Package ‘LEAPFrOG’

February 19, 2015

Title Likelihood Estimation of Admixture in Parents From Offspring Genotypes

Version 1.0.7

Date 2014-08-11

Author Daniel JM Crouch & Michael E Weale

Maintainer Daniel JM Crouch <daniel.crouch@oncology.ox.ac.uk>

Description Contains LEAPFrOG Gradient Optimisation and Expectation Maximisation functions for inferring parental admixture proportions from an offspring with SNP genotypes.

URL http://sites.google.com/site/mikeweale

Depends alabama, MASS

Suggests rjags

License GPL

NeedsCompilation no

Repository CRAN

Date/Publication 2014-08-13 16:42:15

R topics documented:

LEAPFrOG-package ... 2
BEAPFrOG ... 2
constrOptim2 ... 4
LEAPFrOG ... 4
LEAPFrOG_EM ... 5
LEAPFrOG_plot ... 7

Index ... 9
LEAPFrOG-package

Likelihood Estimation of Admixture in Parents From Offspring Genotypes

Description

Takes genotype data for a single individual, and allele frequencies for multiple populations, and returns estimations of admixture proportions for the individual, as well as the admixture proportion of their two parents.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>LEAPFROG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2011-06-08</td>
</tr>
<tr>
<td>License:</td>
<td>GPL</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

Use LEAPFrOG when regular genotype data is available (0, 1 or 2 alleles at each SNP). Use LEAPFrOG_EM when phased haplotypes are available. Plot results using LEAPFrOG_plot

Author(s)

Daniel Crouch and Michael Weale
Maintainer: Daniel Crouch - daniel.crouch@oncology.ox.ac.uk

References

Crouch & Weale (2011), European Journal of Human Genetics

See Also

LEAPFrOG_plot,LEAPFrOG_EM,LEAPFrOG,BEAPFrOG

BEAPFrOG

Bayesian Estimation of Admixture in Parental From Offspring Genotype

Description

Provides estimates of admixture proportions in offspring and ungenotyped parents, using genotype data.
BEAPFroG

Usage

BEAPFroG(data, p, nchains=1, iterations=1000, alpha=0.05, prior=1, burn=2000, SampSizes)

Arguments

data Vector of allele counts: each element either 0,1,2 or NA.

p Matrix of allele frequencies. Each row corresponds with a SNP. Number of rows must equal length of data. Each column is a population

nchains Number of Markov Chains to perform gibbs sampling

iterations Number of samples for each Markov Chain

alpha 1 minus the width of credible interval taken around the posterior mode.

prior Concentration parameter for the dirichlet distribution. 1 is uninformative, small values suggest first-generation admixture (uninformative as to which source populations involved), and higher values suggest low parental divergence.

burn Burn-in period. The number of MCMC samples to discard.

SampSizes Vector of the same length as the number of source populations. Each element is the number of individuals used to calculate allele frequencies in that population. Parameterises the prior on allele frequencies

Details

BEAPFroG requires jags and rjags to be installed. http://mcmc-jags.sourceforge.net/ Credible intervals are centered around the mode.

Values for parameter vectors m1 and m2 can be exchanged to give identical likelihoods. This may give rise to bimodal posterior distributions, particularly with first-generation admixture, and the resulting credible intervals are not useful. Therefore, for all MCMC samples, we redefine m1 as the admixture proportions for the parent with admixture from population 1 less than 0.5, and vice-versa for m2.

Value

A list including elements

p1est A vector: Posterior mode for admixture proportions in parent 'A'.

p2 A vector: Posterior mode for admixture proportions in parent 'B'.

p1i A matrix of two columns and number of rows equal to number of populations: upper and lower credible intervals of width defined by the argument alpha, for admixture proportions in parent 'A'.

p2i A matrix of two columns and number of rows equal to number of populations: upper and lower credible intervals of width defined by the argument alpha, for admixture proportions in parent 'B'.

Monitor All stored MCMC samples. Use plot() on this object for visualisation of posterior distribution and MCMC trace
Author(s)

Daniel Crouch & Michael Weale, Department of Medical and Molecular Genetics, King’s College London

See Also

LEAPFrOG, LEAPFrOG_plot

Description

By Ravi Varadhan. Constrained optimisation for likelihood function, returning hessian matrix used for parameter standard errors.

Usage

LEAPFrOG(data, p, Nudge=0.001, NonLinCon=TRUE)

Arguments

- **data**
 Vector of allele counts: each element either 0, 1, 2 or NA.
- **p**
 Matrix of allele frequencies. Each row corresponds with a SNP. Number of rows must equal length of data. Each column is a population.
- **Nudge**
 D for population 1 will be initialised at 0.5+Nudge. Nudge must be greater than 0. In theory the value for Nudge shouldn’t affect the final optimum, but may influence the time to convergence. Default is 0.001.
- **NonLinCon**
 If TRUE (default), the auglag optimisation function is invoked with a nonlinear constraint imposed on D*m, preventing impossible admixture totals of >1 in the parents. We strongly advise this option.

