Package ‘KRLS’

July 10, 2017

Type Package
Title Kernel-Based Regularized Least Squares
Version 1.0-0
Date 2017-07-08
Author Jens Hainmueller (Stanford) Chad Hazlett (UCLA)
Maintainer Jens Hainmueller <jhain@stanford.edu>
Description Package implements Kernel-based Regularized Least Squares (KRLS), a machine learning method to fit multidimensional functions $y=f(x)$ for regression and classification problems without relying on linearity or additivity assumptions. KRLS finds the best fitting function by minimizing the squared loss of a Tikhonov regularization problem, using Gaussian kernels as radial basis functions. For further details see Hainmueller and Hazlett (2014).
License GPL (>= 2)
Suggests lattice
NeedsCompilation no
Repository CRAN
Date/Publication 2017-07-10 13:55:59 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>fdskrls</td>
<td>2</td>
</tr>
<tr>
<td>gausskernel</td>
<td>2</td>
</tr>
<tr>
<td>krls</td>
<td>4</td>
</tr>
<tr>
<td>lambdasearch</td>
<td>9</td>
</tr>
<tr>
<td>looloss</td>
<td>11</td>
</tr>
<tr>
<td>plot.krls</td>
<td>12</td>
</tr>
<tr>
<td>predict.krls</td>
<td>13</td>
</tr>
<tr>
<td>solveforc</td>
<td>15</td>
</tr>
<tr>
<td>summary.krls</td>
<td>16</td>
</tr>
</tbody>
</table>

Index 18
Description

Internal function that is called by \texttt{krls} to computes first differences for binary predictors in the \texttt{X} matrix. It would normally not be called by the user directly.

Usage

\texttt{fdskrls(object,...)}

Arguments

- \texttt{object} Object from call to \texttt{krls}.
- \texttt{...} additional arguments to be passed to lower level functions

Value

A object of class \texttt{krls} where the derivatives, average derivatives, and the varinaces of the average derivatives are replaced with the first differences for binary predictors. The binary indicator is also updated and set to TRUE for binary predictors.

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

See Also

- \texttt{krls}

Description

Given a \(N\) by \(D\) numeric data matrix, this function computes the \(N\) by \(N\) distance matrix with the pairwise distances between the rows of the data matrix as measured by a Gaussian Kernel.

Usage

\texttt{gausskernel(X = NULL, sigma = NULL)}
gausskernel

Arguments

- **x**: \(N \) by \(N \) numeric data matrix.
- **sigma**: Positive scalar that specifies the bandwidth of the Gaussian kernel (see details).

Details

Given two \(D \) dimensional vectors \(x_i \) and \(x_j \). The Gaussian kernel is defined as

\[
k(x_i, x_j) = \exp\left(-\frac{{||x_i - x_j||}^2}{{\sigma}^2}\right)
\]

where \(||x_i - x_j|| \) is the Euclidean distance given by

\[
||x_i - x_j|| = ((x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \ldots + (x_{iD} - x_{jD})^2)^{\frac{1}{2}}
\]

and \(\sigma^2 \) is the bandwidth of the kernel.

Note that the Gaussian kernel is a measure of similarity between \(x_i \) and \(x_j \). It evaluates to 1 if the \(x_i \) and \(x_j \) are identical, and approaches 0 as \(x_i \) and \(x_j \) move further apart.

The function relies on the `dist` function in the stats package for an initial estimate of the euclidean distance.

Value

An \(N \) by \(N \) numeric distance matrix that contains the pairwise distances between the rows in \(X \).

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

See Also

`dist` function in the stats package.

Examples

\[
X \leftarrow \text{matrix(rnorm(6),nrow=3,ncol=2)}
\]

\[
\text{gausskernel}(X=X, sigma=1)
\]
Kernel-based Regularized Least Squares (KRLS)

Description

Function implements Kernel-Based Regularized Least Squares (KRLS), a machine learning method described in Hainmueller and Hazlett (2014) that allows users to solve regression and classification problems without manual specification search and strong functional form assumptions. KRLS finds the best fitting function by minimizing a Tikhonov regularization problem with a squared loss, using Gaussian Kernels as radial basis functions. KRLS reduces misspecification bias since it learns the functional form from the data. Yet, it nevertheless allows for interpretability and inference in ways similar to ordinary regression models. In particular, KRLS provides closed-form estimates for the predicted values, variances, and the pointwise partial derivatives that characterize the marginal effects of each independent variable at each data point in the covariate space. The distribution of pointwise marginal effects can be used to examine effect heterogeneity and or interactions.

