene set collection from GSEA collection or
or the website http://www-stat.stanford.edu/~tibs/GSA, or one
that you have created yourself. Then
#
GSA.obj<-GSA(x,y, genenames=genenames, genesets=geneset.obj$genesets, resp.type="Two class unpaired", nperms=100)
#

GSA.correlate "Correlates" a gene set collection with a given list of gene names

Description
"Correlates" a gene set collection with a given list of gene names. Gives info on the overlap between
the collection and the list of genes

Usage
GSA.correlate(GSA.genesets.obj, genenames)

Arguments
GSA.genesets.obj
Gene set collection, created for example by GSA.read.gmt
genenames Vector of gene names in expression dataset

Details
Gives info on the overlap between a gene set collection and the list of gene names. This is for
information purposes, to find out, for example, how many genes in the list of genes appear in the
gene set collection.
Author(s)

Robert Tibshirani

References

Examples

```
# two class unpaired comparison
# y must take values 1,2

set.seed(100)
x <- matrix(rnorm(1000*20), ncol=20)
dd <- sample(1:1000, size=100)

u <- matrix(2*runorm(100), ncol=10, nrow=100)
y <- c(rep(1, 10), rep(2, 10))

genenames <- paste("g", 1:1000, sep="")

c create some random gene sets
genese = vector("list", 50)
for (i in 1:50) {
  genese[[i]] <- paste("g", sample(1:1000, size=30), sep="")
}
genename <- paste("set", as.character(1:50), sep="")

GSA.correlate(genese, genenames)
```

Description

Determines the significance of pre-defined sets of genes with respect to an outcome variable, such as a group indicator, quantitative variable or survival time. This is the basic function called by GSA.
Usage

GSA.func(x, y, genesets, genenames, geneset.names=NULL, method=c("maxmean", "mean", "absmean"), resp.type=c("Quantitative", "Two class unpaired", "Survival", "Multiclass", "Two class paired", "tCorr", "taCorr"), censoring.status=NULL, first.time = TRUE, return.gene.ind = TRUE, ngenes = NULL, gs.mat = NULL, gs.ind = NULL, catalog = NULL, catalog.unique=NULL, s0 = NULL, s0.perc = NULL, minsize = 15, maxsize = 500, restand = TRUE, restand.basis=c("catalog", "data"))

Arguments

x Data x: p by n matrix of features, one observation per column (missing values allowed)
y Vector of response values: 1,2 for two class problem, or 1,2,3 ... for multiclass problem, or real numbers for quantitative or survival problems
genesets Gene set collection (a list)
genenames Vector of genenames in expression dataset
genesis.names Optional vector of gene set names
method Method for summarizing a gene set: "maxmean" (default), "mean" or "absmean"
resp.type Problem type: "quantitative" for a continuous parameter; "Two class unpaired"; "Survival" for censored survival outcome; "Multiclass": more than 2 groups; "Two class paired" for paired outcomes, coded -1,1 (first pair), -2,2 (second pair), etc
censoring.status Vector of censoring status values for survival problems, 1 mean death or failure, 0 means censored
first.time internal use
return.gene.ind internal use
ngenes internal use
gs.mat internal use
gs.ind internal use
catalog internal use
catalog.unique internal use
s0 Exchangeability factor for denominator of test statistic; Default is automatic choice
s0.perc Percentile of standard deviation values to use for s0; default is automatic choice; -1 means s0=0 (different from s0.perc=0, meaning s0=zeroeth percentile of standard deviation values= min of sd values
minsize Minimum number of genes in genesets to be considered
maxsize Maximum number of genes in genesets to be considered
restand Should restandardization be done? Default TRUE
restand.basis What should be used to do the restandardization? The set of genes in the genesets ("catalog", the default) or the genes in the data set ("data")
Details

Carries out a Gene set analysis, computing the gene set scores. This function does not do any permutations for estimation of false discovery rates. GSA calls this function to estimate FDRs.

