A Handbook of Statistical Analyses Using R

Brian S. Everitt and Torsten Hothorn
CHAPTER 5

Multiple Linear Regression: Cloud Seeding

5.1 Introduction

5.2 Multiple Linear Regression

5.3 Analysis Using R

Both the boxplots (Figure 5.1) and the scatterplots (Figure 5.2) show some evidence of outliers. The row names of the extreme observations in the clouds data.frame can be identified via

R> rownames(clouds)[clouds$rainfall %in% c(bxpseeding$out, + bxpecho$out)]

[1] "1" "15"

where bxpseeding and bxpecho are variables created by boxplot in Figure 5.1. For the time being we shall not remove these observations but bear in mind during the modelling process that they may cause problems.

5.3.1 Fitting a Linear Model

In this example it is sensible to assume that the effect that some of the other explanatory variables is modified by seeding and therefore consider a model that allows interaction terms for seeding with each of the covariates except time. This model can be described by the formula

R> clouds_formula <- rainfall ~ seeding * (sne + cloudcover + + prewetness + echomotion) + time

and the design matrix X^* can be computed via

R> Xstar <- model.matrix(clouds_formula, data = clouds)

By default, treatment contrasts have been applied to the dummy codings of the factors seeding and echomotion as can be seen from the inspection of the contrasts attribute of the model matrix

R> attr(Xstar, "contrasts")

$seeding

[1] "contr.treatment"

$echomotion

[1] "contr.treatment"
MULTIPLE LINEAR REGRESSION

R> data("clouds", package = "HSAUR")
R> layout(matrix(1:2, nrow = 2))
R> bxpseeding <- boxplot(rainfall ~ seeding, data = clouds,
+ ylab = "Rainfall", xlab = "Seeding")
R> bxpecho <- boxplot(rainfall ~ echomotion, data = clouds,
+ ylab = "Rainfall", xlab = "Echo Motion")

\begin{figure}
\centering
\includegraphics[width=\textwidth]{boxplots}
\caption{Boxplots of rainfall.}
\end{figure}
ANALYSIS USING R

```
R> layout(matrix(1:4, nrow = 2))
R> plot(rainfall ~ time, data = clouds)
R> plot(rainfall ~ cloudcover, data = clouds)
R> plot(rainfall ~ sne, data = clouds, xlab="S-Ne criterion")
R> plot(rainfall ~ prewetness, data = clouds)
```

![Scatterplots](image)

Figure 5.2 Scatterplots of rainfall against the continuous covariates.

The default contrasts can be changed via the `contrasts.arg` argument to `model.matrix` or the `contrasts` argument to the fitting function, for example `lm` or `aov` as shown in Chapter 4.

However, such internals are hidden and performed by high-level model fitting functions such as `lm` which will be used to fit the linear model defined by the *formula* `clouds_formula`:

```
R> clouds_lm <- lm(clouds_formula, data = clouds)
R> class(clouds_lm)
[1] "lm"
```
The results of the model fitting is an object of class \texttt{lm} for which a \texttt{summary} method showing the conventional regression analysis output is available. The output in Figure 5.3 shows the estimates $\hat{\beta}$ with corresponding standard errors and t-statistics as well as the F-statistic with associated p-value.

\begin{verbatim}
R> summary(clouds_lm)
Call:
 lm(formula = clouds_formula, data = clouds)
Residuals:
 Min 1Q Median 3Q Max
-2.5259 -1.1486 -0.2704 1.0401 4.3913
Coefficients:
 Estimate Std. Error t value
(Intercept) -0.3462 2.7877 -0.124
seedingyes 15.6830 4.4463 3.527
sne 0.4198 0.8445 0.497
cloudcover 0.3879 0.2179 1.780
prewetness 4.1083 3.6010 1.141
echomotionstationary -3.1972 1.2671 -2.523
seedingyes:sne -0.4862 0.2411 -2.017
seedingyes:cloudcover -2.5571 4.4809 -0.571
seedingyes:prewetness -0.5622 2.6443 -0.213
 Pr(>|t|)
(Intercept) 0.90306
seedingyes 0.00372 **
sne 0.62742
cloudcover 0.09839
prewetness 0.27450
ephemerationstationary 0.12677
seedingyes:cloudcover 0.06482 .
seedingyes:prewetness 0.57796
seedingyes:ephemerationstationary 0.83492

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.205 on 13 degrees of freedom
Multiple R-squared: 0.7158, Adjusted R-squared: 0.4972
F-statistic: 3.274 on 10 and 13 DF, p-value: 0.02431
\end{verbatim}

\textbf{Figure 5.3} \(R \) output of the linear model fit for the \texttt{clouds} data.

