Package ‘MAd’

August 31, 2018

Type Package
Title Meta-Analysis with Mean Differences
Version 0.8-2.1
Date 2014-12-23
Author AC Del Re & William T. Hoyt
Maintainer AC Del Re <acdelre@gmail.com>
Description A collection of functions for conducting a meta-analysis with mean differences data. It uses recommended procedures as described in The Handbook of Research Synthesis and Meta-Analysis (Cooper, Hedges, & Valentine, 2009).
Depends R (>= 2.10.1)
Suggests metafor, R2wd, ggplot2
Enhances compute.es, irr
License GPL-2
URL http://acdelre.weebly.com
NeedsCompilation no
Repository CRAN
Date/Publication 2018-08-31 17:39:55 UTC

R topics documented:

MAd-package .. 2
agg ... 7
ancova_to_d1 ... 10
ancova_to_d2 ... 11
atten .. 12
compute_dgs ... 13
compute_ds ... 14
compute_gs ... 16
dat.cooper15.3 ... 17
dat.cooperA2 .. 17
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dat.hoyt</td>
<td>18</td>
</tr>
<tr>
<td>dat.sim.es</td>
<td>18</td>
</tr>
<tr>
<td>dat.sim.final</td>
<td>18</td>
</tr>
<tr>
<td>dat.sim.raw</td>
<td>19</td>
</tr>
<tr>
<td>dat.sim1</td>
<td>19</td>
</tr>
<tr>
<td>dat.sim2</td>
<td>19</td>
</tr>
<tr>
<td>d_to_g</td>
<td>20</td>
</tr>
<tr>
<td>f.ancova_to_d</td>
<td>21</td>
</tr>
<tr>
<td>fail_to_d</td>
<td>22</td>
</tr>
<tr>
<td>f_to_d</td>
<td>23</td>
</tr>
<tr>
<td>icc</td>
<td>24</td>
</tr>
<tr>
<td>Kappa</td>
<td>26</td>
</tr>
<tr>
<td>lor_to_d</td>
<td>27</td>
</tr>
<tr>
<td>macat</td>
<td>28</td>
</tr>
<tr>
<td>macatC</td>
<td>30</td>
</tr>
<tr>
<td>mareg</td>
<td>32</td>
</tr>
<tr>
<td>mean_to_d</td>
<td>34</td>
</tr>
<tr>
<td>mean_to_d2</td>
<td>35</td>
</tr>
<tr>
<td>or_to_d</td>
<td>36</td>
</tr>
<tr>
<td>p.ancova_to_d1</td>
<td>37</td>
</tr>
<tr>
<td>p.ancova_to_d2</td>
<td>38</td>
</tr>
<tr>
<td>plotcat</td>
<td>39</td>
</tr>
<tr>
<td>plotcon</td>
<td>40</td>
</tr>
<tr>
<td>PubBias</td>
<td>41</td>
</tr>
<tr>
<td>p_to_d1</td>
<td>42</td>
</tr>
<tr>
<td>p_to_d2</td>
<td>43</td>
</tr>
<tr>
<td>r2</td>
<td>44</td>
</tr>
<tr>
<td>robustSE</td>
<td>45</td>
</tr>
<tr>
<td>r_from_chi</td>
<td>46</td>
</tr>
<tr>
<td>r_from_d</td>
<td>47</td>
</tr>
<tr>
<td>r_from_d1</td>
<td>48</td>
</tr>
<tr>
<td>r_from_t</td>
<td>49</td>
</tr>
<tr>
<td>r_to_d</td>
<td>50</td>
</tr>
<tr>
<td>tt.ancova_to_d</td>
<td>51</td>
</tr>
<tr>
<td>t_to_d</td>
<td>52</td>
</tr>
<tr>
<td>wd</td>
<td>53</td>
</tr>
<tr>
<td>wgts</td>
<td>54</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55</td>
</tr>
</tbody>
</table>

`MAd-package` Meta-Analysis with Mean Differences
Description

The Mad package contains a variety of functions for conducting a mean differences meta-analysis using recommended procedures as described in The Handbook of Research Synthesis and Meta-Analysis (Cooper, Hedges, and Valentine, 2009). The goal in creating this package was to provide user-friendly functions to assist researchers in the process of conducting a meta-analysis, from the initial to final stages of their analytic endeavor. The meta-analyst can begin their project by using Mad functions to derive d (standardized mean differences) and g (unbiased d) from a variety of statistics/values reported in the primary studies (e.g., raw means and sd, t-test). Then, the analyst can aggregate all within-study effect sizes (while accounting for within-study correlations among outcome measures and eliminating any dependencies in the dataset), calculate omnibus effect sizes under a fixed and random effects model, and assess for significant moderators (categorical and continuous, single and multi-predictor models) in the dataset. Finally, the meta-analyst can use one of several user-friendly graphics functions to visually represent their data.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>Mad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>0.8-2</td>
</tr>
<tr>
<td>Date:</td>
<td>2014-12-23</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

The Mad package has integrated functions to facilitate the meta-analytic process at nearly every analytical stage. There are five broad areas of analysis that the Mad package targets:

1. Computations to Calculate Mean Differences:

There are a variety of functions to compute d (standardized mean difference) and g (unbiased d) from various designs reported in the primary studies. Most functions were derived from Borenstein’s chapter in The Handbook of Research Synthesis and Meta-Analysis (Cooper, Hedges, & Valentine, 2009; pp. 228-234). For additional conversion formulas see the compute.es package: https://CRAN.R-project.org/package=compute.es

2. Within-Study Aggregation of Effect Sizes:

This function will simultaneously aggregate all within-study effect sizes while taking into account the correlations among the within-study outcome measures (Gleser & Olkin 2009; Gleser & Olkin 2009; Hedges & Olkin, 1985; Rosenthal et al., 2006). The default imputed correlation between within-study effect sizes is set at .50 (Wampold et al., 1997) and will compute an aggregated effect size for each study. This default of .50 is adjustable and can vary between outcome types. This Mad aggregation function implements Gleser & Olkin (1994; 2009) and Borenstein et al. (2009) procedures for aggregating dependent effect sizes. To our knowledge, this is the first statistical package/program to explicitly utilize and automate this type of aggregation procedure, which has a dual effect of saving the researcher substantial time while improving the accuracy of their analyses.

