Package ‘GeneNet’

August 2, 2015

Version 1.2.13
Date 2015-09-02
Title Modeling and Inferring Gene Networks
Author Juliane Schaefer, Rainer Opgen-Rhein, and Korbinian Strimmer.
Maintainer Korbinian Strimmer <strimmerlab@gmail.com>
Depends R (>= 3.0.2), corpcor (>= 1.6.8), longitudinal (>= 1.1.12), fdrtol (>= 1.2.15)
Suggests graph, Rgraphviz
Imports stats, grDevices
Description Analyzes gene expression (time series) data with focus on the inference of gene networks.
In particular, GeneNet implements the methods of Schaefer and Strimmer (2005a,b,c) and Opgen-Rhein and Strimmer (2006, 2007) for learning large-scale gene association networks (including assignment of putative directions).
License GPL (>= 3)
URL http://strimmerlab.org/software/genenet/
NeedsCompilation no
Repository CRAN
Date/Publication 2015-08-02 19:17:14

R topics documented:

GeneNet-package .. 2
arth800 ... 2
cor0.test ... 3
ecoli ... 5
ggm.estimate.pcor .. 6
ggm.simulate.data .. 7
ggm.simulate.pcor .. 9
The GeneNet package

Description

GeneNet is a package for analyzing gene expression (time series) data with focus on the inference of gene networks. In particular, GeneNet implements the methods of Sch\'afer and Strimmer (2005a,b,c) and Opgen-Rhein and Strimmer (2006, 2007) for learning large-scale gene association networks (including assignment of putative directions).

Author(s)

Juliane Sch\'afer, Rainer Opgen-Rhein, and Korbinian Strimmer (http://strimmerlab.org/)

References

See website: http://strimmerlab.org/software/GeneNet/

See Also

ggm.estimate.pcor, network.test.edges, extract.network, network.make.dot.

Time Series Expression Data for 800 Arabidopsis Thaliana Genes

Description

This data set describes the temporal expression of 800 genes of *A. thaliana* during the diurnal cycle. The 800 genes are a subset of the data presented in Smith et al. (2004) and were selected for periodicity according to the method implemented in the R package GeneCycle (http://cran.r-project.org/package=GeneCycle).

Usage

data(arth800)
cor0.test

Format

arth800Nexpr is a longitudinal object with repetitions, and contains the log2 transformed expression data.

arth800.mexpr is a longitudinal object, and contains the mean expression levels of arth800.expr.

arth800.descr, arth800.name, arth800.probe, arth800.symbol are vectors containing additional information about each gene.

Source

The microarray experiments were performed in the laboratory of S. Smith (Edinburgh). The data are available from the NASCArrays database (http://affymetrix.arabidopsis.info/ under experiment reference number NASCARRAYS-60.

References

Examples

load GenNet library
library("GenNet")

load data set
data(arth800)

is.longitudinal(arth800.expr)
summary(arth800.expr)

plot first nine time series
plot(arth800.expr[, 1:9])

cor0.test

Test of Vanishing (Partial) Correlation

Description

cor0.test computes a p-value for the two-sided test with the null hypothesis H0: rho == 0 versus the alternative hypothesis HA: rho != 0.

If method="student" is selected then the statistic \(t = r \times \sqrt{((kappa-1)/(1-r^2))} \) is considered which under H0 is student-t distributed with df=kappa-1. This method is exact.

If method="dcor0" is selected then the p-value is computed directly from the distribution function pcor0. This method is also exact.

If method="ztransform" is selected then the p-value is computed using the z-transform (see z.transform), i.e. using a suitable chosen normal distribution. This method returns approximate p-values.
Usage

```r
cor0.test(r, kappa, method=c("student", "dcor0", "ztransform"))
```

Arguments

- `r`: observed correlation
- `kappa`: degree of freedom of the null-distribution
- `method`: method used to compute the p-value

Value

A p-value.

Author(s)

See Also

dcor0, kappa2n, z.transform.

