Package ‘HistData’

April 5, 2018

Type Package

Title Data Sets from the History of Statistics and Data Visualization

Version 0.8-4

Date 2018-04-04

Maintainer Michael Friendly <friendly@yorku.ca>

Description The 'HistData' package provides a collection of small data sets that are interesting and important in the history of statistics and data visualization. The goal of the package is to make these available, both for instructional use and for historical research. Some of these present interesting challenges for graphics or analysis in R.

Suggests gtools, KernSmooth, maps, ggplot2, scales, proto, grid, reshape, plyr, lattice, jpeg, car, gplots, sp, heplots, knitr, rmarkdown, effects, lubridate, gridExtra

License GPL

LazyLoad yes

LazyData yes

VignetteBuilder knitr

RoxygenNote 5.0.1

NeedsCompilation no

Author Michael Friendly [aut, cre], Stephane Dray [ctb], Hadley Wickham [ctb], James Hanley [ctb], Dennis Murphy [ctb], Peter Li [ctb]

Repository CRAN

Date/Publication 2018-04-04 22:39:44 UTC
The HistData package provides a collection of data sets that are interesting and important in the history of statistics and data visualization. The goal of the package is to make these available, both for instructional use and for historical research.
HistData-package

Details
Some of the data sets have examples which reproduce an historical graph or analysis. These are meant mainly as starters for more extensive re-analysis or graphical elaboration. Some of these present graphical challenges to reproduce in R.

They are part of a program of research called statistical historiography, meaning the use of statistical methods to study problems and questions in the history of statistics and graphics. Descriptions of each DataSet can be found using `help(DataSet)`; `example(DataSet)` will likely show applications similar to the historical use.

Data sets included in the HistData package are:

- **Arbuthnot** Arbuthnot’s data on male and female birth ratios in London from 1629-1710
- **Armada** The Spanish Armada
- **Bowley** Bowley’s data on values of British and Irish trade, 1855-1899
- **Cavendish** Cavendish’s 1798 determinations of the density of the earth
- **ChestSizes** Quetelet’s data on chest measurements of Scottish militiamen
- **Cholera** William Farr’s Data on Cholera in London, 1849
- **CushnyPeebles** Cushny-Peebles data: Soporific effects of scopolamine derivatives
- **Dactyl** Edgeworth’s counts of dactyls in Virgil’s Aeneid
- **DrinksWages** Elderton and Pearson’s (1910) data on drinking and wages
- **Fingerprints** Waite’s data on Patterns in Fingerprints
- **Galton** Galton’s data on the heights of parents and their children
- **GaltonFamilies** Galton’s data on the heights of parents and their children, by family
- **Guerry** Data from A.-M. Guerry, "Essay on the Moral Statistics of France"
- **HalleyLifeTable** Halley’s Life Table
- **Jevons** W. Stanley Jevons’ data on numerical discrimination
- **Langren** van Langren’s data on longitude distance between Toledo and Rome
- **Macdonell** Macdonell’s data on height and finger length of criminals, used by Gosset (1908)
- **Michelson** Michelson’s 1879 determinations of the velocity of light
- **Minard** Data from Minard’s famous graphic map of Napoleon’s march on Moscow
- **Nightingale** Florence Nightingale’s data on deaths from various causes in the Crimean War
- **OldMaps** Latitudes and Longitudes of 39 Points in 11 Old Maps
- **PearsonLee** Pearson and Lee’s 1896 data on the heights of parents and children classified by gender
PolioTrials Polio Field Trials Data on the Salk vaccine

Prostitutes Parent-Duchatelet’s time-series data on the number of prostitutes in Paris

Pyx Trial of the Pyx

Quarrels Statistics of Deadly Quarrels

Snow John Snow’s map and data on the 1854 London Cholera outbreak

Virginis J. F. W. Herschel’s data on the orbit of the twin star gamma Virginis

Wheat Playfair’s data on wages and the price of wheat

Yeast Student’s (1906) Yeast Cell Counts

ZeaMays Darwin’s Heights of Cross- and Self-fertilized Zea May Pairs

Author(s)

Michael Friendly
Maintainer: Michael Friendly <friendly@yorku.ca>

References

See Also

Arbuthnot, Armada, Bowley, Cavendish, ChestSizes, Cholera, CushnyPeebles, Dactyl, DrinksWages, Fingerprints, Galton, GaltonFamilies, Guerry, HalleyLifeTable, Jevons, Langren, Macdonell, Michelson, Minard, Nightingale, OldMaps, PearsonLee, PolioTrials, Prostitutes, Pyx, Quarrels, Snow, Wheat, Yeast, ZeaMays

Other packages containing data sets of historical interest include:

The *Guerry-package*, containing maps and other data sets related to Guerry’s (1833) *Moral Statistics of France*.

morscodes from the (defunct) *xgobi* package for data from Rothkopf (1957) on errors in learning morse code, a classical example for MDS.

The *psych* package, containing Galton’s *peas* data. The same data set is contained in *alr3* as *galtonpeas*.
The `agridat` contains a large number of data sets of agricultural data, including some extra data sets related to the classical barley data (`immer` and `barley`) from Immer (1934): `minnesota.barley.yield`, `minnesota.barley.weather`.

Examples

see examples for the separate data sets

<table>
<thead>
<tr>
<th>Arbuthnot</th>
<th>Arthuthnot's data on male and female birth ratios in London from 1629-1710.</th>
</tr>
</thead>
</table>

Description

John Arbuthnot (1710) used these time series data on the ratios of male to female christenings in London from 1629-1710 to carry out the first known significance test, comparing observed data to a null hypothesis. The data for these 81 years showed that in every year there were more male than female christenings.

On the assumption that male and female births were equally likely, he showed that the probability of observing 82 years with more males than females was vanishingly small (4.14x10^{-25}). He used this to argue that a nearly constant birth ratio > 1 could be interpreted to show the guiding hand of a divine being. The data set adds variables of deaths from the plague and total mortality obtained by Campbell and from Creighton (1965).

Usage

data(Arbuthnot)

Format

A data frame with 82 observations on the following 7 variables.

- `Year` a numeric vector, 1629-1710
- `Males` a numeric vector, number of male christenings
- `Females` a numeric vector, number of female christenings
- `Plague` a numeric vector, number of deaths from plague
- `Mortality` a numeric vector, total mortality
- `Ratio` a numeric vector, ratio of Males/Females
- `Total` a numeric vector, total christenings in London (000s)
Details

Sandy Zabell (1976) pointed out several errors and inconsistencies in the Arbuthnot data. In particular, the values for 1674 and 1704 are identical, suggesting that the latter were copied erroneously from the former.

Jim Oeppen <joeppen@health.sdu.dk> points out that: “Arbuthnot’s data are annual counts of public baptisms, not births. Birth-baptism delay meant that infant deaths could occur before baptism. As male infants are more likely to die than females, the sex ratio at baptism might be expected to be lower than the ‘normal’ male-female birth ratio of 105:100. These effects were not constant as there were trends in birth-baptism delay, and in early infant mortality. In addition, the English Civil War and Commonwealth period 1642-1660 is thought to have been a period of both under-registration and lower fertility, but it is not clear whether these had sex-specific effects.”

Source

References

Examples

data(Arthurbnot)
plot the sex ratios
with(Arthurbnot, plot(Year,Ratio, type='b', ylim=c(1, 1.20), ylab="Sex Ratio (M/F)"))
abline(h=1, col="red")
add loess smooth
Arb.smooth <- with(Arthurbnot, loess.smooth(Year,Ratio))
lines(Arb.smooth$x, Arb.smooth$y, col="blue", lwd=2)

plot the total christenings to observe the anomalie in 1704
with(Arthurbnot, plot(Year,Total, type='b', ylab="Total Christenings"))

Description

The Spanish Armada (Spanish: Grande y Felicisima Armada, literally "Great and Most Fortunate Navy") was a Spanish fleet of 130 ships that sailed from La Coruna in August 1588. During its preparation, several accounts of its formidable strength were circulated to reassure allied powers of Spain or to intimidate its enemies. One such account was given by Paz Salas et Alvarez (1588).
The intent was bring the forces of Spain to invade England, overthrow Queen Elizabeth I, and re-establish Spanish control of the Netherlands. However the Armada was not as fortunate as hoped: it was all destroyed in one week’s fighting.

de Falguerolles (2008) reports the table given here as Armada as an early example of data to which multivariate methods might be applied.

Usage

data("Armada")

Format

A data frame with 10 observations on the following 11 variables.

Armada designation of the fleet, a factor with levels Andalucia Castilla Galeras Guipuscua Napoles Pataches Portugal Vantiscas Vizca Vrcas

ships number of ships, a numeric vector

tons total tons, a numeric vector

soldiers number of soldiers, a numeric vector

sailors number of sailors, a numeric vector

men total of soldiers plus sailors, a numeric vector

artillery a numeric vector

balls a numeric vector

gunpowder a numeric vector

lead a numeric vector

rope a numeric vector

Details

Note that men = soldiers + sailors

Source

References

Pedro de Paz Salas and Antonio Alvares. La felicissima armada que elrey Don Felipe nuestro Senor mando juntar enel puerto de la ciudad de Lisboa enel Reyno de Portugal. Lisbon, 1588.
Examples

```r
data(Armada)
# delete character and redundant variable
armada <- Armada[, -c(1, 6)]

armada.pca <- prcomp(armada, scale = TRUE)
summary(armada.pca)

plot(armada.pca, type = "lines", pch = 16, cex = 2)
biplot(armada.pca)
```

Description

In one of the first statistical textbooks, Arthur Bowley (1901) used these data to illustrate an arithmetical and graphical analysis of time-series data using the total value of British and Irish exports from 1855-1899. He presented a line graph of the time-series data, supplemented by overlaid line graphs of 3-, 5- and 10-year moving averages. His goal was to show that while the initial series showed wide variability, moving averages made the series progressively smoother.

Usage

```r
data(Bowley)
```

Format

A data frame with 45 observations on the following 2 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Year, from 1855-1899</td>
</tr>
<tr>
<td>Value</td>
<td>total value of British and Irish exports (millions of Pounds)</td>
</tr>
</tbody>
</table>

Source

Digitized from Bowley’s graph.

Examples

```r
data(Bowley)

# plot the data
with(Bowley, plot(Year, Value, type = 'b',
                  ylab = "Value of British and Irish Exports",
                  main = "Bowley’s example of the method of smoothing curves"))

# find moving averages-- use center alignment (requires width=ODD)
```
require(gtools, warn.conflicts=FALSE)
mav< running(Bowley$Value, width=3, align="center")
mav< running(Bowley$Value, width=5, align="center")
mav< running(Bowley$Value, width=9, align="center")
lines(Bowley$Year[2:44], mav3, col='blue', lty=2)
lines(Bowley$Year[3:43], mav5, col='green3', lty=3)
lines(Bowley$Year[5:41], mav9, col='brown', lty=4)

add lowess smooth
lines(lowess(Bowley), col='red', lwd=2)

require(ggplot2, warn.conflicts=FALSE)
qplot(Year, Value, data=Bowley)+geom_smooth()

Description

Henry Cavendish carried out a series of experiments in 1798 to determine the mean density of the earth, as an indirect means to calculate the gravitational constant, G, in Newton’s formula for the force (f) of gravitational attraction, \(f = GmM/r^2 \) between two bodies of mass m and M.

Stigler (1977) used these data to illustrate properties of robust estimators with real, historical data. For these data sets, he found that trimmed means performed as well or better than more elaborate robust estimators.

Usage

data(Cavendish)

Format

A data frame with 29 observations on the following 3 variables.

- **density**: Cavendish’s 29 determinations of the mean density of the earth
- **density2**: same as density, with the third value (4.88) replaced by 5.88
- **density3**: same as density, omitting the the first 6 observations

Details

Density values (D) of the earth are given as relative to that of water. If the earth is regarded as a sphere of radius R, Newton’s law can be expressed as \(GD = 3g/(4\pi R) \), where \(g = 9.806 m/s^2 \) is the acceleration due to gravity; so G is proportional to 1/D.

density contains Cavendish’s measurements as analyzed, where he treated the value 4.88 as if it were 5.88. density2 corrects this. Cavendish also changed his experimental apparatus after the sixth determination, using a stiffer wire in the torsion balance. density3 replaces the first 6 values with NA.

The modern "true" value of D is taken as 5.517. The gravitational constant can be expressed as \(G = 6.674 \times 10^{-11} m^3/kg/s^2 \).
ChesSizes

Source

Stephen M. Stigler (1977), "Do robust estimators work with real data?", Annals of Statistics, 5, 1055-1098

References

Examples

data(Cavendish)
supply(Cavendish)
boxplot(Cavendish, ylab='Density', xlab='Data set')
abline(h=5.517, col="red", lwd=2)

trimmed means
supply(Cavendish, mean, trim=.1, na.rm=TRUE)

express in terms of G
G <- function(D, g=9.806, R=6371) 3*g / (4 * pi * R * D)

boxplot(10^5 * G(Cavendish), ylab='Gravitational constant (G)', xlab='Data set')
abline(h=10^5 * G(5.517), col="red", lwd=2)

<table>
<thead>
<tr>
<th>ChestSizes</th>
<th>Chest measurements of 5738 Scottish Militiamen</th>
</tr>
</thead>
</table>

Description

Quetelet's data on chest measurements of 5738 Scottish Militiamen. Quetelet (1846) used this data as a demonstration of the normal distribution of physical characteristics.

