Package ‘IBHM’

February 19, 2015

Type Package
Title Approximation using the IBHM method
Version 1.1-11
Date 2014-01-18
Author Pawel Zawistowski
Maintainer Pawel Zawistowski <dratewka@gmail.com>
Description Implementation of an incremental model construction method called IBHM which stands for Incrementally Built Heterogeneous Model. The method is designed for solving real number approximation problems in a highly automated fashion.
License GPL (>= 2)
Depends R(>= 2.15.2), compiler, DEoptim (>= 2.2-1), cmaes (>= 1.0-11), Rcpp (>= 0.10.3), methods (>= 3.0.1)
LinkingTo Rcpp
RcppModules evaluator
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-01-19 00:29:25

R topics documented:

IBHM-package .. 2
ConfigureIBHM ... 2
IterationSC .. 5
length.IBHM ... 6
predict.IBHM ... 6
summary.IBHM .. 7
TrainIBHM .. 8
ValidationSC ... 9

Index 11
IBHM-package Approximation using the IBHM method

Description

Implementation of an incremental model construction method called IBHM which stands for Incrementally Built Heterogeneous Model. The method is designed for solving real-number approximation problems in a highly automated fashion and should be considered one of black-box modelling approaches such as Artificial Neural Networks or Support Vector Machines.

Details

Package: IBHM
Type: Package
Version: 1.0
Date: 2013-03-21
License: GPL (>= 2)

The package may be used to produce small, robust computational models using real valued empirical data. The most important functions are \texttt{trainibhm} which constructs an IBHM model and \texttt{configureibhm} which sets the methods parameters.

Author(s)

Pawel Zawistowski
Maintainer: Pawel Zawistowski <dratewka@gmail.com>

References

Usage

ConfigureIBHM(stop.criterion = IterationSC(3),
 weighting.function = function(y, w.par){ 0.01+dnorm(y, sd=abs(w.par))},
 scal.optim = 'multi.CMAES',
 scal.optim.params = list(retries=3, inner=list(maxit=50, stopfitness=-1)),
 scal.candidates = c('dot.pr','radial','root.radial'),
 activ.optim = 'multi.CMAES',
 activ.optim.params = list(retries=3, inner=list(maxit=100, stopfitness=-1)),
 activcandidates = c('tanh','logsig','lin'),
 jit=TRUE,
 verbose=FALSE,
 final.estimation = 'all',
 final.estimation.x = NULL,
 final.estimation.y = NULL,
 final.estimation.maxit = 100)

Arguments

stop.criterion The stop criterion for the model construction process. Possible values include objects created using IterationSC (the default) or ValidationSC.

For simplicity, the default value causes the method to construct a model with a fixed number of components (3), however it’s actually best to use ValidationSC criterion with a separate validation set.

weighting.function Definition of the weighting function used during model construction. This function puts emphasis on local features of the approximated function (see details).

scal.optim The optimization method used to estimate scalarization functions’ parameters. Possible values are: CMAES, multi.CMAES (default), DE, multi.DE.

The parameter values set the optimization methods as follows: CMAES uses covariance matrix evolution strategy implemented in the cmaes package, multi.CMAES is multistart cmaes, DE uses differential evolution implemented in DEoptim package, multi.DE is multistart DE.

scal.optim.params The parameters passed to the optimization method used to estimate scalarization functions’ parameters. In case of CMAES this should be a list, in case of DE this should be a DEoptim::DEoptim.control object.

In case of multistart versions of optimization methods this parameter is a list with two fields: retries denoting the number of restarts and inner containing the parameters passed during each restart to the underlying optimization method.

scal.candidates Candidate scalarization functions (see details).

activ.optim The optimization method used to estimate activation functions’ parameters - see description of scal.optim.

activ.optim.params The parameters passed to the optimization method used to estimate activation functions’ parameters - see description of the scal.optim.params.
ConfigureIBHM

activ.candidates
Candidate activation functions (see details).

jit
Enables the just-in-time compilation feature provided by the compiler package.

verbose
Enables verbose output (disabled by default).

final.estimation
The type of final parameter estimation step. Possible values are: weights and all for all parameters.

final.estimation.x
The x values used during the final estimation step. If not given then the training data is used.

final.estimation.y
The y values used during the final estimation step. If not given then the training data is used.

final.estimation.maxit
The number of iterations (of the optimizer) during final parameter estimation.