Usage

```r
krls(x = NULL, y = NULL, whichkernel = "gaussian", lambda = NULL, sigma = NULL, derivative = TRUE, binary = TRUE, vcov = TRUE, print.level = 1, L = NULL, U = NULL, tol = NULL, eigtrunc = NULL)
```

Arguments

- **x**: \(N \times D\) data numeric matrix that contains the values of \(D\) predictor variables for \(i = 1, \ldots, N\) observations. The matrix may not contain missing values or constants. Note that no intercept is required since the function operates on demeaned data and subtracting the mean of \(y\) is equivalent to including an (un-penalized) intercept into the model.

- **y**: \(N \times 1\) data numeric matrix or vector that contains the values of the response variable for all observations. This vector may not contain missing values.

- **whichkernel**: String vector that specifies which kernel should be used. Must be one of `gaussian`, `linear`, `poly1`, `poly2`, `poly3`, or `poly4` (see details). Default is `gaussian`.

- **lambda**: A positive scalar that specifies the \(\lambda\) parameter for the regularizer (see details). It governs the tradeoff between model fit and complexity. By default, this parameter is chosen by minimizing the sum of the squared leave-one-out errors.

- **sigma**: A positive scalar that specifies the bandwidth of the Gaussian kernel (see `gausskernel` for details). By default, the bandwidth is set equal to \(D\) (the number of dimensions) which typically yields a reasonable scaling of the distances between observations in the standardized data that is used for the fitting.

- **derivative**: Logical that specifies whether pointwise partial derivatives should be computed. Currently, derivatives are only implemented for the Gaussian Kernel.

- **binary**: Logical that specifies whether first-differences instead of pointwise partial derivatives should be computed for binary predictors. Ignored unless `derivative=TRUE`.

krls

vcov Logical that specifies whether variance-covariance matrix for the choice coefficients \(c \) and fitted values should be computed. Note that derivative=TRUE requires that vcov=TRUE.

print.level Positive integer that determines the level of printing. Set to 0 for no printing and 2 for more printing.

L Non-negative scalar that determines the lower bound of the search window for the leave-one-out optimization to find \(\lambda \). Default is NULL which means that the lower bound is found by using an algorithm outlined in lambdasearch.

U Positive scalar that determines the upper bound of the search window for the leave-one-out optimization to find \(\lambda \). Default is NULL which means that the upper bound is found by using an algorithm outlined in lambdasearch.

tol Positive scalar that determines the tolerance used in the optimization routine used to find \(\lambda \). Default is NULL which means that convergence is achieved when the difference in the sum of squared leave-one-out errors between the \(i \) and the \(i+1 \) iteration is less than \(N \times 10^{-3} \).

eigtrunc Positive scalar that determines how much eigenvalues should be truncated for finding the upper bound of the search window in the algorithm outlined in lambdasearch. If eigtrunc is set to \(10^{-6} \) this means that we keep only eigenvalues that are \(10^{-6} \) as large as the first. Default is eigtrunc=NULL which means no truncation is used.

Details

krls implements the Kernel-based Regularized Least Squares (KRLS) estimator as described in Hainmueller and Hazlett (2014). Please consult this reference for any details.

Kernel-based Regularized Least Squares (KRLS) arises as a Tikhonov minimization problem with a squared loss. Assume we have data of the from \(y_i, x_i \) where \(i \) indexes observations, \(y_i \in \mathbb{R} \) is the outcome and \(x_i \in \mathbb{R}^D \) is a \(D \)-dimensional vector of predictor values. Then KRLS searches over a space of functions \(H \) and chooses the best fitting function \(f \) according to the rule:

\[
\argmin_{f \in H} \sum_{i} (y_i - f(x_i))^2 + \lambda \| f \|_{H^2}
\]

where \((y_i - f(x_i))^2 \) is a loss function that computes how ‘wrong’ the function is at each observation \(i \) and \(\| f \|_{H^2} \) is the regularizer that measures the complexity of the function according to the \(L_2 \) norm \(\| f \|^2 = \int f(x)^2 dx \). \(\lambda \) is the scalar regularization parameter that governs the tradeoff between model fit and complexity. By default, \(\lambda \) is chosen by minimizing the sum of the squared leave-one-out errors, but it can also be specified by the user in the Lambda argument to implement other approaches.

