Package ‘GenOrd’

September 12, 2015

Type Package
Title Simulation of Discrete Random Variables with Given Correlation Matrix and Marginal Distributions
Version 1.4.0
Date 2015-09-11
Author Alessandro Barbiero, Pier Alda Ferrari
Maintainer Alessandro Barbiero <alessandro.barbiero@unimi.it>
Description A gaussian copula based procedure for generating samples from discrete random variables with prescribed correlation matrix and marginal distributions.
License GPL
LazyLoad yes
Depends mvtnorm, Matrix, MASS, stats
NeedsCompilation no
Repository CRAN
Date/Publication 2015-09-12 17:19:55

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenOrd-package</td>
<td>2</td>
</tr>
<tr>
<td>contord</td>
<td>3</td>
</tr>
<tr>
<td>corrcheck</td>
<td>4</td>
</tr>
<tr>
<td>ordcont</td>
<td>5</td>
</tr>
<tr>
<td>ordsample</td>
<td>7</td>
</tr>
</tbody>
</table>

Index 13
Description

The package implements a procedure for generating samples from a multivariate discrete random variable with pre-specified correlation matrix and marginal distributions. The marginal distributions are linked together through a gaussian copula. The procedure is developed in two steps: the first step (function `ordcont`) sets up the gaussian copula in order to achieve the desired correlation matrix on the target random discrete components; the second step (function `ordsample`) generates samples from the target variables. The procedure can handle both Pearson’s and Spearman’s correlations, and any finite support for the discrete variables. The intermediate function `contord` computes the correlations of the multivariate discrete variable derived from correlated normal variables through discretization. Function `corrcheck` returns the lower and upper bounds of the correlation coefficient of each pair of discrete variables given their marginal distributions, i.e., returns the range of feasible bivariate correlations.

This version has fixed some drawbacks in terminology in the previous version; the only actual change concerns the parameter `cormat` in the `ordsample` function. Further examples of implementation have been added.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>GenOrd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.4.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2015-09-11</td>
</tr>
<tr>
<td>License:</td>
<td>GPL</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

Alessandro Barbiero, Pier Alda Ferrari

Maintainer: Alessandro Barbiero <alessandro.barbiero@unimi.it>

References

contord

See Also
contord, ordcont, corrcheck, ordsample

contord
Correlations of discretized variables

Description
The function computes the correlation matrix of the k variables, with given marginal distributions, derived discretizing a k-variate standard normal variable with given correlation matrix.

Usage
contord(marginal, Sigma, support = list(), Spearman = FALSE)

Arguments
- **marginal**: a list of k elements, where k is the number of variables. The i-th element of marginal is the vector of the cumulative probabilities defining the marginal distribution of the i-th component of the multivariate variable. If the i-th component can take k_i values, the i-th element of marginal will contain $k_i - 1$ probabilities (the k_i-th is obviously 1 and shall not be included).
- **Sigma**: the correlation matrix of the standard multivariate normal variable
- **support**: a list of k elements, where k is the number of variables. The i-th element of support is the vector containing the ordered values of the support of the i-th variable. By default, the support of the i-th variable is $1, 2, ..., k_i$
- **Spearman**: if TRUE, the function finds Spearman’s correlations (and it is not necessary to provide support), if FALSE (default) Pearson’s correlations

Value
the correlation matrix of the discretized variables

Author(s)
Alessandro Barbiero, Pier Alda Ferrari

See Also
ordcont, ordsample, corrcheck
Examples

```r
# consider 4 discrete variables
k <- 4
# with these marginal distributions
marginal <- list(0.4,c(0.3,0.6), c(0.25,0.5,0.75), c(0.1,0.2,0.8,0.9))
# generated discretizing a multivariate standard normal variable
# with correlation matrix
Sigma <- matrix(0.5,4,4)
diag(Sigma) <- 1
# the resulting correlation matrix for the discrete variables is
contord(marginal, Sigma)
# note all the correlations are smaller than the original 0.6
# change Sigma, adding a negative correlation
Sigma[1,2] <- -0.15
Sigma[2,1] <- Sigma[1,2]
Sigma
# checking whether Sigma is still positive definite
eigen(Sigma)$values # all >0, OK
contord(marginal, Sigma)
```

corrcheck
Checking correlations for feasibility

Description

The function returns the lower and upper bounds of the correlation coefficients of each pair of discrete variables given their marginal distributions, i.e., returns the range of feasible bivariate correlations.

