Package ‘LowRankQP’

February 19, 2015

Version 1.0.2
Date 2009-02-24
Title Low Rank Quadratic Programming
Author John T. Ormerod <jormerod@sydney.edu.au>, M. P. Wand
 <matt@maths.unsw.edu.au>
Maintainer ORPHANED
Description This package contains routines and documentation for
 solving quadratic programming problems where the hessian is
 represented as the product of two matrices.
License GPL (>= 2)
Repository CRAN
Date/Publication 2014-07-28 09:50:07
X-CRAN-Original-Maintainer John T. Ormerod <jormerod@sydney.edu.au>
X-CRAN-Comment Previous maintainer address bounced in Oct 2012,
 maintainer is unresponsive so orphaned 2012-12-06.
NeedsCompilation yes

R topics documented:

LowRankQP ... 1

Index

LowRankQP Solve Low Rank Quadratic Programming Problems

Description

This routine implements a primal-dual interior point method solving quadratic programming prob-
lems of the form
\[
\begin{align*}
\text{min} & \quad d^T \alpha + \frac{1}{2} \alpha^T H \alpha \\
\text{such that} & \quad A \alpha = b \\
& \quad 0 \leq \alpha \leq u
\end{align*}
\]

with dual

\[
\begin{align*}
\text{min} & \quad \frac{1}{2} \alpha^T H \alpha + \beta^T b + x^T u \\
\text{such that} & \quad H \alpha + c + A^T \beta - \zeta + x = 0 \\
& \quad x, \zeta \geq 0
\end{align*}
\]

where \(H = V \) if \(V \) is square and \(H = VV^T \) otherwise.

Usage

```
LowRankQP(Vmat,dvec,Amat,bvec,uvec,method="PFCF",verbose=FALSE,niter=200)
```

Arguments

- **Vmat**: matrix appearing in the quadratic function to be minimized.
- **dvec**: vector appearing in the quadratic function to be minimized.
- **Amat**: matrix defining the constraints under which we want to minimize the quadratic function.
- **bvec**: vector holding the values of \(b \) (defaults to zero).
- **uvec**: vector holding the values of \(u \).
- **method**: Method used for inverting \(H+D \) where \(D \) is full rank diagonal. If \(V \) is square:
 - 'LU': Use LU factorization. (More stable)
 - 'CHOL': Use Cholesky factorization. (Faster)
If \(V \) is not square:
 - 'SMW': Use Sherman-Morrison-Woodbury (Faster)
 - 'PFCF': Use Product Form Cholesky Factorization (More stable)
- **verbose**: Display iterations of LowRankQP.
- **niter**: Number of iteration to perform.

Value

a list with the following components:
- **alpha**: vector containing the solution of the quadratic programming problem.
- **beta**: vector containing the solution of the dual of quadratic programming problem.
- **xi**: vector containing the solution of the dual quadratic programming problem.
- **zeta**: vector containing the solution of the dual quadratic programming problem.
References

Examples

library(LowRankQP)

Assume we want to minimize: (0 -5 0 0 0) %*% alpha + 1/2 alpha[1:3]^T alpha[1:3]
under the constraints: A^T alpha = b
with b = (-8, 2, 0)^T
and
A = (-3 1 -2)
(0 0 1)
(-1 0 0)
(0 -1 0)
(0 0 -1)
alpha >= 0

(Same example as used in quadprog)
we can use LowRankQP as follows:

Vmat <- matrix(0,6,6)
diag(Vmat) <- c(1,1,0,0,0)
dvec <- c(0,-5,0,0,0)
Amat <- matrix(c(-4,-3,0,-1,0,0,2,1,0,0,-1,0,0,-2,1,0,0,-1),6,3)
bvec <- c(-8,2,0)
uvec <- c(100,100,100,100,100,100)
LowRankQP(Vmat,dvec,t(Amat),bvec,uvec,method="CHOL")

Now solve the same problem except use low-rank V

Vmat <- matrix(c(1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0),6,3)
dvec <- c(0,-5,0,0,0,0)
Amat <- matrix(c(-4,-3,0,-1,0,0,2,1,0,0,-1,0,0,-2,1,0,0,-1),6,3)
bvec <- c(-8,2,0)
uvec <- c(100,100,100,100,100,100)
LowRankQP(Vmat,dvec,t(Amat),bvec,uvec,method="SMW")
Index

*Topic optimize
 LowRankQP, 1

LowRankQP, 1