Usage

data(ChestSizes)

Format

A data frame with 16 observations on the following 2 variables.

chest Chest size (in inches)
count Number of soldiers with this chest size
Cholera

Source

References

Examples
data(ChestSizes)
maybe str(ChestSizes); plot(ChestSizes) ...

frequency polygon
plot(ChestSizes, type='b')
barplot
barplot(ChestSizes[,2], ylab="Frequency", xlab="Chest size")

Description
In 1852, William Farr, published a report of the Registrar-General on mortality due to cholera in England in the years 1848-1849, during which there was a large epidemic throughout the country. Farr initially believed that cholera arose from bad air ("miasma") associated with low elevation above the River Thames. John Snow (1855) later showed that the disease was principally spread by contaminated water.

This data set comes from a paper by Brigham et al. (2003) that analyses some tables from Farr’s report to examine the prevalence of death from cholera in the districts of London in relation to the available predictors from Farr’s table.

Usage
data("Cholera")

Format
A data frame with 38 observations on the following 15 variables.
district name of the district in London, a character vector
cholera_drate deaths from cholera in 1849 per 10,000 inhabitants, a numeric vector
cholera_deaths number of deaths registered from cholera in 1849, a numeric vector
popn population, in the middle of 1849, a numeric vector
elevation elevation, in feet above the high water mark, a numeric vector
region a grouping of the London districts, a factor with levels West North Central South Kent
water water supply region, a factor with levels Battersea New River Kew; see Details
annual_deaths annual deaths from all causes, 1838-1844, a numeric vector
pop_dens population density (persons per acre), a numeric vector
persons_house persons per inhabited house, a numeric vector
house_valpp average annual value of house, per person (pounds), a numeric vector
poor_rate poor rate precept per pound of house value, a numeric vector
area district area, a numeric vector
houses number of houses, a numeric vector
house_val total house values, a numeric vector

Details

The supply of water was classified as “Thames, between Battersea and Waterloo Bridges” (central
(western London). The factor levels use abbreviations for these.

The data frame is sorted by increasing elevation above the high water mark.

Source

cholera that affected London: a reworking of the data highlights the importance of the water supply.
Public Health, 118(6), 387-394, Table 2. (The data was kindly supplied by Neville Verlander,
including additional variables not shown in their Table 2.)

References

archive.org/22/items/b24751297/b24751297.pdf The relevant tables are at pages clii – cvii.

See Also

Snow.deaths

Examples

data(Cholera)

plot cholera deaths vs. elevation
plot(Cholera$cholera_drate ~ Cholera$elevation, data=Cholera,
 pch=16, cex.lab=1.2, cex=1.2,
 xlab="Elevation above high water mark (ft)",
 ylab="Deaths from cholera in 1849 per 10,000")

Farr's mortality ~ 1/ elevation law
elev <- c(0, 10, 30, 50, 70, 90, 100, 350)
mortal <- c(174, 99, 53, 34, 27, 22, 20, 6)
lines(mortal ~ elevl, lw=2, col="blue")

better plots, using car::scatterplot
library(car)

show separate regression lines for each water supply
scatterplot(cholera_drate ~ elevation | water, data=Cholera,
 smooth=FALSE, pch=15:17,
 id=list(n=2, labels=sub("", ",", Cholera$district)),
 col=c("red", "darkgreen", "blue"),
 legend=list(coords="topleft", title="Water supply"),
 xlab="Elevation above high water mark (ft)",
 ylab="Deaths from cholera in 1849 per 10,000")

scatterplot(cholera_drate ~ poor_rate | water, data=Cholera,
 smooth=FALSE, pch=15:17,
 id=list(n=2, labels=sub("", ",", Cholera$district)),
 col=c("red", "darkgreen", "blue"),
 legend=list(coords="topleft", title="Water supply"),
 xlab="Poor rate per pound of house value",
 ylab="Deaths from cholera in 1849 per 10,000")

fit a logistic regression model a la Bingham etal.
fit <- glm(cbind(cholera_deaths, popn) ~
 water + elevation + poor_rate + annual_deaths +
 pop_dens + persons_house,
 data=Cholera, family=binomial)
summary(fit)

odds ratios
cbind(OR = exp(coef(fit))[-1], exp(confint(fit))[-1,])

if (require(effects)) {
 eff <- allEffects(fit)
 plot(eff)
}

Cushny-Peebles Data: Soporific Effects of Scopolamine Derivatives

Description

Cushny and Peebles (1905) studied the effects of hydrobromides related to scopolamine and atropine in producing sleep. The sleep of mental patients was measured without hypnotic (Control) and after treatment with one of three drugs: L. hyoscyamine hydrobromide (L_hyoscyamine), L.
hyoscine hydrobromide (l_hyoscyine), and a mixture (racemic) form, dl_hyoscine, called atropine. The L (levo) and D (detro) form of a given molecule are optical isomers (mirror images).

The drugs were given on alternate evenings, and the hours of sleep were compared with the intervening control night. Each of the drugs was tested in this manner a varying number of times in each subject. The average number of hours of sleep for each treatment is the response.

Student (1908) used these data to illustrate the paired-sample t-test in small samples, testing the hypothesis that the mean difference between a given drug and the control condition was zero. This data set became well known when used by Fisher (1925). Both Student and Fisher had problems labeling the drugs correctly (see Senn & Richardson (1994)), and consequently came to wrong conclusions.

But as well, the sample sizes (number of nights) for each mean differed widely, ranging from 3-9, and this was not taken into account in their analyses. To allow weighted analyses, the number of observations for each mean is contained in the data frame CushnyPeeblesN.

Usage

data(CushnyPeebles)
data(CushnyPeeblesN)

Format

CushnyPeebles: A data frame with 11 observations on the following 4 variables.

Control a numeric vector: mean hours of sleep
L_hyoscyamine a numeric vector: mean hours of sleep
L_hyoscine a numeric vector: mean hours of sleep
D_hyoscine a numeric vector: mean hours of sleep

CushnyPeeblesN: A data frame with 11 observations on the following 4 variables.

Control a numeric vector: number of observations
L_hyoscyamine a numeric vector: number of observations
L_hyoscine a numeric vector: number of observations
dl_hyoscine a numeric vector: number of observations

Details

The last patient (11) has no Control observations, and so is often excluded in analyses or other versions of this data set.

Source

Senn, Stephen, Data from Cushny and Peebles, http://www.senns.demon.co.uk/Data/Cushny.xls
References

Student (1908), "The Probable Error of a Mean," *Biometrika*, 6, 1-25.

See Also

sleep for an alternative form of this data set.

Examples

data(CushnyPeebles)
quick looks at the data
plot(CushnyPeebles)
boxplot(CushnyPeebles, ylab="Hours of Sleep", xlab="Treatment")

CPmod <- lm(cbind(Control, L_hyoscyamine, L_hyoscine, DL_hyoscine) ~ 1, data=CushnyPeebles)

Assign within-S factor and contrasts
Treatments <- factor(colnames(CushnyPeebles), levels=colnames(CushnyPeebles))
contrasts(Treatment) <- matrix(
c(-3, 1, 1, 1,
 0,-2, 1, 1,
 0, 0,-1, 1), ncol=3)
colnames(contrasts(Treatment)) <- c("Control.Drug", "L.DL", "L_hy.DL_hy")

Treats <- data.frame(Treatment)
(CPAov <- Anova(CPmod, idata=Treats, idesign= ~Treatment))
summary(CPAov, univariate=FALSE)

if (require(heplots)) {
 heplot(CPmod, idata=Treats, idesign= ~Treatment, item="Treatment",
xlab="Control vs Drugs", ylab="L vs DL drug")
pairs(CPmod, idata=Treats, idesign= ~Treatment, item="Treatment")
}

CPlong <- stack(CushnyPeebles)[,2:1]
colnames(CPlong) <- c("treatment", "sleep")
CP <- stack(CushnyPeeblesN)
CPlong <- data.frame(patient=rep(1:11,4), CPlong, n=CP$N)
str(CPlong)
Edgeworth's counts of dactyls in Virgil's Aeneid

Description

Edgeworth (1885) took the first 75 lines in Book XI of Virgil’s Aeneid and classified each of the first four “feet” of the line as a dactyl (one long syllable followed by two short ones) or not.

Grouping the lines in blocks of five gave a 4 x 25 table of counts, represented here as a data frame with ordered factors, Foot and Lines. Edgeworth used this table in what was among the first examples of analysis of variance applied to a two-way classification.

Usage

data(Dactyl)

Format

A data frame with 60 observations on the following 3 variables.

Foot an ordered factor with levels Q < R < S < T

count number of dactyls

Source

References

Examples

data(Dactyl)

display the basic table
xtabs(count ~ Foot+Lines, data=Dactyl)

simple two-way anova
anova(dact.lm <- lm(count ~ Foot+Lines, data=Dactyl))

plot the lm-quartet
op <- par(mfrow=c(2,2))
plot(dact.lm)
par(op)
show table as a simple mosaicplot
mosaicplot(xtabs(count ~ Foot+Lines, data=Dactyl), shade=TRUE)

DrinksWages

Elderton and Pearson’s (1910) data on drinking and wages

Description

In 1910, Karl Pearson weighed in on the debate, fostered by the temperance movement, on the evils done by alcohol not only to drinkers, but to their families. The report "A first study of the influence of parental alcholism on the physique and ability of their offspring" was an ambitious attempt to the new methods of statistics to bear on an important question of social policy, to see if the hypothesis that children were damaged by parental alcoholism would stand up to statistical scrutiny.

Working with his assistant, Ethel M. Elderton, Pearson collected voluminous data in Edinburgh and Manchester on many aspects of health, stature, intelligence, etc. of children classified according to the drinking habits of their parents. His conclusions where almost invariably negative: the tendency of parents to drink appeared unrelated to any thing he had measured.

The firestorm that this report set off is well described by Stigler (1999), Chapter 1. The data set DrinksWages is just one of Pearsons many tables, that he published in a letter to The Times, August 10, 1910.

Usage

```r
data(DrinksWages)
```

Format

A data frame with 70 observations on the following 6 variables, giving the number of non-drinkers (sober) and drinkers (drinks) in various occupational categories (trade).

- **class**: wage class: a factor with levels A B C
- **trade**: a factor with levels baker barman billposter ... wellsink3r wireworker
- **sober**: the number of non-drinkers, a numeric vector
- **drinks**: the number of drinkers, a numeric vector
- **wage**: weekly wage (in shillings), a numeric vector
- **n**: total number, a numeric vector

Details

The data give Karl Pearson’s tabulation of the father’s trades from an Edinburgh sample, classified by whether they dring or are sober, and giving average weekly wage.

The wages are averages of the individuals’ nominal wages. Class A is those with wages under 2.5s.; B: those with wages 2.5s. to 30s.; C: wages over 30s.
Source

References

Examples

```r
data(DrinksWages)
plot(DrinksWages)

# plot proportion sober vs. wage | class
with(DrinksWages, plot(wage, sober/n, col=c("blue","red","green")[class]))

# fit logistic regression model of sober on wage
mod.sober <- glm(cbind(sober, n) ~ wage, family=binomial, data=DrinksWages)
summary(mod.sober)
op <- par(mfrow=c(2,2))
plot(mod.sober)
par(op)

# TODO: plot fitted model
```

Fingerprints

Waite’s data on Patterns in Fingerprints

Description

Waite (1915) was interested in analyzing the association of patterns in fingerprints, and produced a table of counts for 2000 right hands, classified by the number of fingers describable as a "whorl", a "small loop" (or neither). Because each hand contributes five fingers, the number of Whorls + Loops cannot exceed 5, so the contingency table is necessarily triangular.

Karl Pearson (1904) introduced the test for independence in contingency tables, and by 1913 had developed methods for “restricted contingency tables,” such as the triangular table analyzed by Waite. The general formulation of such tests for association in restricted tables is now referred to as models for quasi-independence.

