Type Package

Title Functions for some Unit-Level Small Area Estimators and their Variances

Version 0.2.3

Date 2015-08-07

Author Johannes Breidenbach

Maintainer Johannes Breidenbach <job@nibio.no>

Description Implementation of some unit level EBLUP and GREG estimators as well as the estimate of their variances to further document the publication of Breidenbach and Asstrup (2011). The vignette further explains the use of the implemented functions.

License GPL-2

LazyLoad yes

Depends nlme

Suggests lattice, xtable

NeedsCompilation no

Repository CRAN

Date/Publication 2015-08-09 18:21:03

R topics documented:

JoSAE-package .. 2
eblup.mse.f.wrap 6
JoSAE.domain.data 8
JoSAE.sample.data 9
landsat ... 10
nfi .. 11

Index 13
Description

This package currently implements the unit level EBLUP (Battese et al. 1988) and GREG (Sarndal 1984) estimators as well as their variance estimators. It also contains data and a vignette that explain its use.

Details

The aim in the analysis of sample surveys is frequently to derive estimates of subpopulation characteristics. Often, the sample available for the subpopulation is, however, too small to allow a reliable estimate. If an auxiliary variable exists that is correlated with the variable of interest, small area estimation (SAE) provides methods to solve the problem (Rao 2003).

The purpose of this package is primarily to document the functions used in the publications Breidenbach and Astrup (2012). The data used in that study are also provided. The vignette further documents the publication Breidenbach et al. (2015).

You might wonder why this package is called JoSAE. Well, first of all, JoSAE sounds good (if pronounced like the female name). The other reason was that the packages SAE and SAE2 already exist (Gomez-Rubio, 2008). They are, however, not available on CRAN and unmaintained (as of July 2011). They also do not seem to implement the variance estimators that we needed. So I just combined SAE with the first part of my name.

Note

All the implemented functions/estimators are described in Rao (2003). This package merely makes the use of the estimators easier for the users that are not keen on programming. Especially the EBLUP variance estimator would require some effort.

Today, there are several well programmed SAE packages available on CRAN that also provide the functions described here. This was not the case when the first version of the package was uploaded. This package is therefore mostly to document the publications mentioned above.

There are several points where the JoSAE package could be improved:

Only univariate unit-level models with a simple block-diagonal variance structure are supported so far.

The computation is based on loops on the domain level. It would be more elegant to use blocked matrices.

... many more things ...

Author(s)

Johannes Breidenbach

Maintainer: Johannes Breidenbach <job@nibio.no>
References

Gomez-Rubio (2008), Tutorial on small area estimation, UseR conference 2008, August 12-14, Technische Universitat Dortmund, Germany.

See Also

eblup.mse.f.wrap, JoSAE.sample.data, JoSAE.domain.data

Examples

#mean auxiliary variables for the populations in the domains
data(JoSAE.domain.data)
#data for the sampled elements
data(JoSAE.sample.data)
plot(biomass.ha=mean.canopy.ht,JoSAE.sample.data)

the easy way: use the wrapper function to compute EBLUP and GREG estimates and variances

#lme model
summary(fit.lme <- lme(biomass.ha ~ mean.canopy.ht, data=JoSAE.sample.data, random=~1|domain.ID))

#domain data need to have the same column names as sample data or vice versa
d.data <- JoSAE.domain.data
names(d.data)[3] <- "mean.canopy.ht"

result <- eblup.mse.f.wrap(domain.data = d.data, lme.obj = fit.lme)
result

##END: the easy way

##the hard way: compute the EBLUP MSE components yourself
#get an overview of the domains
#mean of the response and predictor variables from the sample.
#For the response this is the sample mean estimator.
tmp <- aggregate(JoSAE.sample.data[,c("biomass.ha", "mean.canopy.ht")])
, by=list(domain.ID=JoSAE_sample.data$domain.ID), mean)
names(tmp)[2:3] <- paste(names(tmp)[2:3], ".bar.sample", sep="")

number of samples within the domains
tmp1 <- aggregate(cbind(n.i=JoSAE_sample.data$biomass.ha)
 , by=list(domain.ID=JoSAE_sample.data$domain.ID), length)

combine it with the population information of the domains
overview.domains <- cbind(overview.domains.tmp[,-1], n.i=tmp1[,-1])

fit the models
lm - the auxiliary variable explains forest biomass rather good
summary(fit.lm <- lm(biomass.ha ~ mean.canopy.ht, data=JoSAE_sample.data))