Under fairly general conditions, the function that minimizes the regularized loss within the hypothesis space established by the choice of a (positive semidefinite) kernel function \(k(x_i, x_j) \) is of the form

\[
f(x_j) = \sum_{i} c_i k(x_i, x_j)
\]
where the kernel function $k(x_i, x_j)$ measures the distance between two observations x_i and x_j and c_i is the choice coefficient for each observation. Let K be the N by N kernel matrix with all pairwise distances $K_{i,j} = k(x_i, x_j)$ and c be the N by 1 vector of choice coefficients for all observations then in matrix notation the space is $y = Kc$.

Accordingly, the krls function solves the following minimization problem

$$\arg\min_{f \in H} \sum_{i=1}^{n} (y_i - Kc)^t (y_i - Kc) + \lambda c^t Kc$$

which is convex in c and solved by $c = (K + \lambda I)^{-1}y$ where I is the identity matrix. Note that this linear solution provides a flexible fitted response surface that typically reduces misspecification bias because it can learn a wide range of nonlinear and or nonadditive functions of the predictors.

If vcov=TRUE is specified, krls also computes the variance-covariance matrix for the choice coefficients c and fitted values $y = Kc$ based on a variance estimator developed in Hainmueller and Hazlett (2014). Note that both matrices are N by N and therefore this results in increased memory and computing time.

By default, krls uses the Gaussian Kernel (whichkernel = "gaussian") given by

$$k(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||^2}{\sigma^2}\right)$$

where $||x_i - x_j||$ is the Euclidean distance. The kernel bandwidth σ^2 is set to D, the number of dimensions, by default, but the user can also specify other values using the sigma argument to implement other approaches.

If derivative=TRUE is specified, krls also computes the pointwise partial derivatives of the fitted function wrt to each predictor using the estimators developed in Hainmueller and Hazlett (2014). These can be used to examine the marginal effects of each predictor and how the marginal effects vary across the covariate space. Average derivatives are also computed with variances. Note that the derivative=TRUE option results in increased computing time and is only supported for the Gaussian kernel, i.e. when whichkernel = "gaussian". Also derivative=TRUE requires that vcov=TRUE.

If binary=TRUE is also specified, the function will identify binary predictors and return first differences for these predictors instead of partial derivatives. First differences are computed going from the minimum to the maximum value of each binary predictor. Note that first differences are more appropriate to summarize the effects for binary predictors (see Hainmueller and Hazlett (2014) for details).

A few other kernels are also implemented, but derivatives are currently not supported for these: "linear": $k(x_i, x_j) = x_i'x_j$, "poly1", "poly2", "poly3", "poly4" are polynomial kernels based on $k(x_i, x_j) = (x_i'x_j + 1)^p$ where p is the order.

Value

A list object of class krls with the following elements:

- K N by N matrix of pairwise kernel distances between observations.
- coeffs N by 1 vector of choice coefficients c.
Le scalar with sum of squared leave-one-out errors.
fitted \(N \) by 1 vector of fitted values.
\(\mathbf{x} \) original \(N \) by \(D \) predictor data matrix.
\(\mathbf{y} \) original \(N \) by 1 matrix of values of the outcome variable.
\(\text{sigma} \) scalar with value of bandwidth, \(\sigma^2 \), used for the Gaussian kernel.
\(\lambda \) scalar with value of regularization parameter, \(\lambda \), used (user specified or based on leave-one-out cross-validation).
\(R^2 \) scalar with value of R-squared
\(\text{vcov.c} \) \(N \) by \(N \) variance covariance matrix for choice coefficients (NULL unless \(\text{vcov=TRUE} \) is specified).
\(\text{vcov.fitted} \) \(N \) by \(N \) variance covariance matrix for fitted values (NULL unless \(\text{vcov=TRUE} \) is specified).
\(\text{derivatives} \) \(N \) by \(D \) matrix of pointwise partial derivatives based on the Gaussian kernel (NULL unless \(\text{derivative=TRUE} \) is specified. If \(\text{binary=TRUE} \) is specified, first differences are returned for binary predictors.
\(\text{avgderivatives} \) 1 by \(D \) matrix of average derivative based on the Gaussian kernel (NULL unless \(\text{derivative=TRUE} \) is specified. If \(\text{binary=TRUE} \) is specified, average first differences are returned for binary predictors.
\(\text{var.avgderivatives} \) 1 by \(D \) matrix of variances for average derivative based on gaussian kernel (NULL unless \(\text{derivative=TRUE} \) is specified. If \(\text{binary=TRUE} \) is specified, variances for average first differences are returned for binary predictors.
\(\text{binaryindicator} \) 1 by \(D \) matrix that indicates for each predictor if it is treated as binary or not (evaluates to FALSE unless \(\text{binary=TRUE} \) is specified and a predictor is recognized binary.

Note

The function requires the storage of a \(N \) by \(N \) kernel matrix and can therefore exceed the memory limits for very large datasets.

Setting \(\text{derivative=FALSE} \) and \(\text{vcov=FALSE} \) is useful to reduce computing time if pointwise partial derivatives and or variance covariance matrices are not needed.

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

References

See Also

predict.krls for fitted values and predictions. summary.krls for summary of the fit. plot.krls for plots of the fit.

Examples

Linear example
set up data
N <- 200
x1 <- rnorm(N)
x2 <- rbinom(N, size=1, prob=.2)
y <- x1 + .5*x2 + rnorm(N,0,.15)
X <- cbind(x1,x2)
fit model
krlsout <- krls(x=X,y=y)
summarize marginal effects and contribution of each variable
summary(krlsout)
plot marginal effects and conditional expectation plots
plot(krlsout)

non-linear example
set up data
N <- 200
x1 <- rnorm(N)
x2 <- rbinom(N, size=1, prob=.2)
y <- x1^3 + .5*x2 + rnorm(N,0,.15)
X <- cbind(x1,x2)
fit model
krlsout <- krls(x=X,y=y)
summarize marginal effects and contribution of each variable
summary(krlsout)
plot marginal effects and conditional expectation plots
plot(krlsout)

Rd example:
predictor data
X <- matrix(seq(-3,3,.1))
true function
Ytrue <- sin(X)
add noise
Y <- sin(X) + rnorm(length(X),sd=.3)
approximate function using KRLS
out <- krls(y=Y,X=X)
get fitted values and ses
fit <- predict(out,newdata=X,se.fit=TRUE)
results
par(mfrow=c(2,1))
plot(y=Ytrue,x=X,type="l",col="red",ylim=c(-1.2,1.2),lwd=2,main="f(x)")
points(y=fit$fit,X,col="blue",pch=19)
arrows(y1=fit$fit+1.96*fit$se.fit,
y0=fit$fit-1.96*fit$se.fit,
x1=X,x0=X,col="blue",length=0)
legend("bottomright",legend=c("true f(x)=sin(x)","KRLS fitted f(x)")
 ,lty=c(1,NA),pch=c(NA,19),lwd=c(2,NA),col=c("red","blue"),cex=.8)

plot(y=cos(X),x=X,type="l",col="red",ylim=c(-1.2,1.2),lwd=2,main="df(x)/dx")
points(y=out$derivatives,X,col="blue",pch=19)
legend("bottomright",legend=c("true df(x)/dx=cos(x)","KRLS fitted df(x)/dx")
 ,lty=c(1,NA),pch=c(NA,19),lwd=c(2,NA),col=c("red","blue"),cex=.8)