Details

Standard errors returned in the order P-1 m parameters followed by P-1 D parameters. m and D for the Pth population are not estimated directly and have no standard error.
Value

A list including elements

- **m**: A vector of admixture proportions in the genotyped offspring, one proportion per population. These sum to 1.
- **D**: A vector of parental divergence parameters, one per population.
- **mse**: A vector of length number of populations-. Standard errors for all m estimates save the last population.
- **Dse**: A vector of length number of populations-. Standard errors for all D estimates save the last population.
- **P1**: Admixture proportions for each population, for parent 'A', derived from the m and D estimates.
- **P2**: Admixture proportions for each population, for parent 'B', derived from the m and D estimates.
- **value**: Value of the optimised likelihood function.
- **counts**: Number of times the likelihood function and gradient function were called during optimisation.

Author(s)

Daniel Crouch & Michael Weale, Department of Medical and Molecular Genetics, King’s College London

See Also

LEAPFrOG_plot, LEAPFrOG_EM, BEAPFrOG

Examples

```r
# Example with nonsense data -
# 10000 random SNP genotypes
# ...and uniform, random allele frequencies from two populations.
library(LEAPFrOG)
z1 = LEAPFrOG(sample(0:2, 10000, replace=TRUE), cbind(runif(10000, 0, 1), runif(10000, 0, 1)))
z1
```

Description

Provides estimates of admixture proportions in offspring and ungenotyped parents, using phased data.
Usage

LEAPFr0G_EM(data,p,chr,alpha=1e-6)

Arguments

data 2 column matrix of allele counts, with each row as a SNP. Columns 1 and 2 refer to the 2 haplotypes. Each entry is either 1, 0 or NA.
p Matrix of allele frequencies. Each row corresponds with a SNP. Number of rows must equal length of data. Each column is a population.
chr Vector of chromosome identifiers, one for each SNP. Each entry is an integer, 1-22 for the autosomes. If two X chromosomes for a female are being analysed, it should be identified by the number 23.
alpha Convergence tolerance for the EM algorithm. The optimisation will stop when an iteration fails to change the parental admixture proportions (total change across all parameters) by this amount.

Details

LEAPFr0G_EM requires python to be installed. Only the parental admixture proportions are estimated directly (all except the last population), and therefore standard errors are only reported for these only.

Value

A list including elements

m A vector: Admixture proportions (one per population) for the genotyped offspring.
P1 A vector: Admixture proportions (one per population) for parent ‘A’.
P2 A vector: Admixture proportions (one per population) for parent ‘B’.
P1se A vector: Standard errors (All populations except the last) of admixture proportions in parent ‘A’.
P2se A vector: Standard errors (All populations except the last) of admixture proportions in parent ‘A’.
iterations Number of expectation steps performed.
value Value of the likelihood function for the final maximisation step.

Author(s)

Daniel Crouch & Michael Weale, Department of Medical and Molecular Genetics, King’s College London

See Also

LEAPFr0G,LEAPFr0G_plot,BEAPFr0G
Description

Plots offspring and parental admixture proportions in the style of STRUCTURE, the popular population genetic software.

Usage

```r
LEAPFrOG_plot(Results, PopNames, SampNames=NULL)
```

Arguments

- **Results**: Array of dimensions 3*Npopulations*Noffspring. The first row is for the genotyped offspring and the second two for the unobserved parents. Each cell contains an admixture proportion.
- **PopNames**: Character vector of length J (number of reference populations), eg. c("Africa","Asia","Europe"). Order of names should correspond with order of parameters in Results.
- **SampNames**: Character vector of sample names, equal to number of rows in Results, or NULL (default), which will be printed underneath the admixture bars. Most useful when dealing with a small number of samples with distinct identity e.g. c("Hair","Blood","Door Handle","Ballroom","Lead Piping"). If NULL then no labels are printed beneath the plot (more appropriate for simulations or large population samples).

Author(s)

Daniel Crouch & Michael Weale, Department of Medical and Molecular Genetics, King’s College London

See Also

LEAPFrOG,LEAPFrOG_EM,BEAPFrOG

Examples

```r
# Example with nonsense data -
# 100000 random SNP genotypes
#...and uniform, random allele frequencies from two populations.
library(LEAPFrOG)
#Get LEAPFrOG parameter estimates for 10 simulated individuals
Results=array(dim=c(3,2,10))
for(i in 1:10){
z1=LEAPFrOG(sample(0:2,10000,replace=TRUE),cbind(runif(10000,0,1),runif(10000,0,1)))
  Results[1,,i]=z1$m #Offspring
  Results[2,,i]=z1$P1 #Parent 'A'
  Results[3,,i]=z1$P2 #Parent 'B'
}
```
LEAPFrOG_plot

Now plot these 10 individuals
LEAPFrOG_plot(Results,PopNames=c("PopA","PopB"))
#With sample names:
names=c("Hair","Blood","Door Handle","Ballroom","Lead Piping")
names=c(names,"Briefcase","Toothbrush","Sock","Shirt","Skin")
LEAPFrOG_plot(Results,PopNames=c("PopA","PopB"),SampNames=names)
Index

BEAPfROG (BEAPfROG), 2
BEAPfROG, 2, 2, 5–7
constrOptim2, 4
LEAPfROG, 2, 4, 4, 6, 7
LEAPfROG-package, 2
LEAPfROG_EM, 2, 5, 5, 7
LEAPfROG_plot, 2, 4–6, 7