Value

A list with components

scores Gene set scores for each gene set

, norm.scores Gene set scores transformed by the inverse Gaussian cdf

, mean Means of gene expression values for each sample
sd Standard deviation of gene expression values for each sample

gene.ind List indicating which genes in each positive gene set had positive individual scores, and similarly for negative gene sets
geneset.names Names of the gene sets

nperms Number of permutations used
gene.scores Individual gene scores (e.g., t-statistics for two class problem)
s0 Computed exchangeability factor
s0.perc Computed percentile of standard deviation values
stand.info Information computed used in the restandardization process
method Method used (from call to GSA.func)
call The call to GSA

Author(s)

Robert Tibshirani

References

Examples

two class unpaired comparison
y must take values 1,2

set.seed(100)
x<-matrix(rnorm(1000*20),ncol=20)
dd<-sample(1:1000,size=100)
GSA.genescores

Individual gene scores from a gene set analysis

Description

Compute individual gene scores from a gene set analysis

Usage

GSA.genescores(geneset.number, genesets, GSA.obj, genenames, negfirst=FALSE)

Arguments

geneset.number Number indicating which gene set is to examined

genesets The gene set collection
GSA.obj Object returned by function GSA

genenames Vector of gene names for gene in expression dataset

negfirst Should negative genes be listed first? Default FALSE

Details

Compute individual gene scores from a gene set analysis. Useful for looking “inside” a gene set that has been called significant by GSA.

Value

A list with components

res Matrix of gene names and gene scores (e.g., t-statistics) for each gene in the gene set

Author(s)

Robert Tibshirani

References

Examples

two class unpaired comparison
#
y must take values 1,2

set.seed(100)
x<-matrix(rnorm(1000*20),ncol=20)
dd<-sample(1:1000,size=100)

uc<-matrix(2*runif(100),ncol=10,nrow=100)
y<-c(rep(1,10),rep(2,10))

genenames=paste("g",1:1000,sep="")

create some random gene sets
genesets=vector("list",50)
for(i in 1:50){
 genesets[[i]]=paste("g",sample(1:1000,size=30),sep="")
}
geneset.names=paste("set",as.character(1:50),sep="")

GSA.obj<-GSA(x,y,genenames=genenames,genesets=genesets,resp.type="Two class unpaired",nperms=100)
look at 10th gene set

GSA.genescores(10, genesets, GSA.obj, genenames)

GSA.listsets
List the results from a Gene set analysis

Description

List the results from a call to GSA (Gene set analysis)

Usage

GSA.listsets(GSA.obj, geneset.names = NULL, maxchar = 20, FDRcut = 0.2)

Arguments

- **GSA.obj**: Object returned by GSA function.
- **geneset.names**: Optional vector of names for the gene sets
- **maxchar**: Maximum number of characters in printed output
- **FDRcut**: False discovery rate cutpoint for listed sets. A value of 1 will cause all sets to be listed.

Details

This function list the significant gene sets, based on a call to the GSA (Gene set analysis) function.

Value

A list with components

- **FDRcut**: The false discovery rate threshold used.
- **negative**: A table of the negative gene sets. "Negative" means that lower expression of most genes in the gene set correlates with higher values of the phenotype y. Eg for two classes coded 1,2, lower expression correlates with class 2. For survival data, lower expression correlates with higher risk, i.e shorter survival (Be careful, this can be confusing!)
- **positive**: A table of the positive gene sets. "Positive" means that higher expression of most genes in the gene set correlates with higher values of the phenotype y. See "negative" above for more info.
- **nsets.neg**: Number of negative gene sets
- **nsets.pos**: Number of positive gene sets
Author(s)

Robert Tibshirani

References

Examples

```
########## two class unpaired comparison
# y must take values 1,2
set.seed(100)
x<-matrix(rnorm(1000*20),ncol=20)
dd<-sample(1:1000,size=100)
u<-matrix(2*rnorm(100),ncol=10,nrow=100)
x[dd,1:20]<-x[dd,1:20]+u
y<-c(rep(1,10),rep(2,10))

genenames=paste("g",1:1000,sep="")

# create some random gene sets
genesets=vector("list",50)
for(i in 1:50){
  genesets[[i]]=paste("g",sample(1:1000,size=30),sep="")
}
genset.names=paste("set",as.character(1:50),sep="")

GSA.obj<-GSA(x,y,genenames=genenames,genesets=genesets,resp.type="Two class unpaired",nperms=100)

GSA.listsets(GSA.obj, genset.names=genset.names,FDRcut=.5)
```

GSA.make.features

Creates features from a GSA analysis that can be used in other procedures

Description

Creates features from a GSA analysis that can be used in other procedures, for example, sample classification.
Usage

GSA.make.features(GSA.func.obj, x, genesets, genenames)

Arguments

- GSA.func.obj: Object returned by GSA.func
- x: Expression dataset from which the features are to be created
- genesets: Gene set collection
- genenames: Vector of gene names in expression dataset

Details

Creates features from a GSA analysis that can be used in other procedures, for example, sample classification. For example, suppose the GSA analysis computes a maxmean score for gene set 1 that is positive, based on the mean of the positive part of the scores in that gene set. Call the subset of genes with positive scores "A". Then we compute a new feature for this geneset, for each sample, by computing the mean of the scores for genes in A, setting other gene scores to zero.