3D example
plot true function
par(mfrow=c(1,2))
f<-function(x1,x2){ sin(x1)*cos(x2)}
x1 <- x2 <- seq(0,2*pi,.2)
z <- outer(x1,x2,f)
persp(x1,x2,z,theta=30,main="true f(x1,x2)=sin(x1)cos(x2)"
approximate function with KRLS
data and outcomes
X <- cbind(sample(x1,200,replace=TRUE),sample(x2,200,replace=TRUE))
y <- f(X[,1],X[,2])+runif(nrow(X))
fit surface
krlsout <- krls(X=X,y=y)
plot fitted surface
ff <- function(x1i,x2i,krlsout){predict(object=krlsout,newdata=cbind(x1i,x2i))$fit}
z <- outer(x1,x2,ff,krlsout=krlsout)
persp(x1,x2,z,theta=30,main="KRLS fitted f(x1,x2)"

lambdasearch

Leave-one-out optimization to find λ

Description

Function conducts leave-one-out optimization to find λ using a golden search search with caching. This function is called internally by `krls`. It would normally not be called by the user directly.
Usage

```
lambdaSearch(L=NULL,
U=NULL,
  y=NULL,
Eigenobject=NULL,
  tol=NULL,
noisy=FALSE,
eigtrunc=NULL)
```

Arguments

- **L**
 Non-negative scalar that determines the lower bound of the search window. Default is `NULL` which means that the lower bound is found using an algorithm (see details).

- **U**
 Positive scalar that determines the upper bound of the search window. Default is `NULL` which means that the upper bound is found using an algorithm (see details).

- **y**
 \(N \times 1\) matrix of outcomes.

- **Eigenobject**
 List that contains the eigenvalues and eigenvectors of the kernel matrix \(K\).

- **tol**
 Positive scalar that determines the tolerance used in the optimization routine used to find \(\lambda\). Default is `NULL` which means that convergence is achieved when the difference in the sum of squared leave-one-out errors between the \(i\) and the \(i+1\) iteration is less than \(N \times 10^{-3}\).

- **noisy**
 If \(TRUE\), the function will print details of the golden section search.

- **eigtrunc**
 Positive scalar value that determines truncation of eigenvalues for lambda search window. See `krls` for details. Default is `NULL` which means no truncation.

Details

By default, upper bound is found as follows: Set \(j\) to \(n\), decrease by one until the following is longer true: \(\text{sum}(\text{EigenValues} / (\text{EigenValues} + j)) < 1\).

By default, upper bound is found as follows: Get the position, \(q\), of the eigenvalue that is closest to \(\max(\text{Eigenvalue})/1000\). Set \(j\) to 0, increase in steps of 0.05 until the below is longer true: \(\text{sum}(\text{EigenValues} / (\text{EigenValues} + j)) > q\).

Value

A scalar that contains the \(\lambda\) that minimizes the sum of squared leave-one-out errors.

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

See Also

- `krls`
Description

Internal function that computes Leave-On-Out (LOO) Error for KRLS given a fixed value for lambda (the parameter that governs the tradeoff between model fit and complexity in KRLS). This function is called internally by `krls` to find value of lambda that minimizes the LOO error. It would normally not be called by the user directly.

Usage

loomloss(y = NULL, Eigenobject = NULL, lambda = NULL, eigtrunc = NULL)

Arguments

- `y` n by 1 vector of outcomes.
- `Eigenobject` Object from call to `eigen` that contains spectral decomposition of the n by n Kernel matrix.
- `lambda` Positive scalar value for lambda parameter.
- `eigtrunc` Positive scalar value that determines truncation of eigenvalues for lambda search window. See `krls` for details. Default is NULL which means no truncation.

Value

Scalar value for LOO error.

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

See Also

- `krls`
Description

Produces two types of plots. The first type of plot shows histograms for the pointwise partial derivatives to examine the heterogeneity in the marginal effects of each predictor (which==1). The second type of plot shows estimates of the conditional expectation functions of \(E[Y|X]\) for each predictor (which==2). For each plot, the predictor of interest varies from its 1st to its 3rd quartile values, while the other predictors are kept at the means (or other values specified in setx). For binary variables the \(E[Y|X]\) are predicted at the max and the min value of the predictor (instead of the range from the 1st to the 3rd quantile).