Many methods are available for extracting components of the fitted model. The estimates $\hat{\beta}$ can be assessed via

\begin{verbatim}
R> betastar <- coef(clouds_lm)
R> betastar

 (Intercept) -0.34624093
 seedingyes 15.68293481
 sne 0.41981393
\end{verbatim}
ANALYSIS USING R

cloudcover
 0.38786207
prewetness
 4.10834188
echomotionstationary
 3.15281358
time
 -0.04497427
seedingyes:sne
 -3.19719006
seedingyes:cloudcover
 -0.48625492
seedingyes:prewetness
 -2.55706696
seedingyes:echomotionstationary
 -0.56221845

and the corresponding covariance matrix $\text{Cov}(\hat{\beta}^\star)$ is available from the `vcov` method

R> Vbetastar <- vcov(clouds_lm)

where the square roots of the diagonal elements are the standard errors as shown in Figure 5.3

R> sqrt(diag(Vbetastar))

(Intercept) 2.78773403
seedingyes 4.44626606
 sne 0.84452994
 cloudcover 0.21785501
 prewetness 3.60100694
echomotionstationary 1.93252592
time 0.02505286
seedingyes:sne 1.26707204
seedingyes:cloudcover 0.24106012
seedingyes:prewetness 4.48089584
seedingyes:echomotionstationary 2.64429975

R> psymb <- as.numeric(clouds$seeding)
R> plot(rainfall ~ sne, data = clouds, pch = psymb,
+ xlab = "S-Ne criterion")
R> abline(lm(rainfall ~ sne, data = clouds,
+ subset = seeding == "no"))
R> abline(lm(rainfall ~ sne, data = clouds,
+ subset = seeding == "yes"), lty = 2)
R> legend("topright", legend = c("No seeding", "Seeding"),
+ pch = 1:2, lty = 1:2, bty = "n")

Figure 5.4 Regression relationship between S-Ne criterion and rainfall with and without seeding.
5.3.2 Regression Diagnostics

In order to investigate the quality of the model fit, we need access to the residuals and the fitted values. The residuals can be found by the residuals method and the fitted values of the response from the fitted (or predict) method.

\begin{verbatim}
R> clouds_resid <- residuals(clouds_lm)
R> clouds_fitted <- fitted(clouds_lm)
\end{verbatim}

Now the residuals and the fitted values can be used to construct diagnostic plots; for example the residual plot in Figure 5.5 where each observation is labelled by its number. Observations 1 and 15 give rather large residual values and the data should perhaps be reanalysed after these two observations are removed. The normal probability plot of the residuals shown in Figure 5.6 shows a reasonable agreement between theoretical and sample quantiles, however, observations 1 and 15 are extreme again.

An index plot of the Cook’s distances for each observation (and many other plots including those constructed above from using the basic functions) can be found from applying the plot method to the object that results from the application of the lm function. Figure 5.7 suggests that observations 2 and 18 have undue influence on the estimated regression coefficients, but the two outliers identified previously do not. Again it may be useful to look at the results after these two observations have been removed (see Exercise 5.2).
Figure 5.5 Plot of residuals against fitted values for clouds seeding data.
ANALYSIS USING R

```
R> qqnorm(clouds_resid, ylab = "Residuals")
R> qqline(clouds_resid)
```

Figure 5.6 Normal probability plot of residuals from cloud seeding model `clouds_lm`.
R> plot(clouds_lm)

Figure 5.7 Index plot of Cook’s distances for cloud seeding data.