Usage

corrcheck(marginal, support = list(), Spearman = FALSE)

Arguments

- **marginal**: a list of \(k \) elements, where \(k \) is the number of variables. The \(i \)-th element of marginal is the vector of the cumulative probabilities defining the marginal distribution of the \(i \)-th component of the multivariate variable. If the \(i \)-th component can take \(k_i \) values, the \(i \)-th element of marginal will contain \(k_i - 1 \) probabilities (the \(k_i \)-th is obviously 1 and shall not be included).

- **support**: a list of \(k \) elements, where \(k \) is the number of variables. The \(i \)-th element of support is the vector containing the ordered values of the support of the \(i \)-th variable. By default, the support of the \(i \)-th variable is \(1, 2, \ldots, k_i \).

- **Spearman**: TRUE if we consider Spearman’s correlation, FALSE (default) if we consider Pearson’s correlation.
Value
The function returns a list of two matrices: the former contains the lower bounds, the latter the upper bounds of the feasible pairwise correlations (on the extra-diagonal elements).

Author(s)
Alessandro Barbiero, Pier Alda Ferrari

See Also
contord, ordcont, ordsample

Examples
four variables
k <- 4
with 2, 3, 4, and 5 categories (Likert scales, by default)
kj <- c(2, 3, 4, 5)
and these marginal distributions (set of cumulative probabilities)
marginal <- list(0.4, c(0.6, 0.9), c(0.1, 0.2, 0.4), c(0.6, 0.7, 0.8, 0.9))
corrcheck(marginal) # lower and upper bounds for Pearson's rho
corrcheck(marginal, Spearman=TRUE) # lower and upper bounds for Spearman's rho
change the supports
support <- list(c(0, 1), c(1, 2, 4), c(1, 2, 3, 4), c(0, 1, 2, 5, 10))
corrcheck(marginal, support=support) # updated bounds

ordcont
Computing the "intermediate" correlation matrix for the multivariate standard normal in order to achieve the "target" correlation matrix for the multivariate discrete variable

Description
The function computes the correlation matrix of the \(k\)-dimensional standard normal r.v. yielding the desired correlation matrix \(\Sigma\) for the \(k\)-dimensional r.v. with desired marginal distributions \(\text{marginal}\).

Usage
ordcont(marginal, Sigma, support = list(), Spearman = FALSE, epsilon = 1e-06, maxit = 100)

Arguments
marginal a list of \(k\) elements, where \(k\) is the number of variables. The \(i\)-th element of marginal is the vector of the cumulative probabilities defining the marginal distribution of the \(i\)-th component of the multivariate variable. If the \(i\)-th component can take \(k_i\) values, the \(i\)-th element of marginal will contain \(k_i - 1\) probabilities (the \(k_i\)-th is obviously 1 and shall not be included).
Sigma
the target correlation matrix of the discrete variables

support
a list of \(k \) elements, where \(k \) is the number of variables. The \(i \)-th element of support is the vector containing the ordered values of the support of the \(i \)-th variable. By default, the support of the \(i \)-th variable is \(1, 2, \ldots, k_i \)

Spearman
if TRUE, the function finds Spearman’s correlations (and it is not necessary to provide support), if FALSE (default) Pearson’s correlations

epsilon
the maximum tolerated error between target and actual correlations

maxit
the maximum number of iterations allowed for the algorithm

Value

a list of five elements

- **SigmaC**
 the correlation matrix of the multivariate standard normal variable

- **Sigma0**
 the actual correlation matrix of the discretized variables (it should approximately coincide with the target correlation matrix \(\Sigma \))

- **Sigma**
 the target correlation matrix of the discrete variables

- **niter**
 a matrix containing the number of iterations performed by the algorithm, one for each pair of variables