3. Fixed and Random Effects Omnibus Analysis:

This package contains all the relevant functions to calculate fixed and random effects omnibus effect sizes, outputting the omnibus (i.e., overall) effect size, variance, standard error, upper and lower confidence intervals, and the Q-statistic (heterogeneity test).
4. Moderator Analyses:
There are user-friendly functions to compute fixed and random effects moderator analyses. These include single and multiple predictor models for both categorical and continuous moderator data.

5. Graphics:
This package has a variety of functions visually representing data. This includes boxplots and meta-regression scatterplots.

6. Sample of Additional Functions:
Export MA output to nicely formatted Word tables.

Author(s)
AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

RcmdrPlugin.MA package: https://CRAN.R-project.org/package=RcmdrPlugin.MA;

MAC package: https://CRAN.R-project.org/package=MAC;

compute.es package: https://CRAN.R-project.org/package=compute.es;

metafor package: https://CRAN.R-project.org/package=metafor

Examples

```r
## EXAMPLES FOR EACH BROAD AREA

# SAMPLE DATA:
```
MA <- data.frame(id=factor(rep(1:5, 3)),
 measure=c(rep("dep",5), rep("anx",5), rep("shy",5)),
 es=c(rnorm(5, 0.8, .2), rnorm(5, 0.5, .1), rnorm(5, 0.4, .1)),
 var_es=abs(rnorm(5*3, 0.05, .03)),
 nT=round(rnorm(5*3, 30, 5),0),
 nC=round(rnorm(5*3, 30, 5),0),
 mod1=factor(rep(c("a","b","c","d","e"),3)),
 mod2=rep(seq(20, 60, 10), 3))

1. COMPUTE MEAN DIFFERENCE STATISTIC FROM
REPORTED STATS (GENERALLY FROM A PRIMARY STUDY):

suppose the primary study reported an log odds ratio for different
proportions between 2 groups. Then, running:

lor_to_d(.9070,.0676)

reported log odds ratio (lor = .9070) and variance (.0676) will output the
standardized mean difference (d) and its variance (var.d) that can be used in
a meta-analysis.

2. ACCOUNT FOR DEPENDENCIES: WITHIN-STUDY EFFECT SIZES (ES):

2 EXAMPLES:
EXAMPLE 1: AGGREGATING EFFECT SIZES FOR A DATA FRAME
(MULTIPLE STUDIES AT LEAST SOME OF WHICH HAVE MULTIPLE DEPENDENT EFFECT SIZES)
EXAMPLE 2: AGGREGATING EFFECT SIZES FOR SINGLE STUDY WITH THREE OR MORE
EFFECT SIZES WHEN PAIRS OF DVS HAVE DIFFERENT CORRELATIONS

EXAMPLE 1: MA IS A DATA FRAME CONTAINING MULTIPLE STUDIES (id),
EACH WITH MULTIPLE EFFECT SIZES (CORRELATIONS BETWEEN ALL PAIRS OF DVS ARE r=.5.)

AGGREGATION PROCEDURE:
method="GO1"; GLESER AND OLKIN (1994) PROCEDURE WHEN d IS COMPUTED
USING POOLED SD IN THE DENOMINATOR

MA1 <- agg(id=id, es=es, var=var.es, n.1=nT, n.2=nC, cor = .5, method="GO1", data=MA)

MA1

EXAMPLE 2: STUDY 1 COMPARES A TREATMENT AND CONTROL GROUP ON
THREE OUTCOME MEASURES (DEPRESSION, ANXIETY, AND SHYNESS).
THE CORRELATION AMONG THE THREE PAIRS OF DVS ARE r12=.5, r13=.2, and r23=.3.

study1 <- data.frame(id=factor(rep(1, 3)),
 measure=c("dep", "anx", "shy"),
 es=c(0.8, 0.5, 0.4),
 var.es=c(0.01, 0.02, 0.1),
 nT=rep(30, 3),
 nC=rep(30, 3))

ONE WOULD CONSTRUCT THE CORRELATION MATRIX AS FOLLOWS:
cors <- matrix(c(1.5, 2, 0.5, 1.3, 0.2, 0.3), nrow=3)

AGGREGATION PROCEDURE:
method="C01"; GLESER AND OLKIN (1994) PROCEDURE WHEN d
IS COMPUTED USING POOLED SD IN THE DENOMINATOR
agg(id=id, es=es, var=var.es, n.1=nT, n.2=nC, cor=cor, method="GO1", mod = NULL, data=study1)

where MA = data.frame with columns for id, es (standardized
mean difference), var.es (variance of es), n.1 (sample size of group
one), and n.2 (sample size of comparison group) with multiple rows per
study. Outputs an aggregated data.frame with 1 effect size per study.

3. OMNIBUS ANALYSIS

FIRST ADD MODERATORS TO THE AGGREGATED DATASET:

MODS <- data.frame(id=1:5,
 mod1=factor(c("a","b","a","b","b")),
 mod2=as.numeric(c(20, 30, 25, 35, 40)))

MA2 <- merge(MA1, MODS, by='id')

Random Effects
m0 <- mareg(es1~ 1, var = var1, method = "REML", data = MA2)

where MA = data.frame with columns for id, es (standardized
mean difference), var.es (variance of es), n.1 (sample size of group
one), and n.2 (sample size of comparison group).

view output:
summary(m0)

4. MODERATOR ANALYSIS:

Random Effects
m1 <- mareg(es1~ mod1 + mod2 , var = var1, method = "REML", data = MA2)

view output:
summary(m1)

5. Graphics:

Not run: plotcon(g = es1, var = var1, mod = mod1, data = MA2, method= "random",
modname= "Moderator")
End(Not run)

Additional Functions
agg

Export MA output to nicely formatted Word tables.

install R2wd
install.packages('R2wd', dependencies = TRUE)

Export data to Word in formatted table
wd(m1, get = TRUE, new = TRUE)

agg
Aggregate Dependent Effect Sizes

Description

This function will simultaneously aggregate all within-study effect sizes while taking into account the correlations among the within-study outcomes. The default correlation between outcome measures is set at .50 (Wampold et al., 1997), and can be adjusted as needed. An aggregate effect size and its variance is computed for each study. This `Mad` aggregation function implements Gleser & Olkin (1994) and Borenstein et al. (2009) procedures for aggregating dependent effect sizes.