Details
The model constructed by IBHM has the following form:

\[\hat{f}(x) = w_0 + \sum_{i=1}^{m} w_i g(a_i h(x, d_i) + b_i) , \]

where \(h : R^n \rightarrow R \) is a scalarization function, \(g : R \rightarrow R \) is an activation function, \(d_i \) is a parameter vector, and \(a_i, b_i, w_i \) are scalar parameters.

The parameter estimation is based on optimizing weighted correlation measures between the model output and the approximation residual. This allows for an iterative model construction process which estimates both model structure and parameter values. For more details see [Zawistowski and Arabas].

Value
A configuration object for TrainIBHM.

References

See Also
TrainIBHM, ValidationSC, IterationSC
IterationSC

Examples

```r
x <- seq(-3,3,length.out=400)
y <- tanh(x)

x.val <- runif(50,min=-6,max=6)
y.val <- tanh(x.val)

m <- TrainIBHM(x,y, ConfigureIBHM(  scal.candidates = 'dot.pr',
                        activ.candidates = 'tanh',
                        stop.criterion = ValidationSC(x.val, y.val)))

summary(m)
plot(y.val,predict(m,x.val),asp=1)
```

Description

An iteration counting stop criterion for `TrainIBHM` function creating IBHM approximation models. Should be passed to `ConfigureIBHM` while creating a configuration object.

Usage

`IterationSC(max.iterations)`

Arguments

- `max.iterations` The number of iterations after which model construction should be stopped.

See Also

`ValidationSC`, `ConfigureIBHM`, `TrainIBHM`

Examples

```r
x.train <- seq(-2,2,length.out=100)
y.train <- tanh(x.train)

m <- IBHM::TrainIBHM(x.train,y.train, ConfigureIBHM(stop.criterion=IterationSC(2)))
length(m)
```
length.IBHM

Description

Returns the number of components in an IBHM model.

Usage

```r
## S3 method for class 'IBHM'
length(x)
```

Arguments

- `x` An object inheriting from class "IBHM".

Value

The number of components in the given IBHM model.

See Also

`TrainIBHM`

Examples

```r
x.train <- seq(-2,2,length.out=100)
y.train <- tanh(x.train)
m <- IBHM::TrainIBHM(x.train, y.train)
length(m)
```

predict.IBHM

Description

Predicted values based on IBHM model object.

Usage

```r
## S3 method for class 'IBHM'
predict(object, x, ...)```

**Examples**

```r
x.train <- seq(-2,2,length.out=100)
y.train <- tanh(x.train)
m <- IBHM::TrainIBHM(x.train, y.train)
predict(m, x.train)
```
Arguments

object Object of class inheriting from "ibhm"
x An object for which the predictions will be calculated - should be convertible to a matrix. If not given the values from the training data are used.

Value

predict.IBM returns a vector of predicted values with length corresponding to the number of rows of the x parameter.

See Also

TrainIBHM

Examples

x.train <- seq(-2,2,length.out=100)
y.train <- tanh(x.train)
m <- IBHM::TrainIBHM(x.train,y.train)
cat('Train MSE:',mean((y.train-predict(m))^2),'\n')
x.test <- runif(100, min=-4, max=4)
yh.test <- predict(m, x.test)
plot(x.test, yh.test)

summary.IBHM

Description

summary method for class "IBHM".

Usage

## S3 method for class 'IBHM'
summary(object, ...)

## S3 method for class 'summary.IBHM'
print(x, ...)

Arguments

object An object of class "IBHM", usually created using TrainIBHM.
x An object of class "summary.IBHM" created using summary.
... Further arguments.
Value
An object of class 'summary.IBHM' containing the following fields:

- **model**: Equation stating the obtained model in human readable form.
- **model.size**: Number of components in the model.
- **TrainSize**: Size of the training set used to construct the model.
- **TrainDim**: Number of input attributes in the training set.
- **mse**: Mean squared error.
- **se.sd**: Standard deviation of the squared error.
- **rmse**: Root mean squared error.
- **cor**: Linear correlation between the actual and predicted values on the train data set.

See Also

- **TrainIBHM**

Examples