Usage

```r
data(Fingerprints)
```
> **Format**
> A frequency data frame with 36 observations on the following 3 variables, representing a 6 x 6 table giving the cross-classification of the fingers on 2000 right hands as a whorl, small loop or neither.
>
> Whorls Number of whorls, an ordered factor with levels 0 < 1 < 2 < 3 < 4 < 5
>
> Loops Number of small loops, an ordered factor with levels 0 < 1 < 2 < 3 < 4 < 5
>
> count Number of hands
>
> **Details**
> Cells for which Whorls + Loops > 5 have NA for count
>
> **Source**
>
> **References**
>
>
> **Examples**
> ```r
data(fingerprints)
xtabs(count ~ Whorls + Loops, data=fingerprints)
```
Details

The data are recorded in class intervals of width 1.0 in. He used non-integer values for the center of each class interval because of the strong bias toward integral inches.

All of the heights of female children were multiplied by 1.08 before tabulation to compensate for sex differences. See Hanley (2004) for a reanalysis of Galton’s raw data questioning whether this was appropriate.

Source

Galton, F. (1886). Regression Towards Mediocrity in Hereditary Stature Journal of the Anthropological Institute, 15, 246-263

References


See Also

link{GaltonFamilies}, PearsonLee, galton

Examples

data(Galton)

# sunflower plot with regression line and data ellipses and lowess smooth

with(Galton,
{
sunflowerplot(parent,child, xlim=c(62,74), ylim=c(62,74))
reg <- lm(child ~ parent)
abline(reg)
lines(lowess(parent, child), col="blue", lwd=2)
if(require(car)) {
dataEllipse(parent,child, xlim=c(62,74), ylim=c(62,74), plot.points=FALSE) 
}
GaltonFamilies

Description

This data set lists the individual observations for 934 children in 205 families on which Galton (1886) based his cross-tabulation.

In addition to the question of the relation between heights of parents and their offspring, for which this data is mainly famous, Galton had another purpose which the data in this form allows to address: Does marriage selection indicate a relationship between the heights of husbands and wives, a topic he called \textit{assortative mating}? Keen [p. 297-298](2010) provides a brief discussion of this topic.

Usage

data(GaltonFamilies)

Format

A data frame with 934 observations on the following 8 variables.

family family ID, a factor with levels 001-204
father height of father
mother height of mother
midparentHeight mid-parent height, calculated as (father + 1.08*mother)/2
children number of children in this family
childNum number of this child within family. Children are listed in decreasing order of height for boys followed by girls
gender child gender, a factor with levels female male
childHeight height of child

Details

Galton’s notebook lists 963 children in 205 families ranging from 1-15 adult children children. Of these, 29 had non-numeric heights recorded and are not included here.

Families are largely listed in decending order of fathers and mothers height.

Source

References

Galton, F. (1886). Regression Towards Mediocrity in Hereditary Stature Journal of the Anthropological Institute, 15, 246-263


See Also

Galton, PearsonLee

Examples

data(GaltonFamilies)
str(GaltonFamilies)

## reproduce Fig 2 in Hanley (2004)
library(car)
scatterplot(childHeight ~ midparentHeight | gender, data=GaltonFamilies,
  ellipse=TRUE, levels=0.68, legend.coords=list(x=64, y=78))

# multiply daughters' heights by 1.08
GF1 <- within(GaltonFamilies,
  {childHeight <- ifelse (gender="female", 1.08*childHeight, childHeight)})
scatterplot(childHeight ~ midparentHeight | gender, data=GF1,
  ellipse=TRUE, levels=0.68, legend.coords=list(x=64, y=78))

# add 5.2 to daughters' heights
GF2 <- within(GaltonFamilies,
  {childHeight <- ifelse (gender="female", childHeight+5.2, childHeight)})
scatterplot(childHeight ~ midparentHeight | gender, data=GF2,
  ellipse=TRUE, levels=0.68, legend.coords=list(x=64, y=78))

###############################################################################
# relationship between heights of parents
###############################################################################

Parents <- subset(GaltonFamilies, !duplicated(GaltonFamilies$family))

with(Parents,
  {sunflowerplot(mother, father, rotate=TRUE, pch=16,
    xlab="Mother height", ylab="Father height")
dataEllipse(mother, father, add=TRUE, plot.points=FALSE,
  center.pch=NULL, levels=0.68)
abline(lm(father ~ mother), col="red", lwd=2)
})
)
Guerry

Data from A.-M. Guerry, "Essay on the Moral Statistics of France"

Description

Andre-Michel Guerry (1833) was the first to systematically collect and analyze social data on such things as crime, literacy and suicide with the view to determining social laws and the relations among these variables.

The Guerry data frame comprises a collection of 'moral variables' on the 86 departments of France around 1830. A few additional variables have been added from other sources.

Usage

data(Guerry)

Format

A data frame with 86 observations (the departments of France) on the following 23 variables.

depth  Department ID: Standard numbers for the departments, except for Corsica (200)
region  Region of France ('N'='North', 'S'='South', 'E'='East', 'W'='West', 'C'='Central'). Corsica is coded as NA
department  Department name: Departments are named according to usage in 1830, but without accents. A factor with levels Ain Aisne Allier ... Vosges Yonne
crime_pers  Population per Crime against persons. Source: A2 (Compte general, 1825-1830)
crime_prop  Population per Crime against property. Source: A2 (Compte general, 1825-1830)
literacy  Percent Read & Write: Percent of military conscripts who can read and write. Source: A2
donations  Donations to the poor. Source: A2 (Bulletin des lois)
infants  Population per illegitimate birth. Source: A2 (Bureauau des Longitudes, 1817-1821)
suicides  Population per suicide. Source: A2 (Compte general, 1827-1830)
MainCity  Size of principal city ('1:Sm', '2:Med', '3:Lg'), used as a surrogate for population density. Large refers to the top 10, small to the bottom 10; all the rest are classed Medium. Source: A1. An ordered factor with levels 1:Sm < 2:Med < 3:Lg
Wealth  Per capita tax on personal property. A ranked index based on taxes on personal and movable property per inhabitant. Source: A1
Commerce  Commerce and Industry, measured by the rank of the number of patents / population. Source: A1
Clergy  Distribution of clergy, measured by the rank of the number of Catholic priests in active service / population. Source: A1 (Almanach officiel du clergy, 1829)
Crime_parents  Crimes against parents, measured by the rank of the ratio of crimes against parents to all crimes– Average for the years 1825-1830. Source: A1 (Compte general)
Infanticide Infanticides per capita. A ranked ratio of number of infanticides to population– Average for the years 1825-1830. Source: A1 (Compte general)

Donation_clergy Donations to the clergy. A ranked ratio of the number of bequests and donations inter vivios to population— Average for the years 1815-1824. Source: A1 (Bull. des lois, ordunn. d’autorisation)

Lottery Per capita wager on Royal Lottery. Ranked ratio of the proceeds bet on the royal lottery to population— Average for the years 1822-1826. Source: A1 (Compte rendus par le ministre des finances)

Desertion Military disertion, ratio of the number of young soldiers accused of desertion to the force of the military contingent, minus the deficit produced by the insufficiency of available billets— Average of the years 1825-1827. Source: A1 (Compte du ministere du guerre, 1829 etat V)

Instruction Instruction. Ranks recorded from Guerry’s map of Instruction. Note: this is inversely related to Literacy (as defined here)

Prostitutes Prostitutes in Paris. Number of prostitutes registered in Paris from 1816 to 1834, classified by the department of their birth Source: Parent-Duchatelet (1836), De la prostitution en Paris

Distance Distance to Paris (km). Distance of each department centroid to the centroid of the Seine (Paris) Source: calculated from department centroids

Area Area (1000 km^2). Source: Angeville (1836)

Pop1831 1831 population. Population in 1831, taken from Angeville (1836), Essai sur la Statistique de la Population francaise, in 1000s

Details

Note that most of the variables (e.g., Crime_pers) are scaled so that 'more is better' morally.

Values for the quantitative variables displayed on Guerry’s maps were taken from Table A2 in the English translation of Guerry (1833) by Whitt and Reinking. Values for the ranked variables were taken from Table A1, with some corrections applied. The maximum is indicated by rank 1, and the minimum by rank 86.

Source


References


**See Also**

The **Guerry** package for maps of France: `gfrance` and related data.

**Examples**

```r
data(Guerry)
maybe str(Guerry) ; plot(Guerry) ...
```

---

**HalleyLifeTable**

*Halley’s Life Table*

**Description**

In 1693 the famous English astronomer Edmond Halley studied the birth and death records of the city of Breslau, which had been transmitted to the Royal Society by Caspar Neumann. He produced a life table showing the number of people surviving to any age from a cohort born the same year. He also used his table to compute the price of life annuities.

**Usage**

```r
data("HalleyLifeTable")
```

**Format**

A data frame with 84 observations on the following 4 variables.

- `age` a numeric vector
- `deaths` number of deaths, $D_k$, among people of age $k$, a numeric vector
- `number` size of the population, $P_k$ surviving until this age, a numeric vector
- `ratio` the ratio $P_{k+1}/P_k$, the conditional probability of surviving until age $k + 1$ given that one had already reached age $k$, a numeric vector

**Details**

Halley’s table contained only `age` and `number`. For people aged over 84 years, Halley just noted that their total number was 107. This value is not included in the data set.

The data from Breslau had a mean of 1,238 births per year: this is the value that Halley took for the size, $P_0$ of the population cohort at age 0. From the data, he could compute the annual mean $D_k$ of the number of deaths among people aged $k$ for all $k >= 0$. From this, he calculated the number $P_{k+1}$ surviving one more year,

$$P_{k+1} = P_k - D_k$$
This method had the great advantage of not requiring a general census but only knowledge of the number of births and deaths and of the age at which people died during a few years.

Source


References

Halley, E. (1693). An estimate of the degrees of the mortality of mankind, drawn from curious tables of the births and funerals at the city of Breslaw; with an attempt to ascertain the price of annuities upon lives. Philosophical Transactions of the Royal Society, London, 17, 596-610.

The text of Halley’s paper was found at http://www.pierre-marteau.com/editions/1693-mortality.html

See Also

Arbuthnot

Examples

data(HalleyLifeTable)
# what was the estimated population of Breslaw?
sum(HalleyLifeTable$number)

# plot survival vs. age
plot(number ~ age, data=HalleyLifeTable, type="h", ylab="Number surviving")

# population pyramid is transpose of this
plot(age ~ number, data=HalleyLifeTable, type="l", xlab="Number surviving")
with(HalleyLifeTable, segments(0, age, number, age, lwd=2))

# conditional probability of survival, one more year
plot(ratio ~ age, data=HalleyLifeTable, ylab="Probability survive one more year")

---

Jevons

W. Stanley Jevons’ data on numerical discrimination

Description

In a remarkable brief note in Nature, 1871, W. Stanley Jevons described the results of an experiment he had conducted on himself to determine the limits of the number of objects an observer could comprehend immediately without counting them. This was an important philosophical question: How many objects can the mind embrace at once?
He carried out 1027 trials in which he tossed an "uncertain number" of uniform black beans into a box and immediately attempted to estimate the number "without the least hesitation". His questions, procedure and analysis anticipated by 75 years one of the most influential papers in modern cognitive psychology by George Miller (1956), "The magical number 7 plus or minus 2: Some limits on ..." For Jevons, the magical number was 4.5, representing an empirical law of complete accuracy.

Usage

data(Jevons)

Format

A frequency data frame with 50 observations on the following 4 variables.

- actual  Actual number: a numeric vector
- estimated Estimated number: a numeric vector
- frequency Frequency of this combination of (actual, estimated): a numeric vector
- error  actual - estimated: a numeric vector

Details

The original data were presented in a two-way, 13 x 13 frequency table, estimated (3:15) x actual (3:15).

Source


References


Examples

data(Jevons)

# show as tables
xtabs(frequency ~ estimated+actual, data=Jevons)
xtabs(frequency ~ error+actual, data=Jevons)

# show as sunflowerplot with regression line
with(Jevons, sunflowerplot(actual, estimated, frequency,
     main="Jevons data on numerical estimation"))
Jmod <- lm(estimated ~ actual, data=Jevons, weights=frequency)
abline(Jmod)

# show as balloonplots
if (require(gplots)) {

}
van Langren's Data on Longitude Distance between Toledo and Rome

Description

Michael Florent van Langren (1598-1675) was a Dutch mathematician and astronomer, who served as a royal mathematician to King Phillip IV of Spain, and who worked on one of the most significant problems of his time—the accurate determination of longitude, particularly for navigation at sea.

In order to convince the Spanish court of the seriousness of the problem (often resulting in great losses through ship wrecks), he prepared a 1-dimensional line graph, showing all the available estimates of the distance in longitude between Toledo and Rome, which showed large errors, for even this modest distance. This 1D line graph, from Langren (1644), is believed to be the first known graph of statistical data (Friendly et al., 2010). It provides a compelling example of the notions of statistical variability and bias.

The data frame Langren1644 gives the estimates and other information derived from the previously known 1644 graph. It turns out that van Langren produced other versions of this graph, as early as 1628. The data frame Langren.all gives the estimates derived from all known versions of this graph.

Usage

data(Langren1644)
data(Langren.all)
Format

Langren1644: A data frame with 12 observations on the following 9 variables, giving determinations of the distance in longitude between Toledo and Rome, from the 1644 graph.

Name  The name of the person giving a determination, a factor with levels Argelius ... T. Brahe
Longitude  Estimated value of the longitude distance between Toledo and Rome
Year  Year associated with this determination
Longname  A longer version of the Name, where appropriate; a factor with levels Andrea Argoli Christoph Clavius Tycho Brahe
City  The principal city where this person worked; a factor with levels Alexandria Amsterdam Bamberg Bologna Frankfurt Hven Leuven Middelburg Padua Paris Rome
Country  The country where this person worked; a factor with levels Belgium Denmark Egypt Flanders France Germany Italy Italy
Latitude  Latitude of this City; a numeric vector
Source  Likely source for this determination of Longitude; a factor with levels Astron Map Gap
Langren.all: A data frame with 61 observations on the following 4 variables, giving determinations of Longitude between Toledo and Rome from all known versions of van Langren’s graph.

Author  Author of the graph, a factor with levels Langren Lelewel
Year  Year of publication
Name  The name of the person giving a determination, a factor with levels Algunos1 Algunos2 Apianus ... Schonerus
Longitude  Estimated value of the longitude distance between Toledo and Rome

Details

In all the graphs, Toledo is implicitly at the origin and Rome is located relatively at the value of Longitude. To judge correspondence with an actual map, the positions in (lat, long) are

\[
\text{toledo} \leftarrow c(39.86, -4.03); \text{rome} \leftarrow c(41.89, 12.5)
\]

Source

The longitude values were digitized from images of the various graphs, which may be found on the Supplementary materials page for Friendly et al. (2009).

References


Examples

data(Langren1644)

# reproductions of Langren's graph overlaid on a map

if (require(jpeg, quietly=TRUE)) {
  gimage <- readJPEG(system.file("images", "google-toledo-rome3.jpg", package="HistData"))
  # NB: dimensions from readJPEG are y, x, colors
  gdim <- dim(gimage)[1:2]
ylim <- c(1, gdim[1])
xlim <- c(1, gdim[2])
op <- par(bty="n", xaxt="n", yaxt="n", mar=c(2, 1, 1, 1) + 0.1)
  # NB: necessary to scale the plot to the pixel coordinates, and use asp=1
  plot(xlim, ylim, xlim=xlim, ylim=ylim, type="n", ann=FALSE, asp=1)
  rasterImage(gimage, 1, 1, gdim[2], gdim[1])

  # pixel coordinates of Toledo and Rome in the image, measured from the bottom left corner
  toledo.map <- c(131, 59)
  rome.map <- c(506, 119)

  # confirm locations of Toledo and Rome
  points(rbind(toledo.map, rome.map), cex=2)
  text(131, 95, "Toledo", cex=1.5)
  text(506, 104, "Roma", cex=1.5)

  # set a scale for translation of lat,long to pixel x,y
  scale <- data.frame(x=c(131, 856), y=c(52, 52))
  rownames(scale) <- c(0, 30)

  # translate from degrees longitude to pixels
  xlate <- function(x) {
    131*x*726/30
  }

  # draw an axis
  lines(scale)
  segments(ticks, 52, ticks, 45)
  text(ticks, 40, seq(0, 30, 5))
  text(xlate(8), 17, "Grados de la Longitud", cex=1.7)

  # label the observations with the names
  points(x=xlate(Langren1644$Longitude), y=rep(57, nrow(Langren1644)),
         pch=25, col="blue", bg="blue")
  text(x=xlate(Langren1644$Longitude), y=rep(57, nrow(Langren1644)),
       labels=Langren1644$Name, srt=90, adj=c(-.1, .5), cex=0.8)
  par(op)
}
### Original implementation using ReadImages, now deprecated & shortly to be removed

#### Not run:

```r
if (require(ReadImages)) {
 gimage <- read.jpeg(system.file("images", "google-toledo-rome3.jpg", package="HistData"))
 plot(gimage)
}
```

# pixel coordinates of Toledo and Rome in the image, measured from the bottom left corner
```r
toledo.map <- c(130, 59)
rome.map <- c(505, 119)
```

# confirm locations of Toledo and Rome
```r
points(rbind(toledo.map, rome.map), cex=2)
```

# set a scale for translation of lat,long to pixel x,y
```r
scale <- data.frame(x=c(130, 856), y=c(52,52))
rownames(scale)=c(0,30)
lines(scale)
```
```
```r
xlate <- function(x) {
  130+x*726/30 
}
points(x=xlate(Langren1644$Longitude), y=rep(57, nrow(Langren1644)),
pch=25, col="blue")
text(x=xlate(Langren1644$Longitude), y=rep(57, nrow(Langren1644)),
      labels=Langren1644$Name, srt=90, adj=c(0, 0.5), cex=0.8)
```

End(Not run)

First attempt using ggplot2; temporarily abandoned.

Not run:

```r
require(maps)
require(ggplot2)
require(reshape)
require(plyr)
require(scales)
```

set latitude to that of Toledo
```r
Langren1644$Latitude <- 39.68
```

```r
bx <- c( 38.186, -9.184,
      43.692, 28.674 )
```
```
```r
bbox <- matrix(bbox, 2, 2, byrow=TRUE)
```

```r
borders <- as.data.frame(map("world", plot = FALSE,
 xlim = expand_range(bbox[,2], 0.2),
 ylim = expand_range(bbox[,1], 0.2))[c("x", "y")])
```
```
```r
data(world.cities)
```

```
```r
```

# get actual locations of Toledo & Rome
```
```
```r
cities <- subset(world.cities,
name %in% c("Rome", "Toledo") & country.etc %in% c("Spain", "Italy")
colnames(cities)[4:5]<-c("Latitude", "Longitude")

mplot <- ggplot(langren1644, aes(Longitude, Latitude)) +
 geom_path(aes(x, y), borders, colour = "grey60") +
 geom_point(y = 40) +
 geom_text(aes(label = Name), y = 40.1, angle = 90, hjust = 0, size = 3)
mplot <- mplot +
 geom_segment(aes(x=-4.03, y=40, xend=30, yend=40))

mplot <- mplot +
 geom_point(data = cities, colour = "red", size = 2) +
 geom_text(data=cities, aes(label=name), color="red", size=3, vjust=-0.5) +
 coord_cartesian(xlim=bbox[2], ylim=bbox[1])

make the plot have approximately aspect ratio = 1
windows(width=10, height=2)
mplot

End(Not run)

show variation in estimates across graphs
library(lattice)
graph <- paste(Langren.all$Author, Langren.all$Year)
dotplot(Name ~ Longitude, data=langren.all)
dotplot(as.factor(Year) ~ Longitude, data=langren.all, groups=Name, type="o")
dotplot(Name ~ Longitude|graph, data=Langren.all, groups=graph)

why the gap?
gap.mod <- glm(Gap ~ Year + Source + Latitude, family=binomial, data=Langren1644)
anova(gap.mod, test="Chisq")
length. His main purpose was to show that Scotland Yard could have indexed their material more efficiently, and find a given profile more quickly.

W. S. Gosset (aka "Student") used these data in two classic papers in 1908, in which he derived various characteristics of the sampling distributions of the mean, standard deviation and Pearson’s r. He said, "Before I had succeeded in solving my problem analytically, I had endeavoured to do so empirically." Among his experiments, he randomly shuffled the 3000 observations from Macdonell’s table, and then grouped them into samples of size 4, 8, ..., calculating the sample means, standard deviations and correlations for each sample.

Usage

data(Macdonell)
data(MacdonellDF)

Format

Macdonell: A frequency data frame with 924 observations on the following 3 variables giving the bivariate frequency distribution of height and finger.

height lower class boundaries of height, in decimal ft.
finger length of the left middle finger, in mm.
frequency frequency of this combination of height and finger

MacdonellDF: A data frame with 3000 observations on the following 2 variables.

height a numeric vector
finger a numeric vector

Details

Class intervals for height in Macdonell’s table were given in 1 in. ranges, from (4' 7" 9/16 - 4' 8" 9/16), to (6' 4" 9/16 - 6' 5" 9/16). The values of height are taken as the lower class boundaries.

For convenience, the data frame MacdonellDF presents the same data, in expanded form, with each combination of height and finger replicated frequency times.

Source

The data used here were obtained from:

References

Examples

data(Macdonell)

display the frequency table
xtabs(frequency ~ finger+round(height,3), data=Macdonell)

Some examples by james.hanley@mcgill.ca October 16, 2011
http://www.biostat.mcgill.ca/hanley/
See: http://www.biostat.mcgill.ca/hanley/Student/

naive contour plots of height and finger#

make a 22 x 42 table
attach(Macdonell)
ht <- unique(height)
f <- unique(finger)
fr <- t(matrix(frequency, nrow=42))
detach(Macdonell)

dev.new(width=10, height=5) # make plot double wide
op <- par(mfrow=c(1,2),mar=c(0.5,0.5,0.5,0.5),oma=c(2,2,0,0))
dx <- 0.5/12
dy <- 0.5/12

plot(ht,ht,xlim=c(min(ht)-dx,max(ht)+dx),
 ylim=c(min(f)-dy,max(f)+dy), xlab="", ylab="", type="n")

unpack 3000 heights while looping though the frequencies

heights <- c()
for(i in 1:22) {
 for (j in 1:42) {
 f <- fr[i,j]
 if(f>0) heights <- c(heights,rep(ht[i],f))
 if(f>0) text(ht[i], f[j], toString(f), cex=0.4, col="grey40")
 }
}

text(4.65,13.5, "Finger length (cm)", adj=c(0,1), col="black")

text(5.75,9.5, "Height (feet)", adj=c(0,1), col="black")

text(6.11,11, "Observed bin
\nfrequencies", adj=c(0.5,1), col="grey40",cex=0.85)
crude contour plot
contour(ht, fi, fr, add=TRUE, drawlabels=FALSE, col="grey60")

smoother contour plot (Galton smoothed 2-D frequencies this way)
[Galton had experience with plotting isobars for meteorological data]
it was the smoothed plot that made him remember his 'conic sections'
and ask a mathematician to work out for him the iso-density contours of a bivariate Gaussian distribution...
dx <- 0.5/12; dy <- 0.05; # shifts caused by averaging
plot(ht,ht, xlim=c(min(ht),max(ht)), ylim=c(min(fi),max(fi)), xlab="", ylab="", type="n")
sm.fr <- matrix(rep(0,21*41),nrow <- 21)
for(i in 1:21) {
 for (j in 1:41) {
 smooth.freq <- (1/4) * sum(fr[i:(i+1), j:(j+1)])
 sm.fr[i,j] <- smooth.freq
 if(smooth.freq > 0)
 text(ht[i]+dx, fi[j]+dy, sub("\"0\", ".", toString(smooth.freq)), cex=0.4, col="grey40")
 }
}
contour(ht[1:21]+dx, fi[1:41]+dy, sm.fr, add=TRUE, drawlabels=FALSE, col="grey60")
text(6.05,11, "Smoothed bin\'nfrequencies", adj=c(0.5,1), col="grey40", cex=0.85); par(op)
dev.new() # new default device

bivariate kernel density estimate
if(require(KernSmooth)) {
 MDest <- bkde2D(MacdonellDF, bandwidth=c(1/8, 1/8))
 contour(x=MDest$x1, y=MDest$x2, z=MDest$fhat,
 xlab="Height (feet)", ylab="Finger length (cm)", col="red", lwd=2)
 with(MacdonellDF, points(jitter(height), jitter(finger), cex=0.5))
} # sunflower plot of height and finger with data ellipses
with(MacdonellDF, {
sunflowerplot(height, finger, size=1/12, seg.col="green3",
 xlab="Height (feet)", ylab="Finger length (cm)")
 reg <- lm(finger ~ height)
 abline(reg, lwd=2)
 if(require(car)) {
 dataEllipse(height, finger, plot.points=FALSE, levels=c(.40, .68, .95))
 }
Sampling distributions of sample sd (s) and z=(ybar-mu)/s

```r
# note that Gosset used a divisor of n (not n-1) to get the sd.
# He also used Sheppard's correction for the 'binning' or grouping.
# with concatenated height measurements...

mu <- mean(heights); sigma <- sqrt(3000 * var(heights)/2999)
c(mu,sigma)

# 750 samples of size n=4 (as Gosset did)

# see Student's z, t, and s: What if Gosset had R?
# [Hanley J, Julien M, and Moodie E. The American Statistician, February 2008]

# see also the photographs from Student's notebook ("Original small sample data and notes")
# under the link 'Gosset' 750 samples of size n=4'
# on website http://www.biostat.mcgill.ca/hanley/Student/
# and while there, look at the cover of the Notebook containing his yeast-cell counts
# http://www.medicine.mcgill.ca/epidemiology/hanley/Student/750samplesOf4/Covers.JPG
# (Biometrika 1907) and decide for yourself why Gosset, when forced to write under a
# pen-name, might have taken the name he did!

# PS: Can you figure out what the 750 pairs of numbers signify?
# hint: look again at the numbers of rows and columns in Macdonell's (frequency) Table III.

n <- 4
Nsamples <- 750

y.bar.values <- s.over.sigma.values <- z.values <- c()
for (samp in 1:Nsamples) {
  y <- sample(heights,n)
  y.bar <- mean(y)
  s <- sqrt((n/(n-1))*var(y))
  z <- (y.bar-mu)/s
  y.bar.values <- c(y.bar.values,y.bar)
  s.over.sigma.values <- c(s.over.sigma.values,s/sigma)
  z.values <- c(z.values,z)
}

op <- par(mfrow=c(2,2),mar=c(2.5,2.5,2.5,2.5),oma=c(2,2,0,0))

# sampling distributions
hist(heights,breaks=seq(4.5,6.5,1/12), main="Histogram of heights (N=3000")
hist(y.bar.values, main=paste("Histogram of y.bar (n","n",")",sep=""))

hist(s.over.sigma.values,breaks=seq(0,4,0.1),
main=paste("Histogram of s/sigma (n","n",")",sep=""));
```
Michelson

Michelson's Determinations of the Velocity of Light

Description

The data frame Michelson gives Albert Michelson's measurements of the velocity of light in air, made from June 5 to July 2, 1879, reported in Michelson (1882). The given values + 299,000 are Michelson's measurements in km/sec. The number of cases is 100 and the "true" value on this scale is 734.5.

