Package ‘Iso’

June 1, 2015

Version 0.0-17
Date 2015-06-01
Title Functions to Perform Isotonic Regression
Author Rolf Turner <r.turner@auckland.ac.nz>
Maintainer Rolf Turner <r.turner@auckland.ac.nz>
Depends R (>= 1.7.0)
Description Linear order and unimodal order (univariate) isotonic regression; bivariate isotonic regression with linear order on both variables.
License GPL (>= 2)
URL http://www.stat.auckland.ac.nz/~rolf/
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-06-01 08:27:01

R topics documented:

- `biviso` .. 1
- `pava` ... 4
- `ufit` ... 5

Index

| biviso | Bivariate isotonic regression. |

Description

Bivariate isotonic regression with respect to simple (increasing) linear ordering on both variables.
Usage

biviso(y, w = NULL, eps = NULL, eps2 = 1e-9, ncycle = 50000,
 fatal = TRUE, warn = TRUE)

Arguments

y The matrix of observations to be isotonized. It must of course have at least two rows and at least two columns.
w A matrix of weights, greater than or equal to zero, of the same dimension as y. If left NULL then w is created as a matrix all of whose entries are equal to 1.
eps Convergence criterion. The algorithm is deemed to have converged if each entry of the output matrix, after the completion of the current iteration, does not differ by more than eps from the corresponding entry of the matrix after the completion of the previous iteration. If this argument is not supplied it defaults to sqrt(.Machine$double.eps).
eps2 Criterion used to determine whether isotonicity is “violated”, whence whether (further) application of the “pool adjacent violators” procedure is required.
ncycle The maximum number of cycles of the iteration procedure. Must be at least 2 (otherwise an error is given). If the procedure has not converged after ncycle iterations then an error is given. (See below.)
fatal Logical scalar. Should the function stop if the subroutine returns an error code other than 0 or 4? If fatal is FALSE then output is returned by the function even if there was a “serious” fault. One can set fatal=FALSE to inspect the values of the objective matrix at various interim stages prior to convergence. See Examples.
warn Logical scalar. Should a warning be produced if the subroutine returns a value of ifault equal to 4 (or to any other non-zero value when fatal has been set to FALSE)?

Details

See the paper by Bril et al., (References) and the references cited therein for details.

Value

A matrix of the same dimensions as y containing the corresponding isotonic values. It has an attribute i-cycle equal to the number of cycles required to achieve convergence of the algorithm.

Error Messages

The subroutine comprising Algorithm AS 206 produces an error code ifault with values from 0 to 6. The meaning of these codes is as follows:

- 0: No error.
- 1: Convergence was not attained in ncycle cycles.
- 2: At least one entry of w was negative.
• 3: Either nrow(y) or ncol(y) was less than 2.
• 4: A near-zero weight less than delta=0.00001 was replaced by delta.
• 5: Convergence was not attained and a non-zero weight was replaced by delta.
• 6: All entries of w were less than delta.

If ifault==4 a warning is given. All of the other non-zero values of ifault result in an error being given.

WARNING

This function appears not to achieve exact isotonicity, at least not quite. For instance one can do:

```r
set.seed(42)
u <- matrix(runif(400),20,20)
iu <- biviso(u)
any(apply(iu,2,is.unsorted))
```

and get TRUE. It turns out that columns 13, 14, and 16 of iu have exceptions to isotonicity. E.g. six of the values of diff(iu[,13]) are less than zero. However only one of these is less than sqrt(.Machine$double.eps), and then only "marginally" smaller.

So some of these negative values are "numerically different" from zero, but not by much. The largest in magnitude in this example, from column 16, is \(-2.217624e-08\) — which is probably not of "practical importance".

Note also that this example occurs in a very artificial context in which there is no actual isotonic structure underlying the data.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz> http://www.stat.auckland.ac.nz/~rolf

References

See Also

pava() pava.sa() ufit()

Examples

```r
x <- 1:20
y <- 1:10
xy <- outer(x,y,function(a,b)(a+b+0.5*a*b)) + rnorm(200)
ixy <- biviso(xy)

set.seed(42)
u <- matrix(runif(400),20,20)
```
Description

The “pool adjacent violators algorithm” (PAVA) is applied to calculate the isotonic regression of a set of data, with respect to the usual increasing (or decreasing) linear ordering on the indices.

Usage

pava(y, w, decreasing=FALSE, long.out=FALSE, stepfun=FALSE)
pava.sa(y, w, decreasing=FALSE, long.out=FALSE, stepfun=FALSE)

Arguments

y Vector of data whose isotonic regression is to be calculated.
w Optional vector of weights to be used for calculating a weighted isotonic regression; if w is not given, all weights are taken to equal 1.
decreasing Logical scalar; should the isotonic regression be calculated with respect to decreasing (rather than increasing) order?
long.out Logical argument controlling the nature of the value returned.
stepfun Logical scalar; if TRUE a step function representation of the isotonic regression is returned.