lme
summary(fit.lme <- lme(biomass.ha ~ mean.canopy.ht, data=JoSAE_sample.data
 , random=~1|domain.ID))

mean lm residual -- needed for GREG
overview.domains$mean.resid.lm <- aggregate(resid(fit.lm)
 , by=list(domain.ID=JoSAE_sample.data$domain.ID)
 , mean)[,2]

mean lme residual -- needed for EBLUP.var
overview.domains$mean.resid.lme <- aggregate(resid(fit.lme, level=0)
 , by=list(domain.ID=JoSAE_sample.data$domain.ID)
 , mean)[,2]

synthetic estimate
overview.domains$synth <- predict(fit.lm
 , newdata=data.frame(mean.canopy.ht=JoSAE.domain.data$mean.canopy.ht.bar))

GREG estimate
overview.domains$GREG <- overview.domains$synth + overview.domains$mean.resid.lm

EBLUP estimate
overview.domains$EBLUP <- predict(fit.lme
 , newdata=data.frame(mean.canopy.ht=JoSAE.domain.data$mean.canopy.ht.bar
 , domain.ID=JoSAE.domain.data$domain.ID)
 , level=1)

gamma
overview.domains$gamma.i <- eblup.mse.f.gamma.i(lme.obj=fit.lme
 , n.i=overview.domains$n.i)

variance of the sample mean estimate
overview.domains$sample.var <- aggregate(JoSAE_sample.data$biomass.ha
 , by=list(domain.ID=JoSAE_sample.data$domain.ID), var)[,-1]/overview.domains$n.i
#variance of the GREG estimate
overview.domains$GREG.var <-
aggregate(resid(fit.lm),
 by=list(domain.ID=JoSAE.sample.data$domain.ID),var)[,-1]/overview.domains$n.i

#variance of the EBLUP
#compute the A.1 matrices for all domains (only needed once)
domain.ID <- JoSAE.domain.data$domain.ID
#initialize the result vector
a.i.mats <- vector(mode="list", length=length(domain.ID))
for(i in 1:length(domain.ID)){
 print(i)
 a.i.mats[[i]] <- eblup.mse.f.c2.ai(gamma.i=overview.domains$gamma.i[
 overview.domains$domain.ID==domain.ID[i]],
 n.i=overview.domains$n.i[overview.domains$domain.ID==domain.ID[i]],
 lme.obj=fit.lme,
 X.i=as.matrix(cbind(i=1,
 x=JoSAE.sample.data[JoSAE.sample.data$domain.ID==domain.ID[i], "mean.canopy.ht"]))
)
}
#add all the matrices
sum.A.i.mats <- Reduce("+", a.i.mats)

#the assymptotic var-cov matrix
asy.var.cov.mat <- eblup.mse.f.c3.asyvarcovarmat(n.i=overview.domains$n.i,
 lme.obj=fit.lme)

#put together the variance components

Some changes are required here, if you apply it to own data!
result <- NULL
for(i in 1:length(domain.ID)){
 print(i)
 #first comp
 mse.c1.tmp <- eblup.mse.f.c1(gamma.i=overview.domains$gamma.i[
 overview.domains$domain.ID==domain.ID[i]],
 n.i=overview.domains$n.i[overview.domains$domain.ID==domain.ID[i]],
 lme.obj=fit.lme)
 #second comp
 mse.c2.tmp <- eblup.mse.f.c2(gamma.i=overview.domains$gamma.i[
 overview.domains$domain.ID==domain.ID[i]],
 X.i=as.matrix(cbind(i=1##cbind!!,
 x=JoSAE.sample.data[JoSAE.sample.data$domain.ID==domain.ID[i],
 "mean.canopy.ht"])##change to other varnames if necessary)
 , sum.A.i = sum.A.i.mats
}

#third comp
Functions to calculate the variance of an EBLUP estimate.

Description

Functions to calculate the EBLUP MSE (=variance). The wrap function calls all the other functions and calculates EBLUP, GREG, SRS, and Synthetic estimates for domain means as well as the variances of the EBLUP, GREG and SRS estimates.