Stigler (1977) used these data to illustrate properties of robust estimators with real, historical data. For this purpose, he divided the 100 measurements into 5 sets of 20 each. These are contained in MichelsonSets.

Usage

data(Michelson)
data(MichelsonSets)

Format

Michelson: A data frame with 100 observations on the following variable, given in time order of data collection

velocity a numeric vector

MichelsonSets: A 20 x 5 matrix, with format int [1:20, 1:5] 850 850 1000 810 960 800 830 830 880 720 ... - attr(*, "dimnames")=List of 2 ..$: NULL ..$: chr [1:5] "ds12" "ds13" "ds14" "ds15" ...
Details
The "true" value is taken to be 734.5, arrived at by taking the "true" speed of light in a vacuum to be 299,792.5 km/sec, and adjusting for the velocity in air.
The data values are recorded in order, and so may also be taken as a time series.

Source
Stephen M. Stigler (1977), "Do robust estimators work with real data?", Annals of Statistics, 5, 1055-1098

References

See Also
morley for these data in another format

Examples
data(Michelson)

density plot (default bandwidth & 0.6 * bw)
plot(density(Michelson$velocity), xlab="Speed of light - 299000 (km/s)",
main="Density plots of Michelson data")
lines(density(Michelson$velocity, adjust=0.6), lty=2)
rug(jitter(Michelson$velocity))
abline(v=mean(Michelson$velocity), col="blue")
abline(v=734.5, col="red", lwd=2)
text(mean(Michelson$velocity), .004, "mean", srt=90, pos=2)
text(734.5, .004, "true", srt=90, pos=2)

index / time series plot
plot(Michelson$velocity, type="b")
abline(h=734.5, col="red", lwd=2)
lines(lowess(Michelson$velocity), col="blue", lwd=2)

examine lag=1 differences
plot(diff(Michelson$velocity), type="b")
lines(lowess(diff(Michelson$velocity)), col="blue", lwd=2)

examine different data sets
boxplot(MichelsonSets, ylab="Velocity of light - 299000 (km/s)", xlab="Data set")
abline(h=734.5, col="red", lwd=2)

means and trimmed means
(mm <- apply(MichelsonSets, 2, mean))
Minard

Data from Minard's famous graphic map of Napoleon's march on Moscow

Description

Charles Joseph Minard's graphic depiction of the fate of Napoleon's Grand Army in the Russian campaign of 1815 has been called the "greatest statistical graphic ever drawn" (Tufte, 1983). Friendly (2002) describes some background for this graphic, and presented it as Minard’s Challenge: to reproduce it using modern statistical or graphic software, in a way that showed the elegance of some computer language to both describe and produce this graphic.

Usage

data(Minard.troops)
data(Minard.cities)
data(Minard.temp)

Format

Minard.troops: A data frame with 51 observations on the following 5 variables giving the number of surviving troops.

long	Longitude
lat	Latitude
survivors	Number of surviving troops, a numeric vector
direction	a factor with levels A ("Advance") R ("Retreat")
group	a numeric vector

Minard.cities: A data frame with 20 observations on the following 3 variables giving the locations of various places along the path of Napoleon's army.

long	Longitude
lat	Latitude
city	City name: a factor with levels Bobr Chjat ... Witebsk Wixma

Minard.temp: A data frame with 9 observations on the following 4 variables, giving the temperature at various places along the march of retreat from Moscow.

long	Longitude
temp	Temperature
days	Number of days on the retreat march
date	a factor with levels Dec01 Dec06 Dec07 Nov09 Nov14 Nov28 Oct18 Oct24
Details

date in Minard.temp should be made a real date in 1815.

Source

References

Examples

data(Minard.troops)
data(Minard.cities)
data(Minard.temp)

Not run:
Load required packages
require(ggplot2)
require(scales)
require(gridExtra)

plot path of troops, and another layer for city names
plot_troops <- ggplot(Minard.troops, aes(long, lat)) +
geom_path(aes(size = survivors, colour = direction, group = group),
lineend = "round", linejoin = "round")
plot_cities <- geom_text(aes(label = city), size = 4, data = Minard.cities)

Combine these, and add scale information, labels, etc.
Set the x-axis limits for longitude explicitly, to coincide with those for temperature
breaks <- c(1, 2, 3) * 10^5
plot_minard <- plot_troops + plot_cities +
 scale_size("Survivors", range = c(1, 10),
 breaks = breaks, labels = scales::comma(breaks)) +
 scale_color_manual("Direction",
 values = c("grey50", "red"),
 labels=c("Advance", "Retreat")) +
 coord_cartesian(xlim = c(24, 38)) +
 xlab(NULL) +
 ylab("Latitude") +
 ggtitle("Napoleon's March on Moscow") +
 theme_bw() +
 theme(legend.position=c(.8, .2), legend.box="horizontal")

plot temperature vs. longitude, with labels for dates
plot_temp <- ggplot(Minard.temp, aes(long, temp)) +
```
geom_path(color="grey", size=1.5) +
geom_point(size=2) +
geom_text(aes(label=date)) +
  xlab("Longitude") + ylab("Temperature") +
  coord_cartesian(xlim = c(24, 38)) +
  theme_bw()
```

#' The plot works best if we re-scale the plot window to an aspect ratio of ~ 2 x 1
#' windows(width=10, height=5)

#' Combine the two plots into one
grid.arrange(plot_minard, plot_temp, nrow=2, heights=c(3,1))

End(Not run)

Nightingale

Florence Nightingale's data on deaths from various causes in the Crimean War

Description

In the history of data visualization, Florence Nightingale is best remembered for her role as a social activist and her view that statistical data, presented in charts and diagrams, could be used as powerful arguments for medical reform.

After witnessing deplorable sanitary conditions in the Crimea, she wrote several influential texts (Nightingale, 1858, 1859), including polar-area graphs (sometimes called "Coxcombs" or rose diagrams), showing the number of deaths in the Crimean from battle compared to disease or preventable causes that could be reduced by better battlefield nursing care.

Her *Diagram of the Causes of Mortality in the Army in the East* showed that most of the British soldiers who died during the Crimean War died of sickness rather than of wounds or other causes. It also showed that the death rate was higher in the first year of the war, before a Sanitary Commissioners arrived in March 1855 to improve hygiene in the camps and hospitals.

Usage

data(Nightingale)

Format

A data frame with 24 observations on the following 10 variables.

Date a Date, composed as `as.Date(paste(Year, Month, 1, sep='-'), "%Y-%b-%d")`

Month Month of the Crimean War, an ordered factor

Year Year of the Crimean War

Army Estimated average monthly strength of the British army
Disease Number of deaths from preventable or mitagable zymotic diseases
Wounds Number of deaths directly from battle wounds
Other Number of deaths from other causes
Disease.rate Annual rate of deaths from preventable or mitagable zymotic diseases, per 1000
Wounds.rate Annual rate of deaths directly from battle wounds, per 1000
Other.rate Annual rate of deaths from other causes, per 1000

Details

For a given cause of death, \(D \), annual rates per 1000 are calculated as \(\frac{12 \times 1000 \times D}{\text{Army}} \), rounded to 1 decimal.

The two panels of Nightingale’s Coxcomb correspond to dates before and after March 1855

Source

The data were obtained from:

References

Nightingale, F. (1858) Notes on Matters Affecting the Health, Efficiency, and Hospital Administration of the British Army Harrison and Sons, 1858

Nightingale, F. (1859) A Contribution to the Sanitary History of the British Army during the Late War with Russia London: John W. Parker and Son.

Examples

data(Nightingale)

For some graphs, it is more convenient to reshape death rates to long format
keep only Date and death rates
require(reshape)
Night<- Nightingale[,c(1,8:10)]
melted <- melt(Night, "Date")
names(melted) <- c("Date", "Cause", "Deaths")
melted$Cause <- sub("\".rate\"", "", melted$Cause)
melted$Regime <- ordered(rep(c(rep('Before', 12), rep('After', 12)), 3),
levels=c('Before', 'After'))
Night <- melted

subsets, to facilitate separate plotting
Night1 <- subset(Night, Date < as.Date("1855-04-01"))
Night2 <- subset(Night, Date >= as.Date("1855-04-01"))

sort according to Deaths in decreasing order, so counts are not obscured [thx: Monique Graf]
Night1 <- Night[order(Night[,Deaths], decreasing=TRUE),]
Night2 <- Night2[order(Night2[,Deaths], decreasing=TRUE),]

merge the two sorted files
Night <- rbind(Night1, Night2)

require(ggplot2)
Before plot
cx1 <- ggplot(Night1, aes(x = factor(Date), y=Deaths, fill = Cause)) +
 geom_bar(width = 1, position="identity", stat="identity", color="black") +
 set scale so area ~ Deaths
 scale_y_sqrt() # A coxcomb plot = bar chart + polar coordinates
 cx1 + coord_polar(start=3*pi/2) +
 ggtitle("Causes of Mortality in the Army in the East") +
 xlab(""

After plot
cx2 <- ggplot(Night2, aes(x = factor(Date), y=Deaths, fill = Cause)) +
 geom_bar(width = 1, position="identity", stat="identity", color="black") +
 scale_y_sqrt()
 cx2 + coord_polar(start=3*pi/2) +
 ggtitle("Causes of Mortality in the Army in the East") +
 xlab(""

Not run:
do both together, with faceting
 cxc <- ggplot(Night, aes(x = factor(Date), y=Deaths, fill = Cause)) +
 geom_bar(width = 1, position="identity", stat="identity", color="black") +
 scale_y_sqrt() +
 facet_grid(~ Regime, scales="free", labeller=label_both)
 cxc + coord_polar(start=3*pi/2) +
 ggtitle("Causes of Mortality in the Army in the East") +
 xlab(""

End(Not run)

What if she had made a set of line graphs?
these plots are best viewed with width ~ R * height
 colors <- c("blue", "red", "black")
with(Nightingale, {
 plot(Date, Disease.rate, type="n", cex.lab=1.25,
 ylab="Annual Death Rate", xlab="Date", xaxt="n",
 main="Causes of Mortality of the British Army in the East");
 # background, to separate before, after
 rect(as.Date("1854/4/1"), -10, as.Date("1855/3/1"),
 1.02*max(Disease.rate), col=gray(.90), border="transparent");
text(as.Date("1854/4/1"), .98*max(Disease.rate), "Before Sanitary\nCommission", pos=4);
text(as.Date("1855/4/1"), .98*max(Disease.rate), "After Sanitary\nCommission", pos=4);
plot the data
points(Date, Disease.rate, type="b", col=colors[1], lwd=3);
points(Date, Wounds.rate, type="b", col=colors[2], lwd=2);
points(Date, Other.rate, type="b", col=colors[3], lwd=2)
}

add custom Date axis and legend
axis.Date(1, at=seq(as.Date("1854/4/1"), as.Date("1855/3/1"), "3 months"), format="%b %Y")
legend(as.Date("1855/10/20"), 700, c("Preventable disease", "Wounds and injuries", "Other"),
col=colors, fill=colors, title="Cause", cex=1.25)

Alternatively, show each cause of death as percent of total
Nightingale <- within(Nightingale, {
 Total <- Disease + Wounds + Other
 Disease.pct <- 100*Disease/Total
 Wounds.pct <- 100*Wounds/Total
 Other.pct <- 100*Other/Total
})
colors <- c("blue", "red", "black")
with(Nightingale, {
 plot(Date, Disease.pct, type="n", ylim=c(0,100), cex.lab=1.25,
ylab="Percent deaths", xlab="Date", xaxt="n",
main="Percentage of Deaths by Cause");
 # background, to separate before, after
 rect(as.Date("1854/4/1"), -10, as.Date("1855/3/1"),
 1.02*max(Disease.rate), col=gray(.90), border="transparent")
text(as.Date("1854/4/1"), .98*max(Disease.pct), "Before Sanitary\nCommission", pos=4);
text(as.Date("1855/4/1"), .98*max(Disease.pct), "After Sanitary\nCommission", pos=4);
 # plot the data
 points(Date, Disease.pct, type="b", col=colors[1], lwd=3);
 points(Date, Wounds.pct, type="b", col=colors[2], lwd=2);
 points(Date, Other.pct, type="b", col=colors[3], lwd=2)
})

add custom Date axis and legend
axis.Date(1, at=seq(as.Date("1854/4/1"), as.Date("1855/3/1"), "3 months"), format="%b %Y")
legend(as.Date("1854/8/20"), 60, c("Preventable disease", "Wounds and injuries", "Other"),
col=colors, fill=colors, title="Cause", cex=1.25)

OldMaps

Latitudes and Longitudes of 39 Points in 11 Old Maps

Description

The data set is concerned with the problem of aligning the coordinates of points read from old maps (1688 - 1818) of the Great Lakes area. 39 easily identifiable points were selected in the Great Lakes
area, and their (lat, long) coordinates were recorded using a grid overlaid on each of 11 old maps, and using linear interpolation.

It was conjectured that maps might be systematically in error in five key ways: (a) constant error in latitude; (b) constant error in longitude; (c) proportional error in latitude; (d) proportional error in longitude; (e) angular error from a non-zero difference between true North and the map’s North.