Usage

`agg(id, es, var, n.1=NULL, n.2=NULL, method = "BHHR", cor = .50, mod= NULL, data)`

Arguments

- `id`
 Study id with multiple rows of same id.

- `es`
 Effect size. Use Cohen’s d for GO1 and GO2 method and use Hedges g for BHHR method.

- `var`
 Variance of g.

- `n.1`
 Sample size of group one. Only required if using method='GO1' or 'GO2'.

- `n.2`
 Sample size of group two. Only required if using method='GO1' or 'GO2'.

- `method`
 'BHHR'= Borenstein, et al. (2009) procedure. 'GO1'= Gleser and Olkin (1994) procedure using pooled standard deviation (SD). 'GO2'= Gleser and Olkin (1994) procedure using group 2 SD (typically control group SD). Default is 'BHHR'.

- `cor`
 Estimated correlation among within-study outcome variables. Input should either be a fixed correlation (default is r=.5) or a correlation matrix to allow different correlations between outcome types (in which case aggregation should typically be on one study at a time rather than the entire dataset--see examples below).

- `mod`
 To aggregate by id and one moderator. If there are multiple levels of a categorical moderator within study and one can in derive separate effect size estimates for each level within and between studies. Default is NULL.

- `data`
 data.frame with above values.
Value

Outputs a data frame with aggregated effect sizes and variances of effect sizes where each study is reduced to one row per study (unless aggregated by a moderator) by a weighted average formula.

Author(s)

AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>

References

Examples

```r
## 2 EXAMPLES:

# EXAMPLE 1: Aggregating effect sizes for a data frame
# (multiple studies at least some of which have multiple # effect sizes), assuming equal correlations (r=.5) between # pairs of DVs.
# EXAMPLE 2: Aggregating effect sizes for a single study # with 3 or more effect sizes when pairs of DVs have # different correlations.

# LOAD DATA (EXAMPLE DATA FROM HOYT & DEL RE, 2015 SIMULATION):
data(dat.hoyt)

## EXAMPLE 1: dat.hoyt is a data frame with multiple studies identified ## by variable 'id'. Each study has multiple effect sizes based on ## multiple DVs. Correlations between all pairs of DVs are r=.5.

# NOTE: Based on a simulation study by Hoyt & Del Re (2015), it is # recommended that methods "G01" and "G02" (Gleser and Olkin) # should aggregate Cohen's d, without using Hedges & Olkin's # recommended bias correction. (Studies providing only a single # effect size should still be corrected for bias, after aggregation.)
```
Method "BHHR" should aggregate Hedges' g, after bias correction.

Option 1: method="BHHR"; Borenstein et al. (2009) procedure.
Use with Hedges' g; can also be used with any other effect
size (e.g., z', LOR).

agg(id=id, es=g, var=vg, cor=.5,
 method="BHHR", mod=NULL, data=dat.hoyt)

Option 2: method="G01"; Gleser & Olkin (1994) procedure when
d is computed using pooled sd in denominator.

agg(id=id, es=d, var=vd, n.1=n.T, n.2=n.C, cor = .5,
 method="G01", mod = NULL, data=dat.hoyt)

Option 3: method="G02"; Gleser & Olkin (1994) procedure when
d is computed using sd.2 (typically control group sd)
in denominator

agg(id=id, es=d, var=vd, n.1=n.T, n.2=n.C, cor = .5,
 method="G02", mod = NULL, data=dat.hoyt)

EXAMPLE 2: Single study comparing T and C group
on three DVs: depression, anxiety, and shyness
r12=.5; r13=.2; r23=.3

data <- dat.hoyt[20:22,]

Step 1: Create the correlation matrix, based on r12, r13, and r23:

cors <- matrix(c(1,.5,.2,
 .5,1,.3,
 .2,.3,1), nrow=3)

Step 2: Aggregate using agg() function.

Option 1: method="BHHR"; Borenstein et al. (2009) procedure.
Use with Hedges' g; can also be used with any other effect
size (e.g., z', LOR).

agg(id=id, es=g, var=vg, cor=cors,
 method="BHHR", mod=NULL, data=data)

Option 2: method="G01"; Gleser & Olkin (1994) procedure when
d is computed using pooled sd in denominator.

agg(id=id, es=d, var=vd, n.1=n.T, n.2=n.C, cor = cors,
 method="G01", mod = NULL, data=data)

Option 3: method="G02"; Gleser & Olkin (1994) procedure when
a function to convert an ANCOVA F-statistic to d (standardized mean difference)

```
# d is computed using sd.2 (typically control group sd)
# in denominator

agg(id=id, es=d, var=vd, n.1=n.T, n.2=n.C, cor = cors,
    method="GO2", mod = NULL, data=data)
```

Citation

Description

Converts an ANCOVA F-statistic to d (standardized mean difference)

Usage

```
ancova_to_d1(m.1.adj, m.2.adj, sd.adj, n.1, n.2, R, q)
```

Arguments

- `m.1.adj`: Adjusted mean of treatment group from ANCOVA.
- `m.2.adj`: Adjusted mean of comparison group from ANCOVA.
- `sd.adj`: Adjusted standard deviation.
- `n.1`: Treatment group sample size.
- `n.2`: Comparison group sample size.
- `R`: Covariate outcome correlation or multiple correlation.
- `q`: Number of covariates.

Value

- `d`: Standardized mean difference (d).
- `var_d`: Variance of d.

