Package ‘HybridMC’

February 19, 2015

Type Package

Title Implementation of the Hybrid Monte Carlo and Multipoint Hybrid Monte Carlo sampling techniques

Version 0.2

Date 2009-05-27

Author Richard D. Morey

Maintainer Richard D. Morey <richarddmorey@gmail.com>

Depends utils, coda

Description This package is an R implementation of the Hybrid Monte Carlo and Multipoint Hybrid Monte Carlo sampling techniques described in Liu (2001): “Monte Carlo Strategies in Computing”.

License GPL (>= 2)

URL http://www.r-project.org

LazyLoad yes

Repository CRAN

Date/Publication 2009-06-08 16:50:01

NeedsCompilation yes

R topics documented:

 hybridMC ... 2

Index 4
hybridMC

Sample from a (log)density using hybrid Monte Carlo

Description

`hybridMC()` samples from a (log) joint density function defined up to a proportionality constant. It uses the multipoint hybrid Monte Carlo methods described by Liu (2001). The function supports a full range of tweaking options to minimize autocorrelation.

Usage

```r
hybridMC(y.start, n.samp=1, logDens, dLogDens, epsilon, LFsteps, compWeights=NULL, MPwidth=1, MPweights=NULL, progress=100000, ...)
```

Arguments

- `y.start`: A vector of starting values
- `n.samp`: The number of samples to draw. Each previous value is used as the starting value for the next sample
- `logDens`: The log-density function (up to an additive constant) from which you would like to sample. `logDens` must return a single value
- `dLogDens`: The function giving the derivative of the log-density function with respect to each variable. `dLogDens` must return a vector of the same length as `y.start`
- `epsilon`: Either a single positive value giving the size of the time simulation steps, or a vector of length 2 giving the lower and upper bounds of the interval from which `epsilon` is uniformly sampled
- `LFsteps`: An integer giving the number of leapfrog simulation steps to do
- `compWeights`: The “masses” of the dimensions. Must be either a single numeric value or a vector of the same length as `y.start`
- `MPwidth`: The (integer) size of the multipoint window. The default is 1, meaning no multipoint `MPwidth` must be less than or equal to `LFsteps`.
- `MPweights`: A vector of length `MPwidth` of constants, used to weight the proposal values within the multipoint window. If only a single value is passed, the values are weighted evenly
- `progress`: An integer giving the number of samples between updates to a text progress bar. If `progress`=0, no progress bar is displayed
- `...`: Arguments to pass to `logDens` and `dLogDens`

Details

The density should have support of the whole real line for every dimension. The quality of the samples can be improved by tweaking `epsilon`, `LFsteps`, `MPwidth`, and to to a lesser extent, `compWeights` and `MPweights`.

If you use the progress bar, keep in mind that updating the progress bar takes a little time. Too many updates will slow down your sampling, so pick a reasonable value for `progress`.

Value

`hybridMC()` returns an object of type `mcmc` (from the `coda` package). Each row is a sample from the joint density.

Author(s)

Richard D. Morey

References

Liu (2001) "Monte Carlo strategies in scientific computing"

Examples

```r
### Example 1: Jointly sample from two independent double exponentials

## log density function for double exponential
L = function(x)
  -sum(abs(x))

dL = function(x)
  -sign(x)

startVal = c(-1,1)
samples = hybridMC(y.start=startVal, n.samp=5000, logDens=L, dLogDens=dL, epsilon=.2, LFsteps=10)

# Plot the MCMC chains and densities
plot(samples)

# Plot a histogram of the first variable, with true density
hist(samples[,1],freq=FALSE,breaks=50)
x = seq(-5,5,len=100)
lines(x,.5*dexp(abs(x)),col="red") #true density in red

# Autocorrelation function
acf(samples)
```
Index

*Topic distribution
 hybridMC, 2
*Topic misc
 hybridMC, 2
*Topic multivariate
 hybridMC, 2

hybridMC, 2