One challenge from these data is to produce useful analyses and graphical displays that relate to these characteristics or to other aspects of the data.

Usage

data(OldMaps)

Format

A data frame with 468 observations on the following 6 variables, giving the latitude and longitude of 39 points recorded from 12 sources (Actual + 11 maps).

point a numeric vector
col Column in the table a numeric vector
name Name of the map maker, using Actual for the true coordinates of the points. A factor with
levels Actual Arrowsmith Belin Cary Coronelli D’Anville Del’Isle Lattre Melish Mitchell Popple
year Year of the map
lat Latitude
long Longitude

Details

Some of the latitude and longitude values are inexplicably negative. It is probable that this is an error in type setting, because the table footnote says ";* denotes that interpolation accuracy is not good," yet no "*"s appear in the body of the table.

Source

Examples

data(OldMaps)
maybe str(OldMaps) ; plot(OldMaps) ...

with(OldMaps, plot(abs(long),abs(lat), pch=col, col=colors()[point]))
Description

Wachsmuth et al. (2003) noticed that a loess smooth through Galton’s data on heights of mid-parents and their offspring exhibited a slightly non-linear trend, and asked whether this might be due to Galton having pooled the heights of fathers and mothers and sons and daughters in constructing his tables and graphs.

To answer this question, they used analogous data from English families at about the same time, tabulated by Karl Pearson and Alice Lee (1896, 1903), but where the heights of parents and children were each classified by gender of the parent.

Usage

data(PearsonLee)

Format

A frequency data frame with 746 observations on the following 6 variables.

child child height in inches, a numeric vector
parent parent height in inches, a numeric vector
frequency a numeric vector
gp a factor with levels fd fs md ms
par a factor with levels Father Mother
chl a factor with levels Daughter Son

Details

The variables gp, par and chl are provided to allow stratifying the data according to the gender of the father/mother and son/daughter.

Source

References

See Also

Galton

Examples

data(PearsonLee)
str(PearsonLee)

with(PearsonLee,
 {
 lim <- c(55,80)
 xv <- seq(55,80,.5)
 sunflowerplot(parent, child, number=frequency, xlim=lim, ylim=lim, seg.col="gray", size=.1)
 abline(lm(child ~ parent, weights=frequency), col="blue", lwd=2)
 lines(xv, predict(loess(child ~ parent, weights=frequency)), data.frame(parent=xv)),
 col="blue", lwd=2)
 # NB: dataEllipse doesn't take frequency into account
 if(require(car)) {
 dataEllipse(parent, child, xlim=lim, ylim=lim, plot.points=FALSE)
 }
})

separate plots for combinations of (chl, par)

this doesn't quite work, because xyplot can't handle weights
require(lattice)
xyplot(child ~ parent|par+chl, data=PearsonLee, type=c("p", "r", "smooth"), col.line="red")

Using ggplot [thx: Dennis Murphy]
require(ggplot2)
ggplot(PearsonLee, aes(x = parent, y = child, weight=frequency)) +
 geom_point(size = 1.5, position = position_jitter(width = 0.2)) +
 geom_smooth(method = lm, aes(weight = PearsonLee$frequency,
 colour = 'Linear'), se = FALSE, size = 1.5) +
 geom_smooth(aes(weight = PearsonLee$frequency,
 colour = 'Loess'), se = FALSE, size = 1.5) +
 facet_grid(chl ~ par) +
 scale_colour_manual(breaks = c('Linear', 'Loess'),
 values = c('green', 'red')) +
 theme(legend.position = c(0.14, 0.885),
 legend.background = element_rect(fill = 'white'))

inverse regression, as in Wachmuth et al. (2003)

ggplot(PearsonLee, aes(x = child, y = parent, weight=frequency)) +
 geom_point(size = 1.5, position = position_jitter(width = 0.2)) +
 geom_smooth(method = lm, aes(weight = PearsonLee$frequency,
 colour = 'Linear'), se = FALSE, size = 1.5) +
 geom_smooth(aes(weight = PearsonLee$frequency,
 colour = 'Loess'), se = FALSE, size = 1.5) +
 facet_grid(chl ~ par) +
 scale_colour_manual(breaks = c('Linear', 'Loess'),
Description

The data frame `PolioTrials` gives the results of the 1954 field trials to test the Salk polio vaccine (named for the developer, Jonas Salk), conducted by the National Foundation for Infantile Paralysis (NFIP). It is adapted from data in the article by Francis et al. (1955). There were actually two clinical trials, corresponding to two statistical designs (Experiment), discussed by Brownlee (1955). The comparison of designs and results represented a milestone in the development of randomized clinical trials.

Usage

data(PolioTrials)

Format

A data frame with 8 observations on the following 6 variables.

- **Experiment**: a factor with levels `ObservedControl RandomizedControl`
- **Group**: a factor with levels `Controls GradeR notInoculated IncompleteVaccinations NotInoculated Placebo Vaccinated`
- **Population**: the size of the population in each group in each experiment
- **Paralytic**: the number of cases of paralytic polio observed in that group
- **NonParalytic**: the number of cases of paralytic polio observed in that group
- **FalseReports**: the number of cases initially reported as polio, but later determined not to be polio in that group

Details

The data frame is in the form of a single table, but actually comprises the results of two separate field trials, given by `Experiment`. Each should be analyzed separately, because the designs differ markedly.

The original design (`Experiment == "ObservedControl"`) called for vaccination of second-graders at selected schools in selected areas of the country (with the consent of the children’s parents, of course). The Vaccinated second-graders formed the treatment group. The first and third-graders at the schools were not given the vaccination, and formed the Controls group.

In the second design (`Experiment == "RandomizedControl"`) children were selected (again in various schools in various areas), all of whose parents consented to vaccination. The sample was randomly divided into treatment (`Group == "Vaccinated"`), given the real polio vaccination, and
control groups (Group == "Placebo"), a placebo dose that looked just like the real vaccine. The experiment was also double blind: neither the parents of a child in the study nor the doctors treating the child knew which group the child belonged to.

In both experiments, NotInnoculated refers to children who did not participate in the experiment. IncompleteVaccinations refers to children who received one or two, but not all three administrations of the vaccine.

Source

References

Examples

data(PolioTrials)
maybe str(PolioTrials) ; plot(PolioTrials) ...

<table>
<thead>
<tr>
<th>Prostitutes</th>
<th>Parent-Duchatelet's time-series data on the number of prostitutes in Paris</th>
</tr>
</thead>
</table>

Description

A table indicating month by month, for the years 1812-1854, the number of prostitutes on the registers of the administration of the city of Paris.

Usage

data(Prostitutes)

Format

A data frame with 516 observations on the following 5 variables.

Year a numeric vector
month a factor with levels Apr Aug Dec Feb Jan Jul Jun Mar May Nov Oct Sep
count a numeric vector: number of prostitutes
mon a numeric vector: numeric month
date a Date
Details

The data table was digitally scanned with OCR, and errors were corrected by comparing the yearly totals recorded in the table to the row sums of the scanned data.

Source

Examples

data(Prostitutes)
maybe str(Prostitutes) ; plot(Prostitutes) ...

Pyx

Trial of the Pyx

Description

Stigler (1997, 1999) recounts the history of one of the oldest continuous schemes of sampling inspection carried out by the Royal Mint in London for about eight centuries. The Trial of the Pyx was the final, ceremonial stage in a process designed to ensure that the weight and quality of gold and silver coins from the mint met the standards for coinage.

At regular intervals, coins would be taken from production and deposited into a box called the Pyx. When a Trial of the Pyx was called, the contents of the Pyx would be counted, weighed and assayed for content, and the results would be compared with the standard set for the Royal Mint.

The data frame *pyx* gives the results for the year 1848 (Great Britain, 1848) in which 10,000 gold sovereigns were assayed. The coins in each bag were classified according to the deviation from the standard content of gold for each coin, called the Remedy, \(R = 123 \times (12/5760) = .25625 \), in grains, for a single sovereign.

Usage

data(Pyx)

Format

A frequency data frame with 72 observations on the following 4 variables giving the distribution of 10,000 sovereigns, classified according to the Bags in which they were collected and the Deviation from the standard weight.

<table>
<thead>
<tr>
<th>Bags</th>
<th>Group</th>
<th>Deviation</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>an ordered factor with levels 1 and 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10</td>
<td>an ordered factor with levels below std < near std < above std</td>
<td>an ordered factor with levels Below -R < (-R to -.1) < (-.2 to -.1) < (-.1 to 0) < (0 to .1) < (.1 to .2) < (.2 to R) < Above R</td>
<td>number of sovereigns</td>
</tr>
</tbody>
</table>
Details

Bags 1-4 were selected as "near to standard", bags 5-7 as below standard, bags 8-10 as above standard. This classification is reflected in Group.

Source

References

Examples

data(Pyx)
display as table
xtabs(count ~ Bags+Deviation, data=Pyx)

<table>
<thead>
<tr>
<th>Quarrels</th>
<th>Statistics of Deadly Quarrels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

The Statistics Of Deadly Quarrels by Lewis Fry Richardson (1960) is one of the earlier attempts at quantification of historical conflict behavior.

The data set contains 779 dyadic deadly quarrels that cover a time period from 1809 to 1949. A quarrel consists of one pair of belligerents, and is identified by its beginning date and magnitude (log 10 of the number of deaths). Neither actor in a quarrel is identified by name.

Because Richardson took a dyad of belligerents as his unit, a given war, such as World War I or World War II comprises multiple observations, for all pairs of belligerents. For example, there are forty-four pairs of belligerents coded for World War I.

For each quarrel, the nominal variables include the type of quarrel, as well as political, cultural, and economic similarities and dissimilarities between the pair of combatants.

Usage

data(Quarrels)
Format

A data frame with 779 observations on the following 84 variables.

ID V84: Id sequence
year V1: Begin date of quarrel
international V2: Nation vs nation
colonial V3: Nation vs colony
revolution V4: Revolution or civil war
nat.grp V5: Nation vs gp in other nation
grp.grpSame V6: Grp vs grp (same nation)
grp.grpDif V7: Grp vs grp (between nations)
numGroups V8: Num grps agst which fighting
months V9: Num months fighting
pairs V10: Num pairs in whole matrix
monthsPairs V11: Num mons for all in mtrx
logDeaths V12: Log (killed) matrix
deaths V13: Total killed for matrix
exchangeGoods V14: Gp sent goods to other
obstacleGoods V15: Gp puts obstacles to goods
intermarriageOK V16: Present intermarriages
intermarriageBan V17: Intermarriages banned
simBody V18: Similar body characteristics
difBody V19: Difference in body characteristics
simDress V20: Similarity of customs (dress)
difDress V21: Difference of customs (dress)
eqWealth V22: Common level of wealth
difWealth V23: Difference in wealth
simMariagCust V24: Similar marriage customs
difMariagCust V25: Different marriage customs
simRelig V26: Similar religion or philosophy of life
difRelig V27: Religion or philisophy felt different
philanthropy V28: General philanthropy
restrictMigration V29: Restricted immigrations
sameLanguage V30: Common mother tongue
difLanguage V31: Different languages
simArtSci V32: Similar science, arts
travel V33: Travel
ignorance V34: Ignorant of other/both
Quarrels

simpersLiberty V35: Personal liberty similar
difpersLiberty V36: More personal liberty
sameGov V37: Common government
sameGovYrs V38: Years since common govt established
prevConflict V39: Belligerents fought previously
prevConflictYrs V40: Years since belligerents fought
chronicFighting V41: Chronic fighting between belligerents
persFriendship V42: Autocrats personal friends
persResentment V43: Leaders personal resentment
difLegal V44: Annoyingly different legal systems
nonintervention V45: Policy of nonintervention
thirdParty V46: Led by 3rd group to conflict
supportEnemy V47: Supported others enemy
attackAlly V48: Attacked ally of other
rivalsLand V49: Rivals territory concess
rivalsTrade V50: Rivals trade
churchPower V51: Church civil power
noExtension V52: Policy not extending ter
territory V53: Desired territory
habitation V54: Wanted habitation
minerals V55: Desired minerals
StrongHold V56: Wanted strategic stronghold
taxation V57: Taxed other
loot V58: Wanted loot
objectedWar V59: Objected to war
enjoyFight V60: Enjoyed fighting
pride V61: Elated by strong pride
overpopulated V62: Insufficient land for population
fightForPay V63: Fought only for pay
joinWinner V64: Desired to join winners
otherDesiredWar V65: Quarrel desired by other
propaganda3rd V66: Issued of propaganda to third parties
protection V67: Offered protection
sympathy V68: Sympathized under control
debt V69: Owed money to others
prevAllies V70: Had fought as allies
yearsAllies V71: Years since fought as allies
Quarrels

intermingled V72: Had intermingled on territory
interbreeding V73: Interbreeding between groups
propaganda V74: Issued propaganda to other group
orderedObey V75: Ordered other to obey
commerceOther V76: Commercial enterprises
feltStronger V77: Felt stronger
competeIntellect V78: Competed successfully intellectual occ
insecureGovt V79: Government insecure
prepWar V80: Preparations for war
RegionalError V81: Regional error measure
CasualtyError V82: Casualty error measure
Auxiliaries V83: Auxiliaries in service of nation at war

Details

In the original data set obtained from ICPSR, variables were named vQ-v8T. These were renamed to make them more meaningful. V84, renamed ID was moved to the first position, but otherwise the order of variables is the same.