Usage

```r
eblup.mse.f.wrap(domain.data, lme.obj, debug=F, ...) eblup.mse.f.gamma.i(lme.obj, n.i, ...) eblup.mse.f.c1(lme.obj, n.i, gamma.i, ...) eblup.mse.f.c2.ai(lme.obj, n.i, gamma.i, X.i, ...)
```
eblup.mse.f2(gamma.i, X.i, X.bar.i, sum.A.i, ...)
eblup.mse.f3.asyvarcovmat(lme.obj, n.i, ...)
eblup.mse.f3(lme.obj, asympt.var.covar, n.i, ...)
eblup.mse.f3.star(lme.obj, asympt.var.covar, n.i, mean.resid.i, ...)

Arguments

domain.data data set with the mean of the auxiliary variables for every domain including the
domain ID. Names of the variables must be the same as in the unit-level sample
data that were used to fit the lme model.

lme.obj a linear mixed-effects model generated with lme

n.i the number of samples within domain i

gamma.i the gamma_i value resulting from the gamma.i method of this function

X.i the design matrix of sampled elements in domain i

X.bar.i mean of the populations elements design matrix in domain i

sum.A.i sum of the domains A_i matrices resulting from eblup.mse.f2.ai

asympt.var.covar the asymptotic variance-covariance matrix of the mixed-effects model resulting
from eblup.mse.f3.asyvarcovmat

mean.resid.i the mean residual of the fixed-part of the linear mixed-effects model in domain
i (i.e., use level=0 in predict.lme)

... forward attributes to other functions. Not used so far.

debug details are printed if true - Only used by the wrapper function

Details

Most users will probably only use the convenient wrap function. Nonetheless, all components of
the EBLUP variance can also be calculated separately.

Value

A compontent of the EBLUP variance (aka mean squared error). Which component depends on the
function used.

The wrap function returns a data frame with many entries for every domain: The domain-level
predictor variables obtained from the domain.data, the mean of the predictor variables and response
(aka the sample mean or SRS estimate) observed at the samples, the number of samples (n.i.sample),
the mean residuals of a lm (fitted using the fixed part of the lme) and the lme (mean.resid.lm,
mean.resid.lme), the synthetic (Synth), EBLUP, and GREG estimates of the mean of the variable
of interest, the gamma_i value, the variance of the means for the sample and GREG estimates
(.var.mean), the components of the EBLUP variance (c1-c3star), the results of the first and the
second method (cf. Rao 2003) to derive the EBLUP variance (EBLUP.var.1, EBLUP.var.2), and the
standard errors derived from the variances (.se).

Note

Currently, only random intercept mixed-effects models with homogeneous variance structure are
supported.
Author(s)
Johannes Breidenbach

References

See Also
JoSÆ-package for more examples

Examples
library(nlme)
data(JoSÆ.sample.data)
#fit a lme
summary(fit.lme <- lme(biomass.ha ~ mean.canopy.ht, data=JoSÆ.sample.data, random=~1|domain.ID))
#calculate the first component of the EBLUP variance for a domain with 5 samples
eblup.mse.f.c1(fit.lme, 5, 0.2)

JoSÆ.domain.data Dataframe containing the domains population and number of elements and mean of the auxiliary variable

Description
Auxiliary variable: Mean canopy height derived from a photogrammetric canopy height model

Usage
data(JoSÆ.domain.data)

Format
A data frame with 14 observations on the following 3 variables.

domain.ID a numeric vector
n.N a numeric vector - number of population elements
mean.canopy.ht.bar a numeric vector - mean of the auxiliary variable

Source
See Also

JoSAE-package for more examples

Examples

```r
data(JoSAE.domain.data)
str(JoSAE.domain.data)
```

Sample plots of the Norwegian National Forest Inventory (NNFI) with a variable of interest and an auxiliary variable

Description

Above ground forest biomass over all tree species is the variable of interest. Mean canopy height derived from a photogrammetric canopy height model of 20–cm geometric and 10–cm radiometric resolution is the auxiliary variable.

Usage

```r
data(JoSAE.sample.data)
```

Format

A data frame with 145 observations on the following 4 variables.

- `sample.ID` a numeric vector
- `domain.ID` a numeric vector
- `biomass.ha` a numeric vector of the variable of interest
- `mean.canopy.ht` a numeric vector of the auxiliary variable

Source

See Also

JoSAE-package for more examples

Examples

```r
data(JoSAE.sample.data)
## maybe str(JoSAE.sample.data) ; plot(JoSAE.sample.data) 
plot(biomass.ha~mean.canopy.ht,JoSAE.sample.data)
```
landsat

LANDSAT data: Prediction of County Crop Areas Using Survey and Satellite Data

Description

The `landsat` data.frame is a compilation (by Battese et al., 1988) of survey and satellite data. It consists of data on segments (primary sampling unit; 1 segment ≈ 250 hectares) under corn and soybeans for 12 counties in north-central Iowa; see Details, below. The `landsat` data.frame was made available by Tobias Schoch with the R package rsae. Since rsae was archived as of R 3.0.2, the data and this description was copied from rsae 0.1-4 in the archives.

