Package ‘ICC’

Type Package
Title Facilitating Estimation of the Intraclass Correlation Coefficient
Version 2.3.0
Date 2015-06-17
Description Assist in the estimation of the Intraclass Correlation Coefficient (ICC) from variance components of a one-way analysis of variance and also estimate the number of individuals or groups necessary to obtain an ICC estimate with a desired confidence interval width.

URL http://github.com/matthewwolak/ICC
BugReports http://github.com/matthewwolak/ICC/issues
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Author Matthew Wolak [cre, aut]
Maintainer Matthew Wolak <matthewwolak@gmail.com>
Repository CRAN
Date/Publication 2015-06-17 15:19:34

R topics documented:

 ICC-package .. 2
effort .. 2
ICCbare .. 3
ICCbareF .. 4
ICCest .. 5
Nest ... 6

Index 9
Description

Assist in the estimation of the Intraclass Correlation Coefficient (ICC) from variance components of a one-way analysis of variance and also estimate the number of individuals or groups necessary to obtain an ICC estimate with a desired confidence interval width.

Details

Package: ICC
Type: Package
Version: 2.3.0
Date: 2015-06-17
License: GPL (>=2)
LazyLoad: yes

See Also

iccest, Nest, ICCbare, effort

effort

Plots the optimum k measures per individual (or group), based upon a fixed total researcher effort.

Description

Given a fixed researcher effort (e.g., total number of assays able to be run), this function plots the optimum k measurements per individual to use in order to obtain the smallest confidence interval at an expected intraclass correlation coefficient (ICC) estimate. The results are depicted graphically, showing the tradeoff in confidence interval width with changing k.

Usage

effort(est.type = c("hypothetical", "pilot"), e = NULL, ICC = NULL, x = NULL, y = NULL, data = NULL, alpha = 0.05)
Arguments

- **est.type**: character string of either "hypothetical" indicating usage of the given values of effort \((e) \) and intraclass correlation coefficient \((ICC) \) or if "pilot" is specified then to calculate these from the dataset provided. Just the first letter may be used.
- **e**: the total effort \((n \text{ individuals times } k \text{ measurements per individual}) \). May be a vector of effort levels.
- **ICC**: expected intraclass correlation coefficient
- **x**: column name of data indicating the individual or group ID from a pilot study
- **y**: column name of data indicating the measurements from a pilot study
- **data**: a data.frame from a pilot experiment
- **alpha**: the alpha level to use when estimating the confidence interval

Details

More than one \(e \) may be given. In this case, the graphical result portrays multiple lines - each representing a different \(e \). When \(\text{est.type} = \text{"pilot"} \), the function automatically generates an effort 10 percent larger and smaller than the calculated effort from the pilot data.

Author(s)

Matthew Wolak <matthewwolak@gmail.com>

See Also

- Nest

Examples

```r
#Example 1
effort(est.type = "h", e = c(30, 60, 120), ICC = 0.2)

#Example 2
data(ChickWeight)
effort(est.type = "p", x = Chick, y = weight, data = ChickWeight)
```

Description

Estimates the Intraclass Correlation Coefficient (ICC) and is meant to be as simple and fast as possible for use in Monte Carlo simulations or bootstrapping. If the design is balanced, it will calculate variance components 'by hand', instead of using the aov() function.
Usage

ICCbareF(x, y, data)

Arguments

x column name indicating individual or group id in the dataframe data
y column name indicating measurements in the dataframe data. Each entry in x must have at least one non-NA value in y
data a dataframe containing x and y

Details

ICCbare can be used on balanced or unbalanced datasets with NAs. ICCbareF is similar, however ICCbareF should not be used with unbalanced datasets.

Value

ICC the intraclass correlation coefficient

Author(s)

Matthew Wolak <matthewwolak@gmail.com>

See Also

ICCest, ICCbareF

ICCbareF Simple Estimation of the Intraclass Correlation Coefficient

Description

Estimates the Intraclass Correlation Coefficient (ICC) and is meant to be as simple and fast as possible for use in Monte Carlo simulations or bootstrapping. Calculates the variance components 'by hand', instead of using the aov() function.

Usage

ICCbareF(x, y, data)

Arguments

x column name indicating individual or group id in the dataframe data
y column name indicating measurements in the dataframe data. Each entry in x must have at least one non-NA value in y
data a dataframe containing x and y
Details

ICCbare is distinguished from ICCbare, in that ICCbare is more flexible and can handle missing values and unbalanced datasets. ICCbare cannot and should only be used on balanced datasets without any NAs.