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>
ancova_to_d2

References

See Also
d_to_g, mean_to_d, mean_to_d2, t_to_d, f_to_d, p_to_d1, p_to_d2, ancova_to_d1, ancova_to_d2, tt.ancova_to_d, f.ancova_to_d, r_to_d, p.ancova_to_d1, p.ancova_to_d2, lor_to_d, prop_to_or, prop_to_d, r_from_chi, r_from_d, r_from_d1, r_from_t

ancova_to_d2 ANCOVA F-statistic to d II

Description

Converts an ANCOVA F-statistic with pooled standard deviation to d (standardized mean difference)

Usage

ancova_to_d2(m.1.adj, m.2.adj, s.pooled, n.1, n.2, R, q)

Arguments

m.1.adj Adjusted mean of treatment group from ANCOVA.
m.2.adj Adjusted mean of comparison group from ANCOVA.
s.pooled Pooled standard deviation.
n.1 Treatment group sample size.
n.2 Comparison group sample size.
R Covariate outcome correlation or multiple correlation.
q number of covariates.

table

d Standardized mean difference (d).
var_d Variance of d.

Author(s)

AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>
References

See Also
d_to_g, mean_to_d, mean_to_d2, t_to_d, f_to_d, p_to_d1, p_to_d2, ancova_to_d1, ancova_to_d2, tt.ancova_to_d, f.ancova_to_d, r_to_d, p.ancova_to_d1, p.ancova_to_d2, lor_to_d, prop_to_or, prop_to_d, r_from_chi, r_from_d, r_from_d1, r_from_t

Correction for Attenuation

Description

Used to correct for attenuated effect sizes due to measurement unreliability.

Usage

atten(g, xx, yy, data)

Arguments

g Hedges g (unbiased estimate of d) effect size.
xx Column for reliability of predictor variable ("independent variable").
yy Column for reliability of outcome variable ("dependent variable").
data data.frame with the above values.

Value

A new column for g corrected for attenuation (g_corrected) will be added to the data, for those xx & yy columns with complete data.

Author(s)

AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>

References

compute_dgs

Computes Vector of Standardized Mean Differences

Description

Adds d & g (standardized mean difference) to a data.frame. Required inputs are: n.1 (sample size of group one), m.1 (raw post-mean value of group one), sd.1 (standard deviation of group one), n.2 (sample size of group two), m.2 (raw post-mean value of group two), sd.2 (standard deviation of group two).

Usage

compute_dgs(n.1, m.1, sd.1, n.2, m.2, sd.2, data, denom = "pooled.sd")

Arguments

n.1 sample size of group one.
m.1 raw post-mean value of group one.
sd.1 standard deviation of group one.
n.2 sample size of group two.
m.2 raw post-mean value of group two.
sd.2 standard deviation of group two.
data data.frame with above values
denom Value in the denominator to standardize the means by. pooled.sd will pool together both groups in deriving d. control.sd uses the standard deviation of group two (typically the control condition) to calculate d.
Value

- **d**: Standardized mean difference.
- **var.d**: Variance of d.
- **se.d**: Standard error of d.

Author(s)

AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

- `compute_ds`
- `compute_gs`

Examples

```r
id <- c(1:20)
n.1 <- c(10, 20, 13, 22, 28, 12, 12, 36, 19, 12, 36, 75, 33, 121, 37, 14, 40, 16, 14, 20)
n.2 <- c(11, 22, 10, 20, 25, 12, 12, 36, 19, 11, 34, 75, 33, 120, 37, 14, 40, 16, 10, 21)
m.1 <- c(.68, .56, .23, .64, .49, .4, 1.49, .53, .58, 1.18, .11, 1.27, .26, .40, .49, .51, .40, .34, .42, .66)
m.2 <- c(.38, .36, .23, .34, .29, .4, 1.9, .33, .28, 1.1, .111, .27, .21, .140, .149, .51, .140, .134, .42, .16)
sd.1 <- c(.28, .26, .23, .44, .49, .34, .39, .33, .58, .38, .31, .27, .26, .40, .49, .51, .140, .134, .42, .46)
sd.2 <- c(.28, .26, .23, .44, .49, .44, .39, .33, .58, .38, .51, .27, .26, .40, .49, .51, .140, .134, .142, .36)
mod1 <- c(1, 2, 3, 4, 1, 2, 8, 7, 5, 3, 9, 7, 5, 4, 3, 2, 3, 5, 7, 1)
mod2 <- factor(c(rep(c(1, 2, 3, 4), 5)))
dfs <- data.frame(id, n.1, m.1, sd.1, n.2, m.2, sd.2, mod1, mod2)

compute_dgs(n.1, m.1, sd.1, n.2, m.2, sd.2, data = dfs)
```

compute_ds

Computes Vector of Standardized Mean Differences

Description

Adds d (standardized mean difference) to a data.frame. Required inputs are: n.1 (sample size of group one), m.1 (raw post-mean value of group one), sd.1 (standard deviation of group one), n.2 (sample size of group two), m.2 (raw post-mean value of group two), sd.2 (standard deviation of group two).
compute_ds

Usage

compute_ds(n.1, m.1, sd.1, n.2, m.2, sd.2, data, denom = "pooled.sd")

Arguments

n.1 sample size of group one.
m.1 raw post-mean value of group one.
sd.1 standard deviation of group one.
n.2 sample size of group two.
m.2 raw post-mean value of group two.
sd.2 standard deviation of group two.
data data.frame with values above.
denom Value in the denominator to standardize the means by. pooled.sd will pool together both groups in deriving d. control.sd uses the standard deviation of group two (typically the control condition) to calculate d.

Value

d Standardized mean difference.
var.d Variance of d.
se.d Standard error of d.

Author(s)

AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

compute_ds, compute_dgs

Examples

id <- c(1:20)
n.1 <- c(10,20,13,22,28,12,12,36,19,12,36,75,33,121,13,40,16,14,20)
n.2 <- c(11,22,10,20,25,12,12,36,19,11,34,75,33,120,17,40,16,10,21)
m.1 <- c(.68,.56,.23,.64,.49,.4,.49,.53,.58,1.18,.11,1.27,.26,.40,.49,
.51,.40,.34,.42,.66)
m.2 <- c(.38,.36,.23,.34,.29,.4,1.9,.33,.28,1.1,.111,.27,.21,.140,.149,
.51,.140,.134,.42,.16)
sd.1 <- c(.28,.26,.23,.44,.49,.34,.39,.33,.58,.38,.31,.27,.26,.40,
compute_gs

Description

Adds g (unbiased standardized mean difference) to a dataframe. Required inputs are: n.1 (sample size of group one), sd.1 (standard deviation of group one), n.2 (sample size of group two).