Usage

```r
data(landsat)
```

Format

A data frame with 37 observations on the following 10 variables.

- `segmentsincounty`: a numeric vector; no. of segments per county
- `segementid`: a numeric vector; sample segment identifier (per county)
- `hacorn`: a numeric vector; hectares of corn for each sample segment (as reported in the June 1978 Enumerative Survey)
- `hasoybeans`: a numeric vector; hectares of soybeans for each sample segment (as reported in the June 1978 Enumerative Survey)
- `pixelscorn`: a numeric vector; no. of pixels classified as corn for each sample segment (LANDSAT readings)
- `pixelssoybeans`: a numeric vector; no. of pixels classified as soybeans for each sample segment (LANDSAT readings)
- `meanpixelscorn`: a numeric vector; county mean number of pixels classified as corn
- `meanpixelssoybeans`: a numeric vector; county mean number of pixels classified as soybeans
- `outlier`: a logical vector; flags observation no. 33 as outlier
- `countyname`: a factor with levels (i.e., county names) Cerro Gordo Hamilton Worth Humboldt Franklin Pocahontas Winnebago Wright Webster Hancock Kossuth Hardin

Details

The `landsat` data is a compilation (by Battese et al., 1988) of the LANDSAT satellite data from the U.S. Department of Agriculture (USDA) and the 1978 June Enumerative Survey.

Survey data: The survey data on the areas under corn and soybeans (reported in hectares) in the 37 segments of the 12 counties (north-central Iowa) have been determined by USDA Statistical Reporting Service staff, who interviewed farm operators. A segment is about 250 hectares.
Satellite data: For the LANDSAT satellite data, information is recorded as "pixels". The USDA has been engaged in research toward transforming satellite information into good estimates of crop areas at the individual pixel and segments level. A pixel is about 0.45 hectares. The satellite (LANDSAT) readings were obtained during August and September 1978.

Data for more than one sample segment are available for several counties (i.e., unbalanced data). Observations No. 33 has been flagged as outlier (cf., Battese et al. (1988, p. 28).

Source

The data landsat is from Table 1 of Battese et al. (1988, p. 29).

Schoch (2011) rsae: Robust Small Area Estimation, R package version 0.1-4: http://cran.r-project.org/src/contrib/Archive/rsae/rsae_0.1-4.tar.gz

References

Examples

data(landsat)

nfi

Sample plots of the Norwegian National Forest Inventory (NFI) with a variable of interest and an auxiliary variable

Description

A total of 131 sample plots of the Norwegian National Forest Inventory (NFI) with timber volume interpolated and extrapolated to the year 2011 as the variable of interest and mean vegetation height derived from image matching as the auxiliary variable.

Usage

data(nfi)

Format

A data frame with 131 observations on the following 2 variables.

- `vol.2011` numeric vector of the variable of interest
- `Elev.Mean` numeric vector of the auxiliary variable
Source

See Also

JosAE-package and Vignette for more examples

Examples

data(nfi)
plot(vol.2011-Elev.Mean, nfi)
Index

*Topic datasets
 JoSAE.domain.data, 8
 JoSAE.sample.data, 9
 landsat, 10
 nfi, 11

*Topic package
 JoSAE-package, 2

 eblup.mse.f.c1 (eblup.mse.f.wrap), 6
 eblup.mse.f.c2 (eblup.mse.f.wrap), 6
 eblup.mse.f.c2.ai, 7
 eblup.mse.f.c3 (eblup.mse.f.wrap), 6
 eblup.mse.f.c3.asyvarcovmat, 7
 eblup.mse.f.gamma.i (eblup.mse.f.wrap), 6
 eblup.mse.f.wrap, 3, 6

 JoSAE (JoSAE-package), 2
 JoSAE-package, 2
 JoSAE.domain.data, 3, 8
 JoSAE.sample.data, 3, 9

 landsat, 10
 lme, 7

 nfi, 11

 predict.lme, 7