Value

ICC

the intraclass correlation coefficient

Author(s)

Matthew Wolak <matthewwolak@gmail.com>

See Also

ICCest, ICCbare

Description

Estimates the ICC and confidence intervals using the variance components from a one-way ANOVA.

Usage

```r
ICCest(x, y, data = NULL, alpha = 0.05, CI.type = c("THD", "Smith"))
```

Arguments

- `x`: column name indicating individual or group id in the dataframe data
- `y`: column name indicating measurements in the dataframe data
- `data`: a dataframe containing x and y
- `alpha`: the alpha level to use when estimating the confidence interval. Default is 0.05.
- `CI.type`: the particular confidence interval to estimate. Can be specified by just the first letter of the name. See Details section for more.

Details

If the dependent variable, x, is not a factor, then the function will change it into a factor and produce a warning message.

The confidence interval can be estimated from one of two methods included here. CIs of the type "THD" are based upon the exact confidence limit equation in Searle (1971) and can be used for unbalanced data (see Thomas & Hultquist 1978; Donner 1979).

CIs of the type "Smith" are based upon the approximate formulas for the standard error of the ICC estimate (Smith 1956).
Value

- **ICC**: the intraclass correlation coefficient
- **LowerCI**: the lower confidence interval limit, where the confidence level is set by alpha
- **UpperCI**: the upper confidence interval limit, where the confidence level is set by alpha
- **N**: the total number of individuals or groups used in the analysis
- **k**: the number of measurements per individual or group. In an unbalanced design, k is always less than the mean number of measurements per individual/group and is calculated using the equation in Lessells and Boag (1987).
- **varw**: the within individual or group variance
- **vara**: the among individual or group variance

Author(s)

Matthew Wolak <matthewwolak@gmail.com>

References

See Also

ICCbare

Examples

```r
data(ChickWeight)
ICCest(Chick, weight, data = ChickWeight, CI.type = "S")
```

Nest

Calculate the N individuals/groups required to estimate the ICC with a desired confidence interval

Description

Given a predicted ICC and k measures per individual/group, this function will calculate the N individuals/groups required to obtain a desired confidence interval w(according to Bonett, 2002).

Usage

```r
Nest(est.type = c("hypothetical", "pilot"), w, ICC = NULL, k = NULL,
 x = NULL, y = NULL, data = NULL, alpha = 0.05)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>est.type</td>
<td>character string of either "hypothetical" indicating usage of the given values of k and ICC or if "pilot" is specified then to calculate these from the dataset provided. Just the first letter may be used</td>
</tr>
<tr>
<td>w</td>
<td>desired width of the confidence interval about the ICC estimate</td>
</tr>
<tr>
<td>ICC</td>
<td>expected intraclass correlation coefficient</td>
</tr>
<tr>
<td>k</td>
<td>number of measurements per individual or group</td>
</tr>
<tr>
<td>x</td>
<td>column name of data indicating the individual or group ID from a pilot study</td>
</tr>
<tr>
<td>y</td>
<td>column name of data indicating the measurements from a pilot study</td>
</tr>
<tr>
<td>data</td>
<td>a data.frame from a pilot experiment</td>
</tr>
<tr>
<td>alpha</td>
<td>the alpha level to use when estimating the confidence interval</td>
</tr>
</tbody>
</table>

Details

More than one ICC or k may be given. In this case, the return value is a dataframe with rows representing the values of the specified ICCs and the columns yield the different k values.

Value

data.frame indicating the N number of individuals or groups to use to estimate the given ICC with a desired confidence interval width. Rows represent different levels of ICC while columns indicate different levels of k measurements per individual/group.

Author(s)

Matthew Wolak <matthewwolak@gmail.com>

References

See Also

ICCest

Examples

#Example 1
n1<-Nest("h", w = 0.14, ICC = 0.1, k = 10)

#Example 2
data(ChickWeight)
Nest("p", w = 0.14, x = Chick, y = weight, data = ChickWeight)
ex2 <- ICCest(Chick, weight, ChickWeight)
ex2$UpperCI - ex2$LowerCI #confidence interval width of pilot study
ex2
#Example 3
Nest("h", w = 0.14, ICC = seq(0.05, 0.15, 0.05), k = seq(10, 12, 1))
Index

effort, 2
ICC-package, 2
ICCbare, 3, 5, 6
ICCbareF, 4, 4
ICCest, 4, 5, 5, 7
Nest, 3, 6