Usage

compute_gs(d, var.d, n.1, n.2, data)

Arguments

d
var.d
n.1
n.2
data

Value

g
var.g
se.g

Author(s)

AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

compute_ds, compute_dgs

Examples

```r
id <- c(1:20)
n.1 <- c(10,20,13,22,28,12,12,19,12,36,75,33,121,37,14,40,16,14,20)
n.2 <- c(11,22,10,20,25,12,12,19,11,34,75,33,120,37,14,40,16,10,21)
m.1 <- c(0.68,.56,.23,.64,.49,.4,1.49,.53,.58,1.18,.11,1.27,.26,.40,.49,.51,.40,.34,.42,.66)
m.2 <- c(0.38,.36,.23,.34,.29,.4,1.9,.33,.28,1.1,.111,.27,.21,.140,.149,.51,.140,.134,.42,.16)
sd.1 <- c(0.28,.26,.23,.44,.49,.34,.39,.33,.58,.38,.31,.27,.26,.40,.49,.51,.140,.134,.42,.46)
sd.2 <- c(0.28,.26,.23,.44,.49,.44,.39,.33,.58,.38,.51,.27,.26,.40,.49,.51,.140,.134,.42,.36)
mod1 <- c(1,2,3,4,1,2,8,7,5,3,9,7,5,4,3,2,3,5,7,1)
mod2 <- factor(c(rep(c(1,2,3,4),5)))
dfs <- data.frame(id, n.1, n.1, sd.1, n.2, m.2, sd.2, mod1, mod2)

# Example

# first compute d
dfs2 <- compute_ds(n.1, m.1, sd.1, n.2, m.2, sd.2, data = dfs)

# now, compute g
compute_gs(d, var.d, n.1, n.2, dfs2)
```

Description

Data from Table 15.3 in The Handbook for Research Synthesis and Meta-Analysis (Cooper et al., 2009)

Data from Table A2 in The Handbook for Research Synthesis and Meta-Analysis (Cooper et al., 2009)
dat.hoyt

Subset of simulated data to demonstrate aggregation for dependent effect sizes

Description

Subset of simulated data to demonstrate aggregation for dependent effect sizes. This data comes from: Hoyt, W. T., & Del Re, A. C. (2013). Comparison of methods for aggregating dependent effect sizes in meta-analysis. Manuscript submitted for publication.

dat.sim.es

Subset of simulated psychotherapy treatment studies (k=8) with dependent effect sizes

Description

This data set includes effect sizes for treatment vs control groups for a random subset of 8 simulated psychotherapy treatment studies (total population k = 1000). The known population standardized mean difference for outcome one is $g = 0.50$ and for outcome two $g = 0.80$. The data set also includes two correlated study-level variables (i.e., moderators): treatment duration ($dose$) and average participant distress ($stress$).

This data accompanies a tutorial for meta-analysis:

dat.sim.final

Final aggregated dataset of simulated psychotherapy treatment studies (k=8)

Description

This data set includes aggregated effect sizes for treatment vs control groups for a random subset of 8 simulated psychotherapy treatment studies (total population k = 1000). The known population standardized mean difference for outcome one is $g = 0.50$ and for outcome two $g = 0.80$. The data set also includes two correlated study-level variables (i.e., moderators): treatment duration ($dose$) and average participant distress ($stress$).

This data accompanies a tutorial for meta-analysis:

<table>
<thead>
<tr>
<th>dat.sim.raw</th>
<th>Subset of simulated psychotherapy treatment studies (k=8) with means and SD</th>
</tr>
</thead>
</table>

Description

This data set includes means and standard deviations for treatment and control groups for a subset of k = 8 simulated psychotherapy treatment studies from a population of k = 1000 (see dat.sim1 and dat.sim2 for the k = 1000 studies for outcome 1 and 2, respectfully). Although effect sizes are not calculated in this dataset, the known population standardized mean difference for outcome one is $d=0.50$ and for outcome two $g=0.80$. The data set also includes two correlated study-level variables (i.e., moderators): treatment duration (dose) and average participant distress (stress).

This data accompanies a tutorial for meta-analysis:

dat.sim1	Simulated psychotherapy treatment studies for 'outcome one'

Description

This data set includes 1000 simulated psychotherapy treatment studies. The population standardized mean difference for outcome one is $d=0.50$. The data set also includes two correlated study-level variables (i.e., moderators): treatment duration (dose) and average participant distress (stress).

This data accompanies a tutorial for meta-analysis:

dat.sim2	Simulated psychotherapy treatment studies for 'outcome two'

Description

This data set includes 1000 simulated psychotherapy treatment studies. The population standardized mean difference for outcome two is $d=0.80$. The data set also includes two correlated study-level variables (i.e., moderators): treatment duration (dose) and average participant distress (stress).

This data accompanies a tutorial for meta-analysis:

d_to_g

Standardized Mean Difference (d) Statistic to Unbiased Standardized Mean Difference (g)

Description

Eliminates the small upward bias of d to provide an unbiased estimate of the population effect size parameter (g). This procedure will compute g for a single value of d.

Usage

```
d_to_g(d, var.d, n.1, n.2)
```

Arguments

- **d**: Standardized mean difference statistic (d has a slight bias).
- **var.d**: Variance of d.
- **n.1**: Sample size of treatment group.
- **n.2**: Sample size of comparison group.

Value

- **g**: Unbiased Standardized mean difference statistic.
- **var.g**: Variance of g.

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

f.ancova_to_d

Description

Converts an ANCOVA F-statistic to d (standardized mean difference).