```r
x.train <- seq(-2, 2, length.out=100)
y.train <- tanh(x.train)

m <- TrainIBHM(x.train, y.train)
summary(m)
```

Description
Trains an IBHM model using training data with input variables \( x \) and a single output variable \( y \).

Usage

```r
TrainIBHM(x, y, config = ConfigureIBHM())
```

Arguments

- **x**: Training data input variables. Should be convertible to a matrix with each row corresponding to a single data point.
- **y**: Training data output variable. Should be convertible to a matrix with a single column and the number of rows equal to the number of rows of \( x \).
- **config**: A configuration object created using ConfigureIBHM. Contains settings such as the stop criterion, optimization method parameters etc.
ValidationSC

Value

The created model which is an object of class "IBHM".

References


See Also

ConfigureIBHM, summary.IBHM, predict.IBHM

Examples

# Training data
x <- seq(-3,3,length.out=400)
y <- tanh(x)

# A held out validation set for the stop criterion
x.val <- runif(50, min=-6, max=6)
y.val <- tanh(x.val)

# Training the model using the validation set to prevent overfitting
m <- trainIBHM(x,y,
               ConfigureIBHM(stop.criterion = ValidationSC(x.val, y.val)))

summary(m)
plot(y.val,predict(m,x.val),asp=1)

ValidationSC

Description

A validation set based stop criterion for TrainIBHM function creating IBHM approximation models. Should be passed to ConfigureIBHM while creating a configuration object.

Usage

ValidationSC(x, y)

Arguments

x Validation set input arguments, should be convertible to a matrix.
y Validation set predicted argument, should be convertible to a single column matrix.
ValidationSC

Details

The criterion is checked after each iteration and the current model is used to predict values on the validation data set. When the error increases in comparison to the previous iteration, the construction process is stopped, and the changes in the model from the last iteration are undone.

See Also

IterationSC, ConfigureIBHM, TrainIBHM

Examples

# Training data
x <- seq(-3,3,length.out=400)
y <- tanh(x)

# A held out validation set for the stop criterion
x.val <- runif(50,min=-6,max=6)
y.val <- tanh(x.val)

# Training the model using the validation set to prevent overfitting
m <- TrainIBHM(x,y,
               ConfigureIBHM(stop.criterion = ValidationSC(x.val, y.val))
)

summary(m)
plot(y.val,predict(m,x.val),asp=1)
Index

*Topic **Textasciitildemodels**
  ConfigureIBHM, 2
  IBHM-package, 2
  IterationSC, 5
  length_IBHM, 6
  predict_IBHM, 6
  summary_IBHM, 7
  TrainIBHM, 8
  ValidationSC, 9

*Topic **Textasciitildenonlinear**
  ConfigureIBHM, 2
  IBHM-package, 2
  IterationSC, 5
  length_IBHM, 6
  predict_IBHM, 6
  summary_IBHM, 7
  TrainIBHM, 8
  ValidationSC, 9

*Topic **Textasciitilderegression**
  ConfigureIBHM, 2
  IBHM-package, 2
  IterationSC, 5
  length_IBHM, 6
  predict_IBHM, 6
  summary_IBHM, 7
  TrainIBHM, 8
  ValidationSC, 9

*Topic **package**
  IBHM-package, 2

ConfigureIBHM, 2, 2, 5, 8–10

IBHM (IBHM-package), 2
IBHM-package, 2
IterationSC, 3, 4, 5, 10

length (length_IBHM), 6
length_IBHM, 6

predict (predict_IBHM), 6

predict_IBHM, 6, 9
print.summary.IBHM (summary.IBHM), 7
summary (summary.IBHM), 7
summary_IIBM, 7, 9
TrainIBHM, 2, 4–8, 8, 9, 10
ValidationSC, 3–5, 9