Examples

```r
# load GeneNet library
library("GeneNet")

# covariance matrix
m.cov <- rbind(
  c(3,1,1,0),
  c(1,3,0,1),
  c(1,0,2,0),
  c(0,1,0,2)
)

# compute partial correlations
m.pcor <- cor2pcor(m.cov)
m.pcor

# corresponding p-values
# assuming a sample size of 25, i.e. kappa=22
kappa2n(22, 4)
cor0.test(m.pcor, kappa=22)
cor0.test(m.pcor, kappa=22) < 0.05

# p-values become smaller with larger r
cor0.test(0.7, 12)
cor0.test(0.8, 12)
cor0.test(0.9, 12)

# comparison of various methods
cor0.test(0.2, 45, method="student")
```
ecoli

Microarray Time Series Data for 102 E. Coli Genes

Description

This data set describes the temporal expression of 102 genes of *E. Coli* after induction of the expression of SOD (recombinant human superoxide dismutase).

Usage

data(ecoli)

Format

caulobacter is a *longitudinal* object containing the data from the Schmidt-Heck et al. (2004) experiment. Essentially, this is a matrix with 102 columns (=genes) and 9 rows (=time points). All expression levels are given in log2-ratios with respect to the first time point (i.e. the induction at time 0).

Source

The microarray experiment was performed at the Institute of Applied Microbiology, University of Agricultural Sciences of Vienne. The data and the experiment is described in Schmidt-Heck et al. (2004).

References

Examples

```r
# load GeneNet library
library("GeneNet")

# load data set
data(ecoli)
is.longitudinal(ecoli)

# how many samples and how many genes?
dim(ecoli)
summary(ecoli)
get.time.repeats(ecoli)
```
gmm.estimate.pcor

plot first nine time series
plot(ecoli, 1:9)

Description

`gmm.estimate.pcor` offers an interface to two related shrinkage estimators of partial correlation. Both are fast, statistically efficient, and can be used for analyzing small sample data.

The default method "statics" employs the function `pcor.shrink` whereas the "dynamic" method relies on `dyn.pcor`. The difference between the two estimators is that the latter takes the spacings between time points into account if the input are multiple time course data (these must be provided as `longitudinal` object).

Usage

```
gmm.estimate.pcor(x, method = c("static", "dynamic"), ...)
```

Arguments

- `x` - data matrix (each rows corresponds to one multivariate observation)
- `method` - method used to estimate the partial correlation matrix. Available options are "static" (the default) and "dynamic" - both are shrinkage methods.
- `...` - options passed to `pcor.shrink` and to `dyn.pcor`.

Details

For details of the shrinkage estimators we refer to Opgen-Rhein and Strimmer (2006a,b) and Schäfer and Strimmer (2005), as well as to the manual pages of `pcor.shrink` and `dyn.pcor`.

Previously, this function offered several furthers options. The old option called "shrinkage" corresponds to the present "static" option. The other old options "observed.pcor", "partial.bagged.cor", and "bagged.pcor" are now considered obsolete and have been removed.

Value

An estimated partial correlation matrix.

Author(s)

ggm.simulate.data

References

See Also

ggm.simulate.data, ggm.estimate.pcor, pcor.shrink, and dyn.pcor.

Examples

Not run:

load GeneNet library
library("GeneNet")

generate random network with 40 nodes
it contains 780=40*39/2 edges of which 5 percent (=39) are non-zero
true.pcor <- ggm.simulate.pcor(40)

simulate data set with 40 observations
m.sim <- ggm.simulate.data(40, true.pcor)

simple estimate of partial correlations
estimated.pcor <- cor2pcor(cor(m.sim))

comparison of estimated and true values
sum((true.pcor-estimated.pcor)^2)

a slightly better estimate ...
estimated.pcor.2 <- ggm.estimate.pcor(m.sim)
sum((true.pcor-estimated.pcor.2)^2)

End(Not run)
Description

ggm.simulate.data takes a positive definite partial correlation matrix and generates an i.i.d. sample from the corresponding standard multinormal distribution (with mean 0 and variance 1). If the input matrix pcor is not positive definite an error is thrown.

Usage

ggm.simulate.data(sample.size, pcor)

Arguments

 sample.size sample size of simulated data set
 pcor partial correlation matrix

Value

A multinormal data matrix.

Author(s)

References

See Also

ggm.simulate.pcor, ggm.estimate.pcor.