Usage

```r
f.ancova_to_d(f, n1, n2, r, q)
```

Arguments

- `f`: F-test value from ANCOVA.
- `n1`: Treatment group sample size.
- `n2`: Comparison group sample size.
- `r`: Covariate outcome correlation or multiple correlation.
- `q`: Number of covariates.

Value

- `d`: Standardized mean difference (d).
- `var_d`: Variance of d.

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

`d_to_g, mean_to_d, mean_to_d2, t_to_d, f_to_d, p_to_d1, p_to_d2, ancova_to_d1, ancova_to_d2, tt.ancova_to_d, r_to_d, p.ancova_to_d1, p.ancova_to_d2, lor_to_d, prop_to_or, prop_to_d, r_from_chi, r_from_d, r_from_d1, r_from_t`
fail_to_d

Description

Converts number of 'failure' groups reported in the primary study to standardized mean difference (d).

Usage

fail_to_d(B, D, n.1, n.0)

Arguments

B Treatment failure.
D Non-treatment failure.
n.1 Treatment sample size.
n.0 Control/comparison sample size.

Value

d Standardized mean difference (d).
var_d Variance of d.

Author(s)

AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

d_to_g, mean_to_d, mean_to_d2, t_to_d, f_to_d, p_to_d, p_to_d1, p_to_d2, ancova_to_d1, ancova_to_d2, tt.ancova_to_d, f.ancova_to_d, r_to_d, p.ancova_to_d1, p.ancova_to_d2, lor_to_d, prop_to_or, r_from_chi, r_from_d, r_from_d1, r_from_d2, r_from_t
Description

Converts F-test value to standardized mean difference (d).

Usage

```r
f_to_d(f, n.1, n.2)
```

Arguments

- `f`: F-value reported in primary study.
- `n.1`: Sample size of treatment group.
- `n.2`: Sample size of comparison group.

Value

- `d`: Standardized mean difference (d).
- `var_d`: Variance of d.

Author(s)

AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

d_to_g, mean_to_d, mean_to_d2, t_to_d, p_to_d1, p_to_d2, ancova_to_d1, ancova_to_d2, tt.ancova_to_d, f.ancova_to_d, r_to_d, p.ancova_to_d1, p.ancova_to_d2, lor_to_d, prop_to_or, prop_to_d, r_from_chi, r_from_d, r_from_d1, r_from_t
icc

Intraclass correlation coefficient (ICC) for oneway and twoway models

Description

Computes single score or average score ICCs as an index of interrater reliability of quantitative data. Additionally, F-test and confidence interval are computed.

Usage

```r
icc(ratings, model = c("oneway", "twoway"),
    type = c("consistency", "agreement"),
    unit = c("single", "average"), r0 = 0, conf.level = 0.95)
```

Arguments

- `ratings`
 n*m matrix or dataframe, n subjects m raters.

- `model`
 a character string specifying if a oneway model (default) with row effects random, or a twoway model with column and row effects random should be applied. You can specify just the initial letter.

- `type`
 a character string specifying if "consistency" (default) or "agreement" between raters should be estimated. If a "oneway" model is used, only "consistency" could be computed. You can specify just the initial letter.

- `unit`
 a character string specifying the unit of analysis: Must be one of single (default) or average. You can specify just the initial letter.

- `r0`
 specification of the null hypothesis \(r = r0 \). Note that a one sided test (\(H1: r > r0 \)) is performed.

- `conf.level`
 confidence level of the interval.

Details

This function was created by Matthias Gamer for the `irr` package. For more details, see:

Details for the function:

Missing data are omitted in a listwise way. When considering which form of ICC is appropriate for an actual set of data, one has taken several decisions (Shrout & Fleiss, 1979):

1. Should only the subjects be considered as random effects (oneway model) or are subjects and raters randomly chosen from a bigger pool of persons (twoway model).

2. If differences in judges’ mean ratings are of interest, interrater agreement instead of consistency should be computed.

3. If the unit of analysis is a mean of several ratings, unit should be changed to average. In most cases, however, single values (\(\text{unit} = \text{single} \)) are regarded.
Value

A list with class icclist containing the following components:

- **subjects**: the number of subjects examined.
- **raters**: the number of raters.
- **model**: a character string describing the selected model for the analysis.
- **type**: a character string describing the selected type of interrater reliability.
- **unit**: a character string describing the unit of analysis.
- **icc.name**: a character string specifying the name of ICC according to McGraw & Wong (1996).
- **value**: the intraclass correlation coefficient.
- **r0**: the specified null hypothesis.
- **Fvalue**: the value of the F-statistic.
- **df1**: the numerator degrees of freedom.
- **df2**: the denominator degrees of freedom.
- **p.value**: the p-value for a two-sided test.
- **conf.level**: the confidence level for the interval.
- **lbound**: the lower bound of the confidence interval.
- **ubound**: the upper bound of the confidence interval.

Author(s)

Matthias Gamer

References

Examples

```r
# sample data
study <- c(1,1,2,2,3,3)
rater <- c(rep(1:2,3))
mod1 <- round(rnorm(6, 10, 1))
mod2 <- c(5,5, 9, 9, 8, 8)
mod3 <- c(10,10, 9, 9, 8, 8)
w <- data.frame(study, rater, mod1, mod2, mod3)
w
```
Kappa

if data is in this format:

study rater mod1 mod2 mod3
1 1 9 9 10
1 2 11 8 10
2 1 9 10 11
2 2 9 10 11
3 1 9 9 8
3 2 12 9 8

the data will need to be reshaped to be processed by the
icc function:

long <- reshape(w, varying=colnames(w)[3:5], v.names="Code",
 idvar=c('study', 'rater'), timevar="mods", direction='long')
wide <- reshape(long, idvar=c('mods', 'study'), timevar='rater',
 direction='wide')

icc function (created by Matthias Gamer for the 'irr' package)

icc(cbind(wide$Code.1, wide$Code.2), type = "consistency")

<table>
<thead>
<tr>
<th>Kappa</th>
<th>Inter-Rater Agreement</th>
</tr>
</thead>
</table>

Description
Kappa coefficients for assessing inter-rater agreement between two coders (for categorical variables/moderators).

