Package ‘ImpactIV’

February 19, 2015

Type Package

Title Identifying Causal Effect for Multi-Component Intervention Using Instrumental Variable Method

Version 1.0

Date 2010-12-12

Author Peng Ding <dingyunyiqiu@163.com>

Maintainer Peng Ding <dingyunyiqiu@163.com>

Description In this package, you can find two functions proposed in Ding, Geng and Zhou (2011) to estimate direct and indirect causal effects with randomization and multiple-component intervention using instrumental variable method.

Depends nnet

License GPL (>= 2)

LazyLoad yes

Repository CRAN

Date/Publication 2012-10-29 08:57:11

NeedsCompilation no

R topics documented:

ImpactIV-package ... 2
heter_IV2 ... 3
homo_IV1 ... 5
impact ... 6

Index 8
ImpactIV-package

Identifying Causal Effect for Multi-Component Intervention Using IV

Description

In this package, you can find two functions proposed in Ding, Geng and Zhou (2011) to estimate direct and indirect causal effects with randomization and multiple-component intervention using instrumental variable method.

Details

<table>
<thead>
<tr>
<th>Package: ImpactIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Package</td>
</tr>
<tr>
<td>Version: 1.0</td>
</tr>
<tr>
<td>Date: 2010-12-12</td>
</tr>
<tr>
<td>License: GPL (>=2)</td>
</tr>
<tr>
<td>LazyLoad: yes</td>
</tr>
</tbody>
</table>

Author(s)

Maintainer: Peng Ding <dingyunyi@163.com>

References

See Also

homo_IV1, heter_IV2

Examples

data(impact)
Z=impact$Z
A=impact$A
M=impact$M
Y=scale(impact$Y)
X=as.matrix(impact[,5:12])
#continuous variables of X
Xcon = X[, c(1,4,6,8)]
#discrete variables of X
heter_IV2

Xdis = X[, c(2,3,5,7)]

#XX^2
X2 = cbind(X, poly(Xcon, degree = 2, raw = TRUE),
 Xcon*Xdis[,1], Xcon*Xdis[,2], Xcon*Xdis[,3], Xcon*Xdis[,4])

method1 = homo_IV1(Z = Z, A = A, M = M, Y = Y, X = X)
method2 = heter_IV2(Z = Z, A = A, M = M, Y = Y, X = X2,
 polydegree = 1, step1 = method1,
 truncate = 0.25, select = "AIC")

heter_IV2
Estimation causal effect under Assumption 7 in Ding et al. (2011)

Description

Estimation causal effect under Assumption 6 in Ding et al. (2011) when the second order moment of the error term is not constant.

Usage

heter_IV2(Z, A, M, Y, X, polydegree = 2, step1 = NULL,
 truncate = 0.25, select = NULL)

Arguments

- **Z**
 A vector of the randomization variable.

- **A**
 A vector of the first mediator: whether a patient receives antidepressant medication.

- **M**
 A vector of the second mediator: whether a patient receives mental health therapy.

- **Y**
 A vector of the outcome of interest.

- **X**
 A matrix of all the covariates.

- **polydegree**
 The order of the polynomial function.

- **step1**
 The result of the first step estimation from homo_IV1.

- **truncate**
 Truncate the estimated Omega using a positive constant.

- **select**
 Using AIC or BIC for variable selection in the polynomial regression, the default is null.

Details

For background of the problem, see Ding et al. (2011).
Value

- **beta**: beta coefficients of Z, A, M and AM.
- **phat**: proportion of randomization to the treatment group.
- **residual**: residuals of the first step regression.
- **se**: standard errors of beta coefficients.
- **zvalue**: z-values of the beta coefficients.
- **pvalue**: p-values of the beta coefficients.
- **CI**: confidence intervals of the beta coefficients.
- **COV**: covariance matrix of the beta coefficients.
- **ser**: robust version of standard errors of beta coefficients.
- **zvaluer**: robust version of z-values of the beta coefficients.
- **pvaluer**: robust version of p-values of the beta coefficients.
- **CIr**: robust version of confidence intervals of the beta coefficients.
- **COVr**: robust version of covariance matrix of the beta coefficients.
- **N**: sample size
- **G**: G is defined in Ding et al. (2010).
- **W**: W is defined in Ding et al. (2010).
- **Omegahat**: Omegahat is is defined in Ding et al. (2010).

Author(s)

Peng Ding <dingyunyiqiu@163.com>

References

Examples

See help for "ImpactIV"
Estimation causal effect under Assumption 6 in Ding et al. (2011)

Description

Estimation causal effect under Assumption 6 in Ding et al. (2011) when the second order moment of the error term is constant.

Usage

homo_IV1(Z, A, M, Y, X)

Arguments

Z A vector of the randomization variable.
A A vector of the first mediator: whether a patient receives antidepressant medication.
M A vector of the second mediator: whether a patient receives mental health therapy.
Y A vector of the outcome of interest.
X A matrix of all the covariates.

Details

For background of the problem, see Ding et al. (2011).

Value

beta beta coefficients of Z, A, M and AM.
phat proportion of randomization to the treatment group.
residual residuals of the regression.
se standard errors of beta coefficients.
zvalue z-values of the beta coefficients.
pvalue p-values of the beta coefficients.
CI confidence intervals of the beta coefficients.
C0V covariance matrix of the beta coefficients.
ser robust version of standard errors of beta coefficients.
zvaluer robust version of z-values of the beta coefficients.
pvaluer robust version of p-values of the beta coefficients.
CIr robust version of confidence intervals of the beta coefficients.
C0Vr robust version of covariance matrix of the beta coefficients.
N sample size
G G is defined in Ding et al. (2010).
W W is defined in Ding et al. (2010).
Omega Omega is is defined in Ding et al. (2010).
Author(s)

Peng Ding <dingyunyiqiu@163.com>

References

Examples

```r
##See help for "ImpactIV"
```

impact

The data for IMPACT program.

Description

The data for IMPACT program used in Ding et al. (2011).

Usage

```r
data(impact)
```

Format

A data frame with 1783 observations on the following 12 variables.

- **Z** randomization
- **A** whether taking antidepressant medications
- **M** whether taking mental health therapy
- **Y** outcome of interest
- **age** age
- **gender** gender
- **race** race
- **edu** education
- **marry** married or not
- **scl0** baseline SCL score
- **work0** work or not
- **inc** income/10000

Details

See Ding et al. (2011) for more details of IMPACT program.
References

Examples

data(impact)
Index

*Topic **causal effect**
 heter_IV2, 3
 homo_IV1, 5
 ImpactIV-package, 2

*Topic **datasets**
 impact, 6

*Topic **instrumental variable**
 heter_IV2, 3
 homo_IV1, 5
 ImpactIV-package, 2

heter_IV2, 3
homo_IV1, 5

impact, 6
ImpactIV(ImpactIV-package), 2
ImpactIV-package, 2