In many of the factor variables, Ø is used to indicate "irrelevant to quarrel". This refers to those relations that Richardson found absent or irrelevant to the particular quarrel, and did not subsequently mention.

See the original codebook at http://www.icpsr.umich.edu/cgi-bin/file?comp=none&study=5407&ds=1&file_id=652814 for details not contained here.

Source

http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/05407

References

Examples

data(Quarrels)
str(Quarrels)
Description

The Snow data consists of the relevant 1854 London streets, the location of 578 deaths from cholera, and the position of 13 water pumps (wells) that can be used to re-create John Snow’s map showing deaths from cholera in the area surrounding Broad Street, London in the 1854 outbreak. Another data frame provides boundaries of a tessellation of the map into Thiessen (Voronoi) regions which include all cholera deaths nearer to a given pump than to any other.

The apocryphal story of the significance of Snow’s map is that, by closing the Broad Street pump (by removing its handle), Dr. Snow stopped the epidemic, and demonstrated that cholera is a water borne disease. The method of contagion of cholera was not previously understood. Snow’s map is the most famous and classical example in the field of medical cartography, even if it didn’t happen exactly this way. (the apocryphal part is that the epidemic ended when the pump handle was removed.) At any rate, the map, together with various statistical annotations, is compelling because it points to the Broad Street pump as the source of the outbreak.

Usage

data(Snow.deaths)
data(Snow.pumps)
data(Snow.streets)
data(Snow.polygons)
data(Snow.dates)

Format

Snow.deaths: A data frame with 578 observations on the following 3 variables, giving the address of a person who died from cholera. When many points are associated with a single street address, they are "stacked" in a line away from the street so that they are more easily visualized. This is how they are displayed on John Snow’s original map. The dates of the deaths are not individually recorded in this data set.

case Sequential case number, in some arbitrary, randomized order
x x coordinate
y y coordinate

Snow.pumps: A data frame with 13 observations on the following 4 variables, giving the locations of water pumps within the boundaries of the map.

pump pump number
label pump label: Briddle St Broad St ... Warwick
x x coordinate
y y coordinate
Snow

Snow.streets: A data frame with 1241 observations on the following 4 variables, giving coordinates used to draw the 528 street segment lines within the boundaries of the map. The map is created by drawing lines connecting the n points in each street segment.

street street segment number: 1:528
n number of points in this street line segment
x x coordinate
y y coordinate

Snow.polygons: A list of 13 data frames, giving the vertices of Thiessen (Voronoi) polygons containing each pump. Their boundaries define the area that is closest to each pump relative to all other pumps. They are mathematically defined by the perpendicular bisectors of the lines between all pumps. Each data frame contains:

x x coordinate
y y coordinate

Snow.deaths2: An alternative version of Snow.deaths correcting some possible duplicate and missing cases, as described in vignette("Snow.deaths-duplicates").

Snow.dates: A data frame of 44 observations and 3 variables from Table 1 of Snow (1855), giving the number of fatal attacks and number of deaths by date from Aug. 19 – Sept. 30, 1854. There are a total of 616 deaths represented in both columns attacks and deaths; of these, the date of the attack is unknown for 45 cases.

Details

The scale of the source map is approx. 1:2000. The (x, y) coordinate units are 100 meters, with an arbitrary origin.

Of the data in the Snow.dates table, Snow says, “The deaths in the above table are compiled from the sources mentioned above in describing the map; but some deaths which were omitted from the map on account of the number of the house not being known, are included in the table.”

One limitation of these data sets is the lack of exact street addresses. Another is the lack of any data that would serve as a population denominator to allow for a comparison of mortality rates in the Broad Street pump area as opposed to others. See Koch (2000), Koch (2004), Koch & Denike (2009) and Tufte (1999), p. 27-37, for further discussion.

Source

The data in these files were first digitized in 1992 by Rusty Dodson of the NCGIA, Santa Barbara, from the map included in the book by John Snow: "Snow on Cholera...", London, Oxford University Press, 1936.
References

See Also

SnowMap

Examples

```r
data(Snow.deaths)
data(Snow.pumps)
data(Snow.streets)
data(Snow.polygons)
data(Snow.deaths)

## Plot deaths over time
require(lubridate)
clr <- ifelse(Snow.dates$date < mdy("09/08/1854"), "red", "darkgreen")
plot(deaths ~ date, data=Snow.dates, type="h", lwd=2, col=clr)
points(deaths ~ date, data=Snow.dates, cex=0.5, pch=16, col=clr)
text( mdy("09/08/1854"), 40, "Pump handle\nremoved Sept. 8", pos=4)

## draw Snow's map and data
SnowMap()

# add polygons
SnowMap(polygons=TRUE, main="Snow's Cholera Map with Pump Polygons")

# zoom in a bit, and show density estimate
SnowMap(xlim=c(7.5,16.5), ylim=c(7,16), polygons=TRUE, density=TRUE, main="Snow's Cholera Map, Annotated")

## re-do this the sp way... [thx: Stephane Dray]
library(sp)

# streets
slist <- split(Snow.streets[,c("x","y")],as.factor(Snow.streets[,"street"]))
LL1 <- lapply(slist,Line)
```
```
Lsl1 <- Lines(L11,"Street")
Snow.streets.sp <- SpatialLines(list(Lsl1))
plot(Snow.streets.sp, col="gray")
title(main="Snow's Cholera Map of London (sp)")

# deaths
Snow.deaths.sp = SpatialPoints(Snow.deaths[,c("x","y")])
plot(Snow.deaths.sp, add=TRUE, col='red', pch=15, cex=0.6)

# pumps
spp <- SpatialPoints(Snow.pumps[,c("x","y")])
Snow.pumps.sp <- SpatialPointsDataFrame(spp, Snow.pumps[,c("x","y")])
plot(Snow.pumps.sp, add=TRUE, col='blue', pch=17, cex=1.5)
text(Snow.pumps[,c("x","y")], labels=Snow.pumps$label, pos=1, cex=0.8)
```

SnowMap

Draw John Snow’s Map of Cholera in London

Description

The main function `SnowMap` draws versions of John Snow’s map of cholera deaths in the South London area surrounding the Broad Street pump, during the 1854 outbreak.

It is a wrapper for the various subfunctions also listed here:
- `Splot` sets up the basic plot
- `Sstreets` draws the streets
- `Sdeaths` plots the deaths
- `Sdeaths` plots the pump locations
- `Sscale` draws the scale
- `Spolygons` draws the boundaries of the Voronoi polygons separating the pumps
- `Sdensity` draws and fills contours of the 2D density of deaths

Usage

```r
SnowMap(xlim = c(3, 20), ylim = c(3, 20),
       axis.labels = FALSE, main = "Snow's Cholera Map of London",
       scale = TRUE, polygons = FALSE, density=FALSE,
       streets.args = list(col = "grey", lwd = 1),
       deaths.args = list(col = "red", pch = 15, cex = 0.6),
       pumps.args = list(col = "blue", pch = 17, cex = 1.5, cex.lab = 0.9),
       scale.args = list(xs = 3.5, ys = 19.7),
       polygons.args = list(col=NA, border="brown", lwd=2, lty=1),
       density.args=list(bandwidth=c(0.5,0.5),
                       col1=rgb(0,1,0,0),
                       col2=rgb(1,0,0,0))
)
```
SnowMap

Splot(xlim = c(3, 20), ylim = c(3, 20),
 xlab = "", ylab = "",
 axis.labels = FALSE,
 main = "Snow's Cholera Map of London")

Sdeaths(col = "red", pch = 15, cex = 0.6)

Spumps(col = "blue", pch = 17, cex = 1.5, cex.lab = 0.9)

Sstreets(col = "gray", lwd = 1)

Sscale(xs = 3.5, ys = 19.7)

Spolygons(col=NA, border="brown", lwd=2, lty=1)

Sdensity(bandwidth = c(0.5, 0.5), col1 = rgb(0, 1, 0, 0), col2 = rgb(1, 0, 0, 0.8))

Arguments

- **xlim**: Limit for the horizontal axis. Specify ranges smaller than the defaults to zoom the plot.
- **ylim**: Limit for the vertical axis.
- **axis.labels**: Logical. Show axis tick mark labels?
- **main**: Plot title
- **scale**: Logical; draw a scale (in meters) on the plot
- **polygons**: Logical; Use Spolygons to draw the Snow.polygons on the plot?
- **density**: Logical; Use Sdensity to draw the 2D bivariate density of deaths on the plot?
- **streets.args**: List of arguments passed to Sstreets
- **deaths.args**: List of arguments passed to Sdeaths
- **pumps.args**: List of arguments passed to Spumps
- **scale.args**: List of arguments passed to Sscale
- **polygons.args**: List of arguments passed to Spolygons. Note that col here now refers to the fill colors, passed to polygon. The col argument here can be a vector of up to 13 colors, one for each pump region.
- **density.args**: List of arguments passed to Sdensity
- **xlab**: Label for horizontal axis
- **ylab**: Label for vertical axis
- **col**: Color of points and lines used by various functions
- **pch**: Point character used by by various functions
- **cex**: Character size used by by various functions
- **cex.lab**: Character size for labels used by Spumps
- **lwd**: Line width used by by various functions
- **border**: Color of border lines used by Spolygons
xs x location of the scale used by \texttt{scale}
ys y location of the scale used by \texttt{scale}
\texttt{lt} Line type used by by various functions
\texttt{bandwidth} Bandwidth used by \texttt{bkde2D} in \texttt{sdensity}
\texttt{col1} Lower level of color range used by \texttt{colorRampPalette} in \texttt{sdensity}
\texttt{col2} Upper level of color range used by \texttt{colorRampPalette} in \texttt{sdensity}

\textbf{Value}

None

\textbf{Author(s)}

Michael Friendly

\textbf{References}

John Mackenzie, "GIS Analyses of Dr. Snow’s Map". \url{http://www1.udel.edu/johnmack/frec480/cholera/cholera2.html} describes some related visualizations using ArcGIS.

\textbf{See Also}

\texttt{snow} for description of the data sets
\texttt{bkde2D, colorRampPalette}

\textbf{Examples}

\begin{verbatim}
SnowMap()
SnowMap(axis.labels=TRUE)
SnowMap(deaths.args=list(col="darkgreen"))

SnowMap(polygons=TRUE, main="Snow's Cholera Map with Pump Polygons")
SnowMap(density=TRUE)
\end{verbatim}

\begin{verbatim}
\texttt{Virginis} \hspace{1cm} \textit{John F. W. Herschel's Data on the Orbit of the Twin Stars} γ Virginis
\end{verbatim}

\textbf{Description}

In 1833 J. F. W. Herschel published two papers in the \textit{Memoirs of the Royal Astronomical Society} detailing his investigations of calculating the orbits of twin stars from observations of their relative position angle and angular distance.

In the process, he invented the scatterplot, and the use of visual smoothing to obtain a reliable curve that surpassed the accuracy of individual observations (Friendly & Denis, 2005). His data on the recordings of the twin stars \textit{γ Virginis} provide an accessible example of his methods.
Usage

data("Virginis")
data("Virginis.interp")

Format

Virginis: A data frame with 18 observations on the following 6 variables giving the measurements of position angle and angular distance between the central (brightest) star and its twin, recorded by various observers over more than 100 years.

- **year**: year ("epoch") of the observation, a decimal numeric vector
- **posangle**: recorded position angle between the two stars, a numeric vector
- **distance**: separation distance between the two stars, a numeric vector
- **weight**: a subjective weight attributed to the accuracy of this observation, a numeric vector
- **notes**: Herschel’s notes on this observation, a character vector
- **authority**: A simplified version of the notes giving just the attribution of authority of the observation, a character vector

Virginis.interp: A data frame with 14 observations on the following 4 variables, giving the position angles and angular distance that Herschel interpolated from his smoothed curve.

- **year**: year ("epoch") of the observation, a decimal numeric vector
- **posangle**: recorded position angle between the two stars, a numeric vector
- **distance**: separation distance, calculated $1/\sqrt{\text{velocity}}$
- **velocity**: angular velocity, calcualted as the instantaneous slopes of tangents to the smoothed curve, a numeric vector

Details

The data in **Virginis** come from the table on p. 35 of the “Micrometrical Measures” paper. The weight variable was assigned by the package author, reflecting Herschel’s comments and for use in any weighted analysis.

In the notes and authority variables, "H" refers to William Herschel (John’s farther, the discoverer of the planet Uranus), "h" refers to John Herschel himself, and "Sigma", rendered Σ in the table on p. 35 refers to Joseph Fraunhofer.

The data in **Virginis.interp** come from Table 1 on p. 190 of the supplementary paper.