Examples

```r
# load GeneNet library
library("GeneNet")

# generate random network with 40 nodes
# it contains 780=40*39/2 edges of which 5 percent (=39) are non-zero
true.pcor <- ggm.simulate.pcor(40)

# simulate data set with 40 observations
m.sim <- ggm.simulate.data(40, true.pcor)

# simple estimate of partial correlations
estimated.pcor <- cor2pcor( cor(m.sim) )

# comparison of estimated and true values
sum((true.pcor-estimated.pcor)^2)

# a slightly better estimate ...
```
estimated.pcor.2 <- ggm.estimate.pcor(m.sim)
sum((true.pcor-estimated.pcor.2)^2)

ggm.simulate.pcor
Graphical Gaussian Models: Simulation of Networks

Description

`ggm.simulate.pcor` generates a random matrix of partial correlations that corresponds to a GGM network of a given size (`num.nodes`) with a specified fraction of non-zero edges.

Usage

`ggm.simulate.pcor(num.nodes, etaA=0.05)`

Arguments

- `num.nodes`: number of nodes in the network
- `etaA`: fraction of edges with non-zero partial correlation (default: 0.05)

Details

The output of `ggm.simulate.pcor` is always positive definite. This is ensured by using diagonally dominant matrices when generating the random GGM model. For the full algorithm see Sch"afer and Strimmer (2005).

Value

A positive definite partial correlation matrix.

Author(s)

Juliane Sch"afer and Korbinian Strimmer (http://strimmerlab.org).

References

See Also

`ggm.simulate.data`, `ggm.estimate.pcor`.
Examples

```r
## Not run:

# load GeneNet library
library("GeneNet")

# generate random network with 40 nodes
# it contains 780=40*39/2 edges of which 5 percent (=39) are non-zero
true.pcor <- ggm.simulate.pcor(40)

# simulate data set with 40 observations
m.sim <- ggm.simulate.data(40, true.pcor)

# simple estimate of partial correlations
estimated.pcor <- cor2pcor( cor(m.sim) )

# comparison of estimated and true values
sum((true.pcor-estimated.pcor)^2)

# a slightly better estimate ...
estimated.pcor.2 <- ggmestimate.pcor(m.sim)
sum((true.pcor-estimated.pcor.2)^2)

## End(Not run)
```

kappa2n
Relationship Between Sample Size and the Degree of Freedom of Correlation Distribution

Description

The function `kappa2n` returns the sample size that corresponds to a given degree of freedom `kappa`, whereas `n2kappa` converts sample size to the corresponding degree of freedom.

Usage

```r
kappa2n(kappa, p=2)
n2kappa(n, p=2)
```

Arguments

- `kappa`
 degree of freedom

- `p`
 number of variables (p=2 corresponds to simple correlation)

- `n`
 sample size
network.make.graph

Details

The degree of freedom kappa of the sample distribution of the empirical correlation coefficient depends both on the sample size n and the number p of investigated variables, i.e. whether simple or partial correlation coefficients are being considered. For p=2 (simple correlation coefficient) the degree of freedom equals kappa = n-1, whereas for arbitrary p (with p-2 variables eliminated in the partial correlation coefficient) kappa = n-p+1 (see also dcor0).

Value

The sample size n corresponding to a given kappa, or the degree of freedom kappa corresponding to a given p.

Author(s)

See Also

dcor0.

Examples

load GenNet library
library("GenNet")

sample sizes corresponding to kappa=7
kappa2n(7) # simple correlation
kappa2n(7, 40) # partial correlation with p=40 variables

degree of freedom corresponding to n=100
n2kappa(100)
n2kappa(100,40)

network.make.graph Graphical Gaussian Models: Plotting the Network

Description

network.make.dot converts an edge list as obtained by network.test.edges into a "dot" file that can directly be used for plotting the network with graphviz.

network.make.graph converts an edge list as obtained by network.test.edges into a graph object.

dedge.info shows the edge weights and the edge directions.

dnode.degree shows number of edges connected to a node (bi-directional/undirected edges are counted only once).

dnum.nodes shows the number of nodes.
Usage

network.make.dot(filename, edge.list, node.labels, main=NULL, show.edge.labels=FALSE)
network.make.graph(edge.list, node.labels, drop.singles=FALSE)
edge.info(gr)
node.degree(gr)
um.nodes(gr)

Arguments

filename name of file containing the "dot" commands for graphviz
edge.list a data frame, as obtained by network.test.edges, listing all edges to be included in the graph
node.labels a vector with labels for each node (will be converted to type character)
main title included in plot
show.edge.labels plot correlation values as edge labels (default: FALSE)
drop.singles remove unconnected nodes
gr a graph object
... options passed to plot functions

Details

For network plotting the software "graphviz" is employed (http://www.graphviz.org).