Usage
Kappa(rater1, rater2)

Arguments
rater1
First rater of categorical variable to be analyzed. This vector needs to be in a separate column if in a data.frame.

rater2
Second rater on same categorical variable to be analyzed. This vector needs to be in a separate column if in a data.frame.

Value
Kappa coefficients for inter-rater reliability (categorical variables).

Author(s)
AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>
lor_to_d

Log Odds Ratio to Standardized Mean Difference (d)

Description

Converts a log odds ratio reported in the primary study to a standardized mean difference (d).

Usage

lor_to_d(lor, var.lor)

Arguments

lor Log odds ratio reported in the primary study.
var.lor Variance of the log odds ratio.
Value

- **d**: Standardized mean difference (d).
- **var_d**: Variance of d.

Author(s)

AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

d_to_g, mean_to_d, mean_to_d2, t_to_d, f_to_d, p_to_d, p_to_d1, p_to_d2, ancova_to_d1, ancova_to_d2, tt.ancova_to_d, f.ancova_to_d, r_to_d, p.ancova_to_d1, p.ancova_to_d2, prop_to_or, prop_to_d, r_from_chi, r_from_d, r_from_d1, r_from_t

macat

Categorical Moderator Analysis

Description

Computes single predictor categorical moderator analysis under a fixed or random effects model.

Usage

macat(g, var, mod, data, method = "random")

Arguments

- **g**: Hedges g (unbiased estimate of d) effect size.
- **var**: Variance of g.
- **mod**: Categorical moderator variable used for moderator analysis.
- **method**: Default is random. For fixed effects, use fixed.
- **data**: data.frame with values above.

Details

See Konstantopoulos & Hedges (2009; pp. 280-288) for the computations used in this function.
Value

mod Level of the categorical moderator.
k Number of studies for each level of the moderator.
estimate Mean effect size of each level of the moderator.
ci.l Lower 95% confidence interval.
ci.u Upper 95% confidence interval.
z z-score (standardized value).
p Significance level.
var Variance of effect size.
se Square root of variance.
Q Q-statistic (measure of homogeneity).
df Degrees of freedom for Q-statistic.
p.h p-value for homogeneity within that level of the moderator.
I2 Proportion of total variation in effect size that is due to heterogeneity rather than chance (see Shadish & Haddock, 2009; pp. 263).
Q Q-statistic overall. Note: Whether fixed or random effects analyses are conducted, the Q statistic reported is for the fixed effect model. Therefore, Qb + Qw != Q in the random effects output.
Qw Q-within (or error). Measure of within-group heterogeneity.
Qw.df Degrees of freedom for Q-within.
Qw.p Q-within p-value (for homogeneity).
Qb Q-between (or model). Measure of model fit.
Qb.df Degrees of freedom for Q-between.
Qb.p Q-between p-value (for homogeneity). Qb and Qb.p provide the test of whether the moderator variable(s) account for significant variance among effect sizes.

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

plotcat, wd
Examples

```r
id <- c(1:20)
n.1 <- c(10, 20, 13, 22, 28, 12, 36, 19, 12, 36, 75, 33, 121, 37, 14, 40, 16, 14, 20)
n.2 <- c(11, 22, 10, 20, 25, 12, 12, 36, 19, 11, 34, 75, 33, 120, 37, 14, 40, 16, 10, 21)
g <- c(0.68, 0.56, 0.23, 0.64, -0.04, 1.49, 1.33, -0.58, 1.18, -0.11, 1.27, -0.26, 0.40, 0.49,
       0.51, 0.40, 0.34, 0.71, 0.16)
var.g <- c(0.08, 0.06, 0.03, 0.04, 0.09, 0.049, 0.009, 0.033, 0.058, 0.018, 0.011, 0.027, 0.026, 0.040,
          0.049, 0.0051, 0.040, 0.034, 0.0042, 0.016)
mod <- factor(rep(c(1, 1, 2, 3), 5))
df <- data.frame(id, n.1, n.2, g, var.g, mod)
```

Example

Random effects
macat(g = g, var = var.g, mod = mod, data = df, method = "random")

macatC

Direct Categorical Moderator Comparison

Description

Function for a planned comparison between two levels of a moderator under a fixed or random effects model.

Usage

`macatC(x1, x2, g, var, mod, data, method = "random", type = "post.hoc")`

Arguments

- `x1`: One level of categorical moderator.
- `x2`: Comparison level of same categorical moderator.
- `g`: Hedges g (unbiased estimate of d) effect size.
- `var`: Variance of g.
- `mod`: Categorical moderator variable used for moderator analysis.
- `method`: Default is random. For fixed effects, use `fixed`.
- `type`: `post.hoc` assumes the comparison was not planned prior to conducting the meta analysis. The `planned` option, assumes the researcher planned to conduct the analysis a priori. Default is `post.hoc` using the Scheffe post hoc statistical method.
- `data`: `data.frame` with values above.

Details

See Konstantopoulos & Hedges (2009; pp. 280-288) for the computations used in this function.
Value

- **diff**: Mean difference between the two levels.
- **var.diff**: Variance of diff.
- **p**: Significance level.

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

- `macat`

Examples

```r
id<-c(1:20)
n.1<-c(10,20,13,22,28,12,12,36,19,12,36,75,33,121,37,14,40,16,14,20)
n.2<-c(11,22,10,20,25,12,12,36,19,11,34,75,33,120,37,14,40,16,10,21)
g<-c(.68,.56,.23,.64,.49,.04,.49,1.33,.58,1.18,.11,.1,.27,.26,.40,.49,.51,.40,.34,.42,1.16)
var.g<-c(.08,.06,.03,.04,.09,.04,.009,.0033,.0058,.018,.011,.027,.026,.0040,.049,.0051,.040,.034,.0042,.016)
mod<-factor(c(rep(c(1,2,3),5)))
df<-data.frame(id, n.1, n.2, g, var.g, mod)
# Example
macatC(1, 2, g=g, var=var.g, mod=mod, data=df, method= "random", type= "post.hoc")
```
Description

Meta-regression function for a single or multiple predictor model. This function is a wrapper for the `rma()` function in the metafor package (Viechtbauer, W, 2010). Please see https://CRAN.R-project.org/package=metafor for details or for more advanced functionality with the `rma()` function.

