Package ‘IPSUR’

February 19, 2015

Type Package
Title Introduction to Probability and Statistics Using R
Version 1.5
Date 2013-10-27
Author G. Jay Kerns
Maintainer G. Jay Kerns <gkerns@ysu.edu>
Depends R (>= 2.10)
Suggests actuar, aplpack, boot, coin, combinat, DAAG, diagram, distr,
 distrEx, distrTeach, e1071, HH (>= 2.1-32), Hmisc, lattice,
 lmtest, mvtnorm, odfWeave, prob, qcc, RcmdrPlugin.IPSUR (>=
 0.1-6), Rcmdr, reshape, scatterplot3d, TeachingDemos (>= 2.5),
 vcd
Description This package contains the Sweave source code used to
 generate IPSUR, an introductory probability and statistics
 textbook, alongside other supplementary materials such as the
 parsed R code for the book and data for the examples and
 exercises. The book is released under the GNU Free
 Documentation License.
License GPL (>= 3)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2013-10-28 07:46:12

R topics documented:

 IPSUR-package .. 2
 IPSUR.Utilities ... 2
 plot ... 3
 The Central Limit Theorem 4

Index 5
Description

This package contains the Sweave source code used to generate IPSUR, an introductory probability and statistics textbook, alongside other supplementary materials such as the parsed R code for the book and data for the examples and exercises. The book is released under the GNU Free Documentation License.

Details

Package: IPSUR
Type: Package
Version: 1.5
Date: 2013-10-27
License: GPL (>= 3)
LazyLoad: yes

This package is a textbook written at the introductory level to introduce students to probability and statistics using R. After loading the package with library(IPSUR), the book may be read by issuing the command read(IPSUR) at the command line.

Author(s)

G. Jay Kerns
Maintainer: G. Jay Kerns <gkerns@ysu.edu>

Description

These functions support using the IPSUR package.

Usage

read(x)

Arguments

x the name of a vignette, quoted or not.
Details

These are convenience functions designed to make the use of IPSUR easier for novices.

Author(s)

G. Jay Kerns <gkerns@ysu.edu>

plot
Plotting Hypothesis Tests

Description

This function allows the user to plot a saved hypothesis test object, including normal curves, critical values, shading, and p-values. It requires the HH package and the normal.and.t.dist function written by Dr. Richard Heiberger. Please note that a much better version of this function is currently under development.

Usage

S3 method for class 'htest'
plot(x, hypoth.or.conf = 'Hypoth', ...)

Arguments

- `x`
an htest object that is the result of a hypothesis test.
- `hypoth.or.conf`
a switch to choose between plots for hypothesis tests or confidence intervals
- `...`
further arguments to be passed to or from other methods.

Details

This is a plot method for hypothesis tests or confidence intervals which uses the normal.and.t.dist function in the HH package.

Value

A plot of the normal or Student’s t distribution associated with the hypothesis test or confidence interval. Critical values and p-values are displayed.

Author(s)

G. Jay Kerns <gkerns@ysu.edu>

See Also

normal.and.t.dist
The Central Limit Theorem

Investigating the Central Limit Theorem

Description

These functions were written for students to investigate the Central Limit Theorem. For more information, see the exercises at the end of the chapter "Sampling Distributions" in IPSUR.

Usage

- `clt1(population = "rt", r = 3, sample.size = 2, N.iter = 100000)`
- `clt2(population = "runif", a = 0, b = 10, sample.size = 2, N.iter = 100000)`
- `clt3(population = "rgamma", alpha = 1.21, theta = 2.37, sample.size = 2, N.iter = 100000)`

Arguments

- `population` the name of a population distribution, in its random generator form.
- `sample.size` the sample size.
- `N.iter` the number of samples desired.
- `r` the degrees of freedom for Student’s t distribution.
- `a` the minimum value of a continuous uniform distribution.
- `b` the maximum value of a continuous uniform distribution.
- `alpha` the shape parameter of a gamma distribution.
- `theta` the scale parameter of a gamma distribution.

Details

When the functions are called a plot window opens to show a graph of the PDF of the population distribution. On the display are shown numerical values of the population mean and variance. The computer simulates random samples of size `sample.size` from the distribution a total of `N.iter` times, and sample means are calculated for each sample. Next follows a histogram of the simulated sample means, which closely approximates the sampling distribution of the sample mean. Also shown are the sample mean and sample variance of all of the simulated sample means. As a final step, when the user clicks the second plot, a normal curve with the same mean and variance as the simulated sample means is superimposed over the histogram.

Author(s)

G. Jay Kerns <gkerns@ysu.edu>
Index

*Topic misc
 IPSUR.Utilities, 2
 plot, 3
 The Central Limit Theorem, 4
*Topic package
 IPSUR-package, 2

clt1 (The Central Limit Theorem), 4
clt2 (The Central Limit Theorem), 4
clt3 (The Central Limit Theorem), 4

IPSUR (IPSUR-package), 2
IPSUR-package, 2
IPSUR.Utilities, 2

normal.and.t.dist, 3
plot, 3
read (IPSUR.Utilities), 2

The Central Limit Theorem, 4