Details

The function pava() uses dynamically loading of a fortran subroutine "pava" to effect the computations. The function pava.sa() ("sa" for "stand-alone") does all of the computations in raw R. Thus pava.sa() could be considerably slower for large data sets.

The x values for the step function returned by these functions (if stepfun is TRUE) are thought of as being 1, 2, ..., n=length(y). The knots of the step function are the x values (indices) following changes in the y values (i.e. the starting indices of the level sets, except for the first level set). The y value corresponding to the first level set is the “left hand” value of y or yleft. The step function is formed using the default arguments of stepfun(). In particular it is right continuous.

Value

If long.out is TRUE then the result returned consists of a list whose components are:

y the fitted values
w the final weights
A "divide and conquer" algorithm is applied to calculate the isotonic regression of a set of data, for a unimodal order. If the mode of the unimodal order is not specified, then the optimal (in terms of minimizing the error sum of squares) unimodal fit is calculated.

References

See Also

ufit() stepfun() biviso()

Examples

Increasing order:
y <- (1:20) + rnorm(20)
ystar <- pava(y)
plot(y)
lines(ystar,type='s')

Decreasing order:
z <- NULL
for(i in 4:8) {
z <- c(z,rep((8-i+1),i+0.05*(8:(i-1))))
}
zstar <- pava(z,decreasing=TRUE)
plot(z)
lines(zstar,type='s')

Using the stepfunction:
zstar <- pava(z,decreasing=TRUE,stepfun=TRUE)
plot(z)
plot(zstar,add=TRUE,verticals=FALSE,pch=20,col.points="red")

ufit

Unimodal isotonic regression.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz> http://www.stat.auckland.ac.nz/~rolf

Description

tr a set of indices made up of the smallest index in each level set, which thus "keeps track" of the level sets.

h a step function which represents the results of the isotonic regression. This component is present only if stepfun is TRUE.

If long.out is FALSE and stepfun is TRUE then only the step function is returned.
If long.out and stepfun are both FALSE then only the vector of fitted values is returned.
Usage

ufit(y, lmode=NULL, x=NULL, w=NULL, lc=TRUE, rc=TRUE,
 type=c("raw", "stepfun", "both"))

Arguments

y Vector of data whose isotonic regression is to be calculated.
1mode Gives the location of the mode if this is specified; if the location is not specified,
 then all possible modes are tried and that one giving the smallest error sum of
 squares is used.
x A largely notional vector of x values corresponding to the data vector y; the
 value of the mode must be given, or will be calculated in terms of these x values.
 Conceptually the model is y = m(x) + E, where m() is a unimodal function
 with mode at lmode, and where E is random "error". If x is not specified, it
 defaults to an equi-spaced sequence on [0,1].
w Optional vector of weights to be used for calculating a weighted isotonic regres-
 sion; if w is not given, all weights are taken to equal 1.
lc Logical argument; should the isotonization be left continuous? If lc=FALSE
 then the value of the isotonization just before the mode is set to NA, which causes
 line plots to have a jump discontinuity at (just to the left of) the mode. The
 default is lc=TRUE.
rc Logical argument; should the isotonization be right continuous? If rc=FALSE
 then the value of the isotonization just after the mode is set to NA, which causes
 line plots to have a jump discontinuity at (just to the right of) the mode. The
 default is rc=TRUE.
type String specifying the type of the output; see “Value”. May be abbreviated.

Details

Dynamically loads fortran subroutines "pava", "ufit" and "unimode" to do the actual work.

Value

If type="raw" then the value is a list with components:

x The argument x if this is specified, otherwise the default value.
y The fitted values.
1mode The argument lmode if this is specified, otherwise the value of lmode which is
 found to minimize the error sum of squares.
mse The mean squared error.

If type="both" then a component h which is the step function representation of the isotonic
regression is added to the foregoing list.

If type="stepfun" then only the step function representation h is returned.
ufit

Author(s)
Rolf Turner <r.turner@auckland.ac.nz> http://www.stat.auckland.ac.nz/~rolf

References

See Also
pava() biviso()

Examples
x <- c(0.00,0.34,0.67,1.00,1.34,1.67,2.00,2.50,3.00,3.50,4.00,4.50,
 5.00,5.50,6.00,6.50,8.00,12.00,16.00,24.00)
y <- c(0.0,61.9,183.3,173.7,250.6,238.1,292.6,293.8,268.0,285.9,258.8,
 297.4,217.3,226.4,170.1,174.2,59.8,4.1,6.1)
z <- ufit(y,x,type="b")
plot(x,y)
lines(z,col="red")
plot(z$h,do.points=FALSE,col.hor="blue",col.vert="blue",add=TRUE)
Index

*Topic **nonlinear**
 biviso, 1
 pava, 4
 ufit, 5

*Topic **regression**
 biviso, 1
 pava, 4
 ufit, 5

biviso, 1, 5, 7
pava, 3, 4, 7
pava.sa, 3
stepfun, 5
ufit, 3, 5, 5