Usage

```r
## S3 method for class 'krls'
plot(x, which=c(1:2),
     main="distributions of pointwise marginal effects",
     setx="mean", ask = prod(par("mfcol")) < nplots, nvalues=50, probs=c(.25,.75), ...)
```

Arguments

- `x` An object of class "krls" that results from call to `krls`.
- `which` if a subset of the plots is required, specify a subset of the numbers 1:2.
- `main` main title for histograms of pointwise partial derivatives.
- `setx` either one of mean or median to hold other predictors at their mean or median values for the conditional expectation plots. Alternatively the user can specify a numeric vector with predictor values at which the other predictors should be fixed for the conditional expectation plots. If specified in this way there must be one value per predictor and the order of the values must match the order of the predictor used in the predictor matrix of the krls fit passed in `x`.
- `ask` logical; if TRUE, the user is asked before each plot, see `par` (ask=.)
- `nvalues` scalar that specifies the number of values at which conditional expectations should be plotted.
- `probs` vector with numbers between 0 and 1 that specify the quantiles that determine the range for of the predictor values for which the conditional expectation should be plotted. By default we vary each predictor from the 1st quartile to the 3rd quartile value.
- `...` additional arguments to be passed to lower level functions

Details

Notice that the histograms for the partial derivatives can only be plotted if the KRLS object was computed with `krls(.derivatives=TRUE)`.
Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

See Also

krls

Examples

non-linear example
set up data
N <- 200
x1 <- rnorm(N)
x2 <- rbinom(N, size=1, prob=.2)
y <- x1^3 + .5*x2 + rnorm(N,0,.15)
X <- cbind(x1,x2)

fit model
krlsout <- krls(x=x, y=y)
summarize marginal effects and contribution of each variable
summary(krlsout)
plot marginal effects and conditional expectation plots
plot(krlsout)

predict.krls Predict method for Kernel-based Regularized Least Squares (KRLS)

Model Fits

Description

Predicted values and standard errors based on krls model object.

Usage

S3 method for class 'krls'
predict(object, newdata, se.fit = FALSE, ...)

Arguments

object Fitted KRLS model, i.e. an object of class krls
newdata A data frame or matrix with variables values at which to predict the outcome.
Number and order of columns in newdata have to match the corresponding predictors used in the fitted krls model given in object.
se.fit logical flag if standard errors should be computed for pointwise predictions.
... additional arguments affecting the predictions produced.
Details

Function produces predicted values, obtained by evaluating the fitted krls function with the newdata (ie. the test points). The prediction at a new test point \(x_i \) is based on

\[
f(x_i) = \sum_j = 1^n c_j K_{x_j}(x_i)
\]

where \(K \) is the kernel matrix and thus \(K_{x_j} \) is a vector whose j-th entry is \(K(x_j, x_i) \) (e.g. the distance between the test point \(x_i \) and the training point \(x_j \)). The training points are passed to the function with the krls fit in object.

When data are missing in newdata during prediction, the value of each \(k(x_i, x_j) \) is computed by using an adjusted Euclidean distance in the kernel definition. Assume \(x \) is \(D \)-dimensional but a given pair of observations \(x_i \) and \(x_j \) have only \(D' < D \) non-missing dimensions in common. The adjusted Euclidean distance computes the sum of squared differences over the \(D' \) non-missing dimensions, rescales this sum by \(D/D' \), and takes the square root. The result corresponds to an assumption that conditional on the observed data, the missing values would not have contributed new information predictive of the outcome.

Value

- `fit`: \(M \) by 1 vector of fitted values for \(M \) test points.
- `se.fit`: \(M \) by 1 vector of standard errors for the fitted values for \(M \) test points (NULL unless `se.fit=TRUE` is specified).
- `vcov.fit`: \(M \) by \(M \) variance-covariance matrix for the fitted values for \(M \) test points (NULL unless `se.fit=TRUE` is specified).
- `newdata`: \(M \) by \(D \) data matrix of \(M \) test points with \(D \) predictors.
- `newdataK`: \(M \) by \(N \) data matrix for pairwise Gauss Kernel distances between \(M \) test points and \(N \) training points from krls model fit in object.