- **maxerr**
 the actual maximum error (the maximum absolute deviation between actual and target correlations of the discrete variables)

Note

For some choices of marginal and \(\Sigma \), there may not exist a feasible \(k \)-variate probability mass function or the algorithm may not provide a feasible correlation matrix \(\Sigma C \). In this case, the procedure stops and exits with an error. The value of the maximum tolerated absolute error \(\epsilon \) on the elements of the correlation matrix for the target r.v. can be set by the user: a value between \(1e-6 \) and \(1e-2 \) seems to be an acceptable compromise assuring both the precision of the results and the convergence of the algorithm; moreover, a maximum number of iterations can be chosen (\(\text{maxit} \)), in order to avoid possible endless loops

Author(s)

Alessandro Barbiero, Pier Alda Ferrari

See Also

`contord, ordsample, corrcheck`

Examples

```r
# consider a 4-dimensional ordinal variable
k <- 4
# with different number of categories
kj <- c(2, 3, 4, 5)
# and uniform marginal distributions
marginal <- list(0.5, (1:2)/3, (1:3)/4, (1:4)/5)
```
corrcorrcheck(marginal)
and the following correlation matrix
Sigma <- matrix(c(1, 0.5, 0.4, 0.3, 0.5, 1, 0.5, 0.4, 0.5, 0.1, 0.5, 0.5, 0.3, 0.4, 0.5, 1),
4, 4, byrow=TRUE)
Sigma
the correlation matrix of the standard 4-dimensional standard normal
ensuring Sigma is
res <- ordcont(marginal, Sigma)
res[[1]]
change some marginal distributions
marginal <- list(0.3, c(1/3, 2/3), c(1/5, 2/5, 3/5), c(0.1, 0.2, 0.4, 0.6))
corrcorrcheck(marginal)
and notice how the correlation matrix of the multivariate normal changes...
res <- ordcont(marginal, Sigma)
res[[1]]
change Sigma, adding a negative correlation
Sigma[1, 2] <- -0.2
Sigma[2, 1] <- Sigma[1, 2]
Sigma
checking whether Sigma is still positive definite
eigen(Sigma)$values # all >0, OK
res <- ordcont(marginal, Sigma)
res[[1]]

ORDSAMPLE Drawing a sample of discrete data

Description
The function draws a sample from a multivariate discrete variable with correlation matrix Sigma and prescribed marginal distributions marginal.

Usage
ordsample(n, marginal, Sigma, support = list(), Spearman = FALSE,
cormat = "discrete")

Arguments
n the sample size
marginal a list of \(k \) elements, where \(k \) is the number of variables. The \(i \)-th element of marginal is the vector of the cumulative probabilities defining the marginal distribution of the \(i \)-th component of the multivariate variable. If the \(i \)-th component can take \(k_i \) values, the \(i \)-th element of marginal will contain \(k_i - 1 \) probabilities (the \(k_i \)-th is obviously 1 and shall not be included).
Sigma the target correlation matrix of the multivariate discrete variable
support a list of \(k \) elements, where \(k \) is the number of variables. The \(i \)-th element of support is the vector containing the ordered values of the support of the \(i \)-th variable. By default, the support of the \(i \)-th variable is \(1, 2, \ldots, k_i \).
Spearman

if TRUE, the function finds Spearman’s correlations (and it is not necessary to provide support), if FALSE (default) Pearson’s correlations

cormat

"discrete" if the Sigma in input is the target correlation matrix of the multivariate discrete variable; "continuous" if the Sigma in input is the intermediate correlation matrix of the multivariate standard normal

Value

a $n \times k$ matrix of values drawn from the k-variate discrete r.v. with the desired marginal distributions and correlation matrix

Author(s)