Author(s)

Robert Tibshirani

References

Examples

```
########## two class unpaired comparison
# y must take values 1,2

set.seed(100)
x<-matrix(rnorm(1000*20),ncol=20)
dd<-sample(1:1000,size=100)
uc<-matrix(2*rnorm(100),ncol=10,nrow=100)
y<-c(rep(1,10),rep(2,10))

genenames=paste("g",1:1000,sep="")

#create some random gene sets
genesets=vector("list",50)
for(i in 1:50){
  genesets[[i]]=paste("g",sample(1:1000,size=30),sep="")
}
gen.set.names=paste("set",as.character(1:50),sep="")
```
GSA.plot

GSA.plot(GSA.obj, fac=1, FDRcut = 1)

Arguments

GSA.obj Object returned by GSA function.
fac value for jittering points in plot ("factor" in called to jitter())
FDRcut False discovery rate cutpoint for sets to be plotted. A value of 1 (the default) will cause all sets to be plotted.

Details

This function makes a plot of the significant gene sets, based on a call to the GSA (Gene set analysis) function.

Author(s)

Robert Tibshirani

References

Examples

```
########## two class unpaired comparison
# y must take values 1,2

set.seed(100)
x<-matrix(rnorm(1000*20),ncol=20)
dd<-sample(1:1000,size=100)

u<-matrix(2*rnorm(100),ncol=10,nrow=100)
y<-c(rep(1,10),rep(2,10))

genenames=paste("g",1:1000,sep="")

# create some random gene sets
genesets=vector("list",50)
for(i in 1:50){
  genesets[[i]]=paste("g",sample(1:1000,size=30),sep="")
}
genest.names=paste("set",as.character(1:50),sep="")

GSA.obj<GSA(x,y,gennenames=gennenames,genesets=genesets,resp.type="Two class unpaired",nperms=100)

GSA.listsets(GSA.obj,geneset.names=geneset.names,FDRcut=.5)
GSA.plot(GSA.obj)
```

Description

Read in a gene set collection from a .gmt file

Usage

```
GSA.read.gmt(filename)
```

Arguments

- **filename**: The name of a file to read data values from. Should be a tab-separated text file, with one row per gene set. Column 1 has gene set names (identifiers), column 2 has gene set descriptions, remaining columns are gene ids for genes in that geneset.
Details

This function reads in a geneset collection from a .gmt text file, and creates an R object that can be used as input into GSA. We use UniGene symbols for our gene set names in our .gmt files and expression datasets, to match the two. However the user is free to use other identifiers, as long as the same ones are used in the gene set collections and expression datasets.

Value

A list with components

- genesets: List of gene names (identifiers) in each gene set
- geneset.names: Vector of gene set names (identifiers)
- geneset.descriptions: Vector of gene set descriptions

Author(s)

Robert Tibshirani

References

Examples

```r
# read in functional pathways gene set file from Broad institute GSEA website
# http://www.broad.mit.edu/gsea/msigdb/msigdb_index.html
# You have to register first and then download the file C2.gmt from
# their site

#GSA.read.gmt(C2.gmt)
```
Index

*Topic nonparametric
 GSA, 2
 GSA.correlate, 5
 GSA.func, 6
 GSA.genescores, 9
 GSA.listsets, 11
 GSA.plot, 14
 GSA.read.gmt, 15

*Topic survival
 GSA, 2
 GSA.correlate, 5
 GSA.func, 6
 GSA.genescores, 9
 GSA.listsets, 11
 GSA.make.features, 12
 GSA.plot, 14
 GSA.read.gmt, 15

*Topic ts
 GSA, 2
 GSA.correlate, 5
 GSA.func, 6
 GSA.genescores, 9
 GSA.listsets, 11
 GSA.make.features, 12
 GSA.plot, 14
 GSA.read.gmt, 15

*Topic univar
 GSA, 2
 GSA.correlate, 5
 GSA.func, 6
 GSA.genescores, 9
 GSA.listsets, 11
 GSA.make.features, 12
 GSA.plot, 14
 GSA.read.gmt, 15

GSA, 2
GSA.correlate, 5
GSA.func, 6
GSA.genescores, 9