Source

References

Examples

```r
data(Virginis)
data(Virginis.interp)

# Herschel's interpolated curve
plot(posangle ~ year, data=Virginis.interp,
     pch=15, type="b", col="red", cex=0.8, lwd=2,
     xlim=c(1710,1840), ylim=c(80, 170),
     ylab="Position angle (deg.)", xlab="Year",
     cex.lab=1.5)

# The data points, and indication of their uncertainty
points(posangle ~ year, data=Virginis, pch=16)
points(posangle ~ year, data=Virginis, cex=weight/2)
```

Wheat

Playfair’s Data on Wages and the Price of Wheat

Description

Playfair (1821) used a graph, showing parallel time-series of the price of wheat and the typical weekly wage for a "good mechanic" from 1565 to 1821 to argue that working men had never been as well-off in terms of purchasing power as they had become toward the end of this period.

His graph is a classic in the history of data visualization, but commits the sin of showing two non-commensurable Y variables on different axes. Scatterplots of wages vs. price or plots of ratios (e.g., wages/price) are in some ways better, but both of these ideas were unknown in 1821.

In this version, information on the reigns of British monarchs is provided in a separate data.frame, `wheat.monarch`.

Usage

```r
data(Wheat)
data(Wheat.monarch)
```

Format

Wheat

A data frame with 53 observations on the following 3 variables.

Year Year, in intervals of 5 from 1565 to 1821: a numeric vector

Wheat Price of Wheat (Shillings/Quarter bushel): a numeric vector
Wages Weekly wage (Shillings): a numeric vector

Wheat.monarchs A data frame with 12 observations on the following 4 variables.

name Reigning monarch, a factor with levels Anne Charles I Charles II Cromwell Elizabeth George I George II George III George IV James I James II W&M

start Starting year of reign, a numeric vector

day Starting year of reign, a numeric vector

commonwealth A binary variable indicating the period of the Commonwealth under Cromwell

Source

References

Examples

data(Wheat)

data(Wheat)

-- ---------------------------------
Playfair's graph, largely reproduced
-- ---------------------------------

convenience function to fill area under a curve down to a minimum value
fillpoly <- function(x,y, low=min(y), ...) {
 n <- length(x)
 polygon(c(x, x[n], x[1]), c(y, low, low), ...)
}

For best results, this graph should be viewed with width ~ 2 * height
Note use of type='s' to plot a step function for Wheat
and panel.first to provide a background grid()
The curve for Wages is plotted after the polygon below it is filled
with(Wheat, {
 plot(Year, Wheat, type="s", ylim=c(0,105),
 ylab="Price of the Quarter of Wheat (shillings)",
 panel.first=grid(col=gray(.9), lty=1))
 fillpoly(Year, Wages, low=0, col="lightskyblue", border=NA)
 lines(Year, Wages, lwd=3, col="red")
})
Yeast

Student's (1906) Yeast Cell Counts

```r
# add some annotations
text(1625, 10, "Weekly wages of a good mechanic", cex=0.8, srt=3, col="red")

text(1650, 85, "Chart", cex=2, font=2)
text(1650, 70, pastef("Shewing at One View",
  "The Price of the Quarter of Wheat",
  "\& Wages of Labor by the Week",
  "from the Year 1565 to 1821",
  "by William Playfair",
  sep="\n"), font=3)

# add the time series bars to show reigning monarchs
# distinguish Cromwell visually, as Playfair did
with(Wheat, monarchs, {
  y <- ifelse(!commonwealth & (!seq_along(start) %% 2), 102, 104)
  segments(start, y, end, y, col="black", lwd=7, lend=1)
  segments(start, y, end, y, col=ifelse(commonwealth, "white", NA), lwd=4, lend=1)
  text((start+end)/2, y-2, name, cex=0.5)
})

# plot the labor cost of a quarter of wheat
with(Wheat, {
  plot(Year, Labor, type='b', pch=16, cex=1.5, lwd=1.5, ylab="Labor cost of a Quarter of Wheat (weeks)", ylim=c(1,12.5));
  lines(lowess(Year, Labor), col="red", lwd=2)
})

with(Wheat, monarchs, {
  y <- ifelse(!commonwealth & (!seq_along(start) %% 2), 12.3, 12.5)
  segments(start, y, end, y, col="black", lwd=7, lend=1)
  segments(start, y, end, y, col=ifelse(commonwealth, "white", NA), lwd=4, lend=1)
  text((start+end)/2, y-0.2, name, cex=0.5)
})
```
Description

Counts of the number of yeast cells were made each of 400 regions in a 20 x 20 grid on a microscope slide, comprising a 1 sq. mm. area. This experiment was repeated four times, giving samples A, B, C and D.

Student (1906) used these data to investigate the errors in random sampling. He says "there are two sources of error: (a) the drop taken may not be representative of the bulk of the liquid; (b) the distribution of the cells over the area which is examined is never exactly uniform, so that there is an 'error of random sampling.'"

The data in the paper are provided in the form of discrete frequency distributions for the four samples. Each shows the frequency distribution squares containing a count of 0, 1, 2, ... yeast cells. These are combined here in Yeast. In addition, he gives a table (Table I) showing the actual number of yeast cells counted in the 20 x 20 grid for sample D, given here as YeastD.mat.

Usage

data(Yeast)
data(YeastD.mat)

Format

Yeast: A frequency data frame with 36 observations on the following 3 variables, giving the frequencies of

sample Sample identifier, a factor with levels A B C D
count The number of yeast cells counted in a square
freq The number of squares with the given count

YeastD.mat: A 20 x 20 matrix containing the count of yeast cells in each square for sample D.

Details

Student considers the distribution of a total of $N m$ particles distributed over N unit areas with an average of m particles per unit area. With uniform mixing, for a given particle, the probability of it falling on any one area is $p = 1/N$, and not falling on that area is $q = 1 − 1/N$. He derives the probability distribution of 0, 1, 2, 3, ... particles on a single unit area from the binomial expansion of $(p + q)^mN$.

Source

References

Examples

data(Yeast)
require(lattice)
basic bar charts
TODO: frequencies should start at 0, not 1.
barchart(count~freq|sample, data=Yeasts, ylab="Number of Cells", xlab="Frequency")
barchart(freq~count|sample, data=Yeasts, xlab="Number of Cells", ylab="Frequency",
horizontal=FALSE, origin=0)

same, using xyplot
xyplot(freq~count|sample, data=Yeasts, xlab="Number of Cells", ylab="Frequency",
horizontal=FALSE, origin=0, type="h", lwd=10)

ZeaMays

Darwin’s Heights of Cross- and Self-fertilized Zea May Pairs

Description

Darwin (1876) studied the growth of pairs of zea may (aka corn) seedlings, one produced by cross-fertilization and the other produced by self-fertilization, but otherwise grown under identical conditions. His goal was to demonstrate the greater vigour of the cross-fertilized plants. The data recorded are the final height (inches, to the nearest 1/8th) of the plants in each pair.

In the Design of Experiments, Fisher (1935) used these data to illustrate a paired t-test (well, a one-sample test on the mean difference, cross - self). Later in the book (section 21), he used this data to illustrate an early example of a non-parametric permutation test, treating each paired difference as having (randomly) either a positive or negative sign.

Usage

data(ZeaMays)

Format

A data frame with 15 observations on the following 4 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pair</td>
<td>pair number, a numeric vector</td>
</tr>
<tr>
<td>pot</td>
<td>pot, a factor with levels 1 2 3 4</td>
</tr>
<tr>
<td>cross</td>
<td>height of cross fertilized plant, a numeric vector</td>
</tr>
<tr>
<td>self</td>
<td>height of self fertilized plant, a numeric vector</td>
</tr>
<tr>
<td>diff</td>
<td>cross - self for each pair</td>
</tr>
</tbody>
</table>
Details

In addition to the standard paired t-test, several types of non-parametric tests can be contemplated:

(a) Permutation test, where the values of, say self are permuted and diff=cross - self is calculated for each permutation. There are 15! permutations, but a reasonably large number of random permutations would suffice. But this doesn’t take the paired samples into account.

(b) Permutation test based on assigning each abs(diff) a + or - sign, and calculating the mean(diff). There are 2^{15} such possible values. This is essentially what Fisher proposed. The p-value for the test is the proportion of absolute mean differences under such randomization which exceed the observed mean difference.

(c) Wilcoxon signed rank test: tests the hypothesis that the median signed rank of the diff is zero, or that the distribution of diff is symmetric about 0, vs. a location shifted alternative.

Source

References

See Also

wilcox.test

independence_test in the coin package, a general framework for conditional inference procedures (permutation tests)

Examples

data(ZeaMays)

```
### Some preliminary exploration ###
boxplot(ZeaMays[,c("cross", "self")], ylab="Height (in)", xlab="Fertilization")

# examine large individual diff/ces
largediff <- subset(ZeaMays, abs(diff) > 2*sd(abs(diff)));
with(largediff, segments(1, cross, 2, self, col="red"))

# plot cross vs. self. NB: unusual trend and some unusual points
with(ZeaMays, plot(self, cross, pch=16, cex=1.5))
abline(lm(cross ~ self, data=ZeaMays), col="red", lwd=2)

# pot effects ?
anova(lm(diff ~ pot, data=ZeaMays))
```
Zeamays

Tests of mean difference#
#
Wilcoxon signed rank test
signed ranks:
with(ZeaMays, sign(diff) * rank(abs(diff)))
wilcox.test(ZeaMays$cross, ZeaMays$self, conf.int=TRUE, exact=FALSE)

t-tests
with(ZeaMays, t.test(cross, self))
with(ZeaMays, t.test(diff))

mean(ZeaMays$diff)
complete permutation distribution of diff, for all 2^15 ways of assigning
one value to cross and the other to self (thnx: Bert Gunter)
N <- nrow(ZeaMays)
allmeans <- as.matrix(expand.grid(as.data.frame(
 matrix(rep(c(-1,1),N), nr =2)))) %*% abs(ZeaMays$diff) / N

upper-tail p-value
sum(allmeans > mean(ZeaMays$diff)) / 2^N
two-tailed p-value
sum(abs(allmeans) > mean(ZeaMays$diff)) / 2^N

hist(allmeans, breaks=64, xlab="Mean difference, cross-self", main="Histogram of all mean differences")
abline(v=c(1, -1)*mean(ZeaMays$diff), col="red", lwd=2, lty=1:2)

plot(density(allmeans), xlab="Mean difference, cross-self", main="Density plot of all mean differences")
abline(v=c(1, -1)*mean(ZeaMays$diff), col="red", lwd=2, lty=1:2)
Index

*Topic datasets
Arbuthnot, 6
Armada, 7
Bowley, 9
Cavendish, 10
ChestSizes, 11
Cholera, 12
CushnyPeebles, 14
Dactyl, 17
DrinksWages, 18
Fingerprints, 19
Galton, 20
GaltonFamilies, 22
Guerry, 24
HalleyLifetable, 26
Jevons, 27
Langren, 29
Macdonell, 33
Michelson, 38
Minard, 40
Nightingale, 42
OldMaps, 45
PearsonLee, 47
PolioTrials, 49
Prostitutes, 50
Pyx, 51
Quarrels, 52
Snow, 56
Virginis, 61
Wheat, 63
Yeast, 65
ZeaMays, 67

*Topic hplot
SnowMap, 59

*Topic nonparametric
ZeaMays, 67

*Topic package
HistData-package, 2

*Topic spatial
Langren, 29
Minard, 40
OldMaps, 45
Snow, 56

*Topic
Langren, 29
Minard, 40
OldMaps, 45

Arbuthnot, 4, 5, 6, 27
Armada, 4, 5, 7

barley, 6
bkde2D, 61
Bowley, 4, 5, 9

Cavendish, 4, 5, 10
ChestSizes, 4, 5, 11
Cholera, 4, 5, 12
colorRampPalette, 61
CushnyPeebles, 4, 5, 14
CushnyPeeblesN (CushnyPeebles), 14

Dactyl, 4, 5, 17
DrinksWages, 4, 5, 18

Fingerprints, 4, 5, 19

Galton, 4, 5, 20, 23, 48
galton, 21
GaltonFamilies, 4, 5, 22
galtonpeas, 5
gfrance, 26
Guerry, 4, 5, 24

HalleyLifetable, 4, 5, 26
HistData (HistData-package), 2
HistData-package, 2

immer, 6
independence_test, 68

70
INDEX

Jevons, 4, 5, 27

Langren, 4, 5, 29
Langren1644 (Langren), 29

Macdonell, 4, 5, 33
MacdonellDF (Macdonell), 33
Michelson, 4, 5, 38
MichelsonSets (Michelson), 38
Minard, 4, 5, 40
minnesota.barley.weather, 6
minnesota.barley.yield, 6
morley, 39

Nightingale, 4, 5, 42

OldMaps, 4, 5, 45

PearsonLee, 4, 5, 21, 23, 47
peas, 5
PolioTrials, 5, 49
polygon, 60
Prostitutes, 5, 50
Pyx, 5, 51

Quarrels, 5, 52

Sdeaths (SnowMap), 59
Sdensity (SnowMap), 59
sleep, 16
Snow, 5, 56, 61
Snow.deaths, 13
SnowMap, 58, 59
Splot (SnowMap), 59
Spolygons (SnowMap), 59
Spumps (SnowMap), 59
Sscale (SnowMap), 59
Sstreets (SnowMap), 59

Virginis, 5, 61

Wheat, 5, 63
wilcox.test, 68

Yeast, 5, 65
YeastD.mat (Yeast), 65

ZeaMays, 5, 67