For the functions network.plot.graph and network.make.graph the "graph" and "Rgraphviz" packages from the Bioconductor project (http://www.bioconductor.org) is required.

Value

network.make.dot produces a "dot" network description file that can directly be fed into graphviz in order to produce a plot of a network.

network.make.graph returns a graph object, suitable for plotting with functions from the "Rgraphviz" library.

edge.info returns a list containing vector of weights for all edges contained in a graph, and a vector listing the directions of the edges (using Rgraphviz conventions "forward" for directed edge, and "none" for bi-directional/undirected edge).

num.nodes returns the number of nodes.

Author(s)

See Also

network.test.edges, plot.graph.
Examples

load GenNet library
library("GenNet")

generate random network with 20 nodes and 10 percent edges (=19 edges)
true.pcor <- ggm.simulate.pcor(20, 0.1)

convert to edge list
test.results <- ggm.list.edges(true.pcor)[1:19,]

########## use graphviz directly to produce a plot ##########

uncomment for actual use!

nlab <- LETTERS[1:20]
ggm.make.dot(filename="test.dot", test.results, nlab, main = "A graph")
system("fdp -T svg -o test.svg test.dot") # SVG format

########## use Rgraphviz produce a plot ##########

uncomment for actual use!

nlab <- LETTERS[1:20]
gr <- network.make.graph(test.results, nlab)
gr
num.nodes(gr)
edge.info(gr)
gr2 <- network.make.graph(test.results, nlab, drop.singles=TRUE)
gr2
num.nodes(gr2)
edge.info(gr2)

plot network
NOTE: this requires the installation of the "Rgraphviz" library
library("Rgraphviz")
plot(gr, "fdp")
plot(gr2, "fdp")

for a full example with beautified Rgraphviz plot see
the example scripts provide with GenNet (e.g. arabidopis-net.R)
network.test.edges returns a data frame containing all edges listed in order of the magnitude of the partial correlation associated with each edge. If fdr=TRUE then in addition the p-values, q-values and posterior probabilities (=1 - local fdr) for each potential edge are computed.

extract.network returns a data frame with a subset of significant edges.

Usage

```r
network.test.edges(r.mat, fdr=TRUE, direct=FALSE, plot=TRUE, ...) extract.network(network.all, method.ggm=c("prob", "qval","number"),
   cutoff.ggm=0.8, method.dir=c("prob","qval","number", "all"),
   cutoff.dir=0.8, verbose=TRUE)
```

Arguments

- `r.mat`: matrix of partial correlations
- `fdr`: estimate q-values and local fdr
- `direct`: compute additional statistics for obtaining a partially directed network
- `plot`: plot density and distribution function and (local) fdr values
- `...`: parameters passed on to `fdrtool`
- `network.all`: list with partial correlations and fdr values for all potential edges (i.e. the output of `network.test.edges`)
- `method.ggm`: determines which criterion is used to select significant partial correlations (default: prob)
- `cutoff.ggm`: default cutoff for significant partial correlations
- `method.dir`: determines which criterion is used to select significant directions (default: prob)
- `cutoff.dir`: default cutoff for significant directions
- `verbose`: print information on the number of significant edges etc.

Details

For assessing the significance of edges in the GGM a mixture model is fitted to the partial correlations using `fdrtool`. This results in (i) two-sided p-values for the test of non-zero correlation, (ii) corresponding posterior probabilities (=1 - local fdr), as well as (iii) tail area-based q-values. See Schäfer and Strimmer (2005) for details.

For determining putatative directions on this GGM log-ratios of standardized partial variances are estimated, and subsequently the corresponding (local) fdr values are computed - see Opgen-Rhein and Strimmer (2007).

Value

`network.test.edges` returns a data frame with the following columns:

- `pcor`: correlation (from `r.mat`)
- `node1`: first node connected to edge
node2 : second node connected to edge
pval : p-value
qval : q-value
prob : probability that edge is nonzero (= 1-local fdr
log.spvar: log ratio of standardized partial variance (determines direction)
pval.dir: p-value (directions)
qval.dir: q-value (directions)
prob.dir: 1-local fdr (directions)

Each row in the data frame corresponds to one edge, and the rows are sorted according the absolute
strength of the correlation (from strongest to weakest)

eachNetwork processes the above data frame containing all potential edges, and returns a
dataframe with a subset of edges. If applicable, an additional last column (11) contains additional
information on the directionality of an edge.