Alessandro Barbiero, Pier Alda Ferrari

See Also

contord, ordcont, corrcheck

Examples

Example 1

draw a sample from a bivariate ordinal variable
with 4 of categories and asymmetrical marginal distributions
and correlation coefficient 0.6 (to be checked)
k <- 2
marginal <- list(c(0.1,0.3,0.6), c(0.4,0.7,0.9))
corcheck(marginal) # check ok
Sigma <- matrix(c(1,0.6,0.6,1),2,2)
sample size 1000
n <- 1000
generate a sample of size n
m <- ordsample(n, marginal, Sigma)
head(m)
sample correlation matrix
cor(m) # compare it with Sigma
empirical marginal distributions
cumsum(table(m[,1]))/n
cumsum(table(m[,2]))/n # compare them with the two marginal distributions

Example 1bis

draw a sample from a bivariate ordinal variable
with 4 of categories and asymmetrical marginal distributions
and Spearman correlation coefficient 0.6 (to be checked)
k <- 2
marginal <- list(c(0.1,0.3,0.6), c(0.4,0.7,0.9))
corcheck(marginal, Spearman=TRUE) # check ok
Sigma <- matrix(c(1,0.6,0.6,1),2,2)
sample size 1000
n <- 1000
generate a sample of size n
m <- ordsample(n, marginal, Sigma, Spearman=TRUE)
head(m)
sample correlation matrix
cor(rank(m[,1]),rank(m[,2])) # compare it with Sigma
empirical marginal distributions
cumsum(table(m[,1]))/n
cumsum(table(m[,2]))/n # compare them with the two marginal distributions

Example 1

draw a sample from a bivariate random variable
with binomial marginal distributions (n=3, p=1/3 and n=4, p=2/3)
and Pearson correlation coefficient 0.6 (to be checked)
k <- 2
marginal <- list(pbinom(0:2, 3, 1/3), pbinom(0:3, 4, 2/3))
marginal
corrcheck(marginal)
Sigma <- matrix(c(1, 0.6, 0.6, 1, 2, 2)
sample size 1000
n <- 1000
generate a sample of size n
m <- ordsample(n, marginal, Sigma, support=list(0:3, 0:4))
head(m)
sample correlation matrix
cor(m) # compare it with Sigma
empirical marginal distributions
cumsum(table(m[,1]))/n
cumsum(table(m[,2]))/n # compare them with the two marginal distributions

Example 2

draw a sample from a 4-dimensional ordinal variable
with different number of categories and uniform marginal distributions
and different correlation coefficients
k <- 4
marginal <- list(0.5, c(1/3, 2/3), c(1/4, 2/4, 3/4), c(1/5, 2/5, 3/5, 4/5))

corrcheck(marginal)
select a feasible correlation matrix
Sigma <- matrix(c(1, 0.5, 0.4, 0.3, 0.5, 1, 0.5, 0.4, 0.4, 0.5, 1, 0.5, 0.3, 0.4, 0.5, 1),
4, 4, byrow=TRUE)
Sigma
sample size 100
n <- 100
generate a sample of size n
set.seed(1)
m <- ordsample(n, marginal, Sigma)
sample correlation matrix
cor(m) # compare it with Sigma
empirical marginal distribution
cumsum(table(m[,1]))/n # compare it with the fourth marginal
head(m)
or equivalently...
set.seed(1)
res <- ordcont(marginal, Sigma)
res[[1]] # the intermediate correlation matrix of the multivariate normal
m <- ordsample(n, marginal, res[[1]], cormat="continuous")
head(m)

Example 3
simulation of two correlated Poisson r.v.
modification to GenOrd sampling function for Poisson distribution
ordsamplep<-function (n, lambda, Sigma)
{
 k <- length(lambda)
 valori <- mvrnorm(n, rep(0, k), Sigma)
 for (i in 1:k)
 {
 valori[, i] <- qpois(pnorm(valori[,i]), lambda[i])
 }
 return(valori)
}
number of variables
k <- 2
Poisson parameters
lambda <- c(2, 5)
correlation matrix
Sigma <- matrix(c(0.25, 2, 2)
diag(Sigma) <- 1
sample size
n <- 10000
preliminar stage: support TRUNCATION
required for recovering the correlation matrix
of the standard bivariate normal
truncation error
epsilon <- 0.0001
corresponding maximum value
kmax <- qpois(1-epsilon, lambda)
truncated marginals
l <- list(
 for(i in 1:k)
 {
 l[i] <- 0:kmax[i]
 }
 marg <- list()
 for(i in 1:k)
 {
 marg[i] <- dpois(0:kmax[i], lambda[i])
 marg[i][kmax[i]+1] <- 1-sum(marg[i][1:(kmax[i])])
 }
 cm <- list()
 for(i in 1:k)
 {
 cm[i] <- cumsum(marg[i])
 cm[i] <- cm[i][-(kmax[i]+1)]
 }
check feasibility of correlation matrix
RB <- corrcheck(cm, support=1)
RL <- RB[[1]]
RU <- RB[[2]]
Sigma <= RU & Sigma >= RL # OK
res <- ordcont(cm, Sigma, support=1)
res[[1]]
Sigma <- res[[1]]
draw the sample
m <- ordsamplep(n, lambda, Sigma)
sample correlation matrix
cor(m)
head(m)