Usage

`mareg(formula, var, data, method = "REML", subset, digits = 3, ...)`

Arguments

- `formula`: This is a formula based function, similar to other functions in R (e.g., `lm`), where the criterion variable (e.g., Hedges g in this case) is dependent on (`~`) the predictor variables (e.g., moderators). The formula for two moderators would take this form: `mareg(g ~ mod1 + mod2, var.g, data)`, where `g` is the criterion variable predicted by `mod1` and `mod2`. The variance (var) of each `g` is `var.g` in this case.
- `var`: Variance of `g`.
- `data`: Aggregated data.frame (see `agg` function for setting up the dataset for these analyses) with `id`, `g` (unbiased standardized mean difference), `var.g` (variance of `g`) for each study.
- `method`: Default is `REML` (Restricted-Maximal Likelihood), which is the standard random effects method. For fixed effects, use `FE`. Other options are specified in the `metafor` package manual (`rma` function).
- `subset`: an optional vector specifying a subset of observations to be used in the fitting process.
- `digits`: Number of digits to output. Default is 3.
- `...`: Additional arguments to be passed to `rma()`.

Details

Value

- `estimate`: Meta-regression coefficient estimate.
- `se`: Standard error of the estimate coefficient.
- `z`: z-value.
- `ci.l`: Lower 95% confidence interval.
- `ci.u`: Upper 95% confidence interval.
\textit{mareg}

\begin{itemize}
\item p \quad p-value (significance level).
\item QE \quad Q-error. Measure of error in the model.
\item QE.df \quad Degrees of freedom for Q-error.
\item QEp \quad Q-error p-value (for homogeneity).
\item QM \quad Q-model. Measure of model fit.
\item QM.df \quad Degrees of freedom for Q-model.
\item QMp \quad Q-between p-value (for homogeneity). QM and QMp provide the test of whether the moderator variable(s) account for significant variance among effect sizes.
\end{itemize}

References

See Also

\texttt{wd, plotcon}

Examples

\begin{verbatim}
install metafor
install.packages('metafor', dependencies = TRUE)

Sample data
data(dat.sim.final)

Examples
OMNIBUS
m0 <- mareg(es~1, var=var, data=dat.sim.final)
summary(m0)

META-REGRESSION
m1 <- mareg(es~dose, var=var, data=dat.sim.final)
summary(m1) # SINGLE MODERATOR

m2 <- mareg(es~stress, var=var, data=dat.sim.final)
summary(m2) # SINGLE MODERATOR

m3 <- mareg(es~dose + stress, var=var, data=dat.sim.final)
summary(m3) # MULTIPLE MODERATOR
\end{verbatim}
means_to_d

Means to Standardized Mean Difference

Description

Converts raw mean scores reported in the primary study to a standardized mean difference (d).

Usage

```r
mean_to_d(m.1, m.2, sd.1, sd.2, n.1, n.2)
```

Arguments

- `m.1`: Mean of group one.
- `m.2`: Mean of group two.
- `sd.1`: Standard deviation of group one.
- `sd.2`: Standard deviation of group two.
- `n.1`: Sample size of group one.
- `n.2`: Sample size of group two.

Value

- `d`: Standardized mean difference (d).
- `var.d`: Variance of d.

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

d_to_g, mean_to_d2, t_to_d, f_to_d, p_to_d1, p_to_d2, ancova_to_d1, ancova_to_d2, tt.ancova_to_d, f.ancova_to_d, r_to_d, p.ancova_to_d1, p.ancova_to_d2, lor_to_d, prop_to_or, prop_to_d, r_from_chi, r_from_d, r_from_d1, r_from_t
Description

Converts raw mean scores with pooled standard deviation from the primary study to a standardized mean difference (d).

Usage

```r
mean_to_d2(m.1, m.2, s.pooled, n.1, n.2)
```

Arguments

- `m.1`: Mean of group one.
- `m.2`: Mean of group two.
- `s.pooled`: Pooled standard deviation.
- `n.1`: Sample size of group one.
- `n.2`: Sample size of group two.

Value

- `d`: Standardized mean difference (d).
- `var.d`: Variance of d.

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

`d_to_g`, `mean_to_d`, `t_to_d`, `f_to_d`, `p_to_d1`, `p_to_d2`, `ancova_to_d1`, `ancova_to_d2`, `tt.ancova_to_d`, `f.ancova_to_d`, `r_to_d`, `p.ancova_to_d1`, `p.ancova_to_d2`, `lor_to_d`, `prop_to_or`, `prop_to_d`, `r_from_chi`, `r_from_d`, `r_from_d1`, `r_from_t`
or_to_d

Odds Ratio to Standardized Mean Difference (d)

Description

Converts odds ratio reported in the primary study to standardized mean difference (d).

Usage

or_to_d(or)

Arguments

or

Odds ratio.

Value

d

Standardized mean difference (d).

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

d_to_g, mean_to_d, mean_to_d2, t_to_d, f_to_d, p_to_d1, p_to_d2, ancova_to_d1, ancova_to_d2, tt.ancova_to_d, f.ancova_to_d, r_to_d, p.ancova_to_d1, p.ancova_to_d2, lor_to_d, prop_to_or, r_from_chi, r_from_d, r_from_d1, r_from_t
p.ancova_to_d1

One-tailed p-value from ANCOVA to Standardized Mean Difference (d)

Description

Converts a one-tailed p-value from ANCOVA reported in the primary study to a standardized mean difference (d)

Usage

p.ancova_to_d1(p, n.1, n.2, R, q)

Arguments

p
 One-tailed p-value reported in primary study.

n.1
 Treatment group sample size.

n.2
 Comparison group sample size.

R
 Covariate outcome correlation or multiple correlation.

q
 number of covariates.

Value

d
 Standardized mean difference (d).

var_d
 Variance of d.

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

d_to_g, mean_to_d, mean_to_d