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

See Also

- `krls`

Examples

```r
# make up data
X <- seq(-3,3,.1)
Y <- sin(X) + rnorm(length(X),.1)

# fit krls
krlsout <- krls(y=Y,X=X)

# get in-sample prediction
```
solveforc <- predict(krlsout, newdata=X, se.fit=TRUE)

get out-of-sample prediction
X2 <- runif(5)
predout <- predict(krlsout, newdata=X2, se.fit=TRUE)

plot true function and predictions
plot(y=sin(x), x=x, type="l", col="red", ylim=c(-1.8,1.8), lwd=2, ylab="f(x)")
points(y=predin$fit, x=x, col="blue", pch=19)
points(y=predout$fit, x=x2, col="green", pch=17)

arrows(y1=predin$fit+2*predin$se.fit, y0=predin$fit-2*predin$se.fit,
x1=x, x0=x, col="blue", length=0)
arrows(y1=predout$fit+2*predout$se.fit, y0=predout$fit-2*predout$se.fit,
x1=x2, x0=x2, col="green", length=0)

legend("bottomright",
legend=c("true f(x)=sin(x)",
"KRLS fitted in-sample",
"KRLS fitted out-of-sample"),
ly=c(1,NA,NA), pch=c(NA,19,17),
lwd=c(2,NA,NA),
col=c("red","blue","green"),
cex=.8)

solveforc

Solve for Choice Coefficients in KRLS

Description

Internal function that computes choice coefficients for KRLS given a fixed value for lambda (the parameter that governs the tradeoff between model fit and complexity in KRLS). This function is called internally by krls. It would normally not be called by the user directly.

Usage

solveforc(y = NULL, Eigenobject = NULL,
lambda = NULL, eigtrunc=NULL)

Arguments

y
n by 1 matrix of outcomes.

Eigenobject
Object from call to eigen that contains spectral decomposition of the n by n Kernel matrix.

lambda
Positive scalar value for lambda parameter.

eigtrunc
Positive scalar value that determines truncation of eigenvalues for lambda search window. See krls for details. Default is NULL which means no truncation.
summary.krls

Details
Function relies on fast eigenvalue decomposition method described in method Rifkin and Lippert (2007).

Value
- `coeffs`: n by 1 one matrix of choice coefficients for KRLS model.
- `Le`: n by 1 matrix of errors from leave-one-out validation.

Author(s)
Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

References

See Also
krls

summary.krls | Summary method for Kernel-based Regularized Least Squares (KRLS) Model Fits

Description
Summarizes average partial derivatives (i.e. marginal effects) and the distribution of the partial derivatives for each predictor. For binary predictors, the marginal effects are the first differences if krls(,derivatives=TRUE,binary=TRUE) was specified.

Usage
```r
## S3 method for class 'krls'
summary(object, probs=c(.25,.5,.75),...)
```

Arguments
- `object`: Fitted krls model, i.e. an object of class krls
- `probs`: numeric vector with numbers between 0 and 1 that specify the quantiles of the pointwise marginal effects for the summary (see the `quantile` function for details).
- `...`: additional arguments to be passed to lower level functions
summary.krls

Details

Notice that the partial derivatives can only be summarized if the krls object was computed with krls(derivatives=TRUE).

Value

coefficients matrix with average partial derivates and or first differences (point estimates, standard errors, t-values, p-values).

qcoefficients matrix with 1st, 2nd, and 3rd quatriles of distribution of pointwise marinal effects.

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

See Also

krls

Examples

non-linear example
set up data
N <- 200
x1 <- rnorm(N)
x2 <- rbinom(N,size=1,prob=.2)
y <- x1^3 + .5*x2 + rnorm(N,0,.15)
X <- cbind(x1,x2)

fit model
krlsout <- krls(X,Y=y)
summarize marginal effects and contribution of each variable
summary(krlsout)
plot marginal effects and conditional expectation plots
plot(krlsout)
Index

*Topic multivariate, smooth, kernels, machine learning, regression, classification

krls, 4

dist, 3
eigen, 15
fdskrls, 2
gausskernel, 2, 4
krls, 2, 4, 9–17
lambdasearch, 5, 9
looloss, 11
par, 12
plot.krls, 8, 12
predict.krls, 8, 13
quantile, 16
solveforc, 15
summary.krls, 8, 16