Example 4
simulation of 4 correlated binary and Poisson r.v.'s (2+2)
modification to GenOrd sampling function
ordsamplep <- function (n, marginal, lambda, Sigma)
{
 k <- length(lambda)
 valori <- mvrnorm(n, rep(0, k), Sigma)
 for(i in 1:k)
 {
 if(lambda[i]==0)
 {
 valori[, i] <- as.integer(cut(valori[, i], breaks = c(min(valori[,i]), -1,
 qnorm(marginal[[i]]), max(valori[, i]), 1)))
 valori[, i] <- support[[i]][valori[, i]]
 }
 else
 {
 valori[, i] <- qpois(pnorm(valori[,i]), lambda[i])
 }
 }
 return(valori)
}
number of variables
k <- 4
Poisson parameters (only 3rd and 4th are Poisson)
lambda <- c(0, 0, 2, 5)
1st and 2nd are Bernoulli with p=0.5
marginal <- list()
marginal[[1]] <- .5
marginal[[2]] <- .5
marginal[[3]] <- 0
marginal[[4]] <- 0
support
support <- list()
support[[1]] <- 0:1
support[[2]] <- 0:1
correlation matrix
Sigma <- matrix(0.25, k, k)
diag(Sigma) <- 1
sample size
n <- 10000

preliminary stage: support TRUNCATION
required for recovering the correlation matrix
of the standard bivariate normal
truncation error
epsilon <- 0.0001
corresponding maximum value
kmax <- qpois(1-epsilon, lambda)
truncated marginals
for(i in 1:4)
{
support[i] <- 0:kmax[i]
}
marg <- list()
for(i in 1:4)
{
marg[i] <- dpois(0:kmax[i], lambda[i])
marg[i][kmax[i]+1] <- 1-sum(marg[i][1:(kmax[i)])
}
for(i in 1:4)
{
marginal[i] <- cumsum(marg[i])
marginal[i] <- marginal[i][-(kmax[i]+1)]
}
check feasibility of correlation matrix
RB <- corrcheck(marginal, support=support)
RL <- RB[1]
RU <- RB[2]
Sigma <- RU & Sigma >= RL # OK
compute correlation matrix of the T-variate standard normal
res <- ordcont(marginal, Sigma, support=support)
res[1]
Sigma <- res[1]
draw the sample
m <- ordsamplep(n, marginal, lambda, Sigma)
sample correlation matrix
cor(m)
head(m)
Index

*Topic datagen
 contord, 3
 ordcont, 5
 ordsample, 7
*Topic distribution
 contord, 3
 corrcheck, 4
 ordcont, 5
 ordsample, 7
*Topic htest
 contord, 3
 corrcheck, 4
 ordcont, 5
 ordsample, 7
*Topic models
 contord, 3
 corrcheck, 4
 ordcont, 5
 ordsample, 7
*Topic multivariate
 contord, 3
 corrcheck, 4
 ordcont, 5
 ordsample, 7
*Topic package
 GenOrd-package, 2
 contord, 2, 3, 5, 6, 8
 corrcheck, 2, 3, 4, 6, 8
 GenOrd-package, 2
 ordcont, 2, 3, 5, 5, 8
 ordsample, 2, 3, 5, 6, 7