Author(s)
Rainer Opgen-Rhein, Juliane Schäfer, Korbinian Strimmer (http://strimmerlab.org).

References

approximate learning algorithm and its application to high-dimensional plant gene expression data.
BMC Syst. Biol. 1:37.

See Also
cor0.test, fdrtool, ggm.estimate.pcor.

Examples

```r
# load GeneNet library
library("GeneNet")

# ecoli data
data(ecoli)

# estimate partial correlation matrix
inferred.pcor <- ggm.estimate.pcor(ecoli)

# p-values, q-values and posterior probabilities for each potential edge
# test.results <- network.test.edges(inferred.pcor)

# show best 20 edges (strongest correlation)
test.results[1:20,]
```
extract network containing edges with prob > 0.9 (i.e. local fdr < 0.1)
net <- extract.network(test.results, cutoff.ggm=0.9)
net

how many are significant based on FDR cutoff Q=0.05 ?
num.significant.1 <- sum(test.results$qval <= 0.05)
test.results[1:num.significant.1,]

how many are significant based on "local fdr" cutoff (prob > 0.9) ?
num.significant.2 <- sum(test.results$prob > 0.9)
test.results[test.results$prob > 0.9,]

parameters of the mixture distribution used to compute p-values etc.
c <- fdrtool(sm2vec(inferred.pcor), statistic="correlation")
c$param

z.transform

Variance-Stabilizing Transformations of the Correlation Coefficient

Description

z.transform implements Fisher's (1921) first-order and Hotelling's (1953) second-order transformations to stabilize the distribution of the correlation coefficient. After the transformation the data follows approximately a normal distribution with constant variance (i.e. independent of the mean).

The Fisher transformation is simply \(z_N \text{transform}(r) = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) \).

Hotelling's transformation requires the specification of the degree of freedom \(\kappa \) of the underlying distribution. This depends on the sample size \(n \) used to compute the sample correlation and whether simple or partial correlation coefficients are considered. If there are \(p \) variables, with \(p-2 \) variables eliminated, the degree of freedom is \(\kappa = n-p+1 \). (cf. also *dcor*).

Usage

\[
\text{z.transform}(r) \\
\text{hotelling.transform}(r, \kappa)
\]

Arguments

- \(r \) vector of sample correlations
- \(\kappa \) degrees of freedom of the distribution of the correlation coefficient

Value

The vector of transformed sample correlation coefficients.

Author(s)

Korbinian Strimmer (http://strimmerlab.org).
References

See Also

dcor0, kappa2n.

Examples

```r
# load GenNet library
library("GenNet")

# small example data set
r <- c(-0.26074194, 0.47251437, 0.23957283,-0.02187209,-0.07699437,
      -0.03809433,-0.06010493, 0.01334491,-0.42383367,-0.25513041)

# transformed data
z1 <- z.transform(r)
z2 <- hotelling.transform(r,7)
z1
z2
```
Index

*Topic datasets
 arth800, 2
ecoli, 5

*Topic hplot
 network.make.graph, 11

*Topic htest
 cor0.test, 3
ggm.estimate.pcor, 6
 network.test.edges, 13

*Topic multivariate
 GeneNet-package, 2
ggm.simulate.data, 7
ggm.simulate.pcor, 9

*Topic univar
 kappa2n, 10
 z.transform, 16

arth800, 2
cor0.test, 3, 15
dcor0, 4, 11, 16, 17
dyn.pcor, 6, 7
ecoli, 5
edge.info (network.make.graph), 11
extract.network, 2
extract.network (network.test.edges), 13

fdrtol, 14, 15

GeneNet-package, 2
ggm.estimate.pcor, 2, 6, 7–9, 15
ggm.simulate.data, 7, 7, 9
ggm.simulate.pcor, 8, 9

hotelling.transform (z.transform), 16
kappa2n, 4, 10, 17

longitudinal, 3, 5, 6

n2kappa (kappa2n), 10
network.make.dot, 2
network.make.dot (network.make.graph), 11
network.make.graph, 11
network.test.edges, 2, 11, 12, 13
node.degree (network.make.graph), 11
num.nodes (network.make.graph), 11
pcor.shrink, 6, 7
pcor0, 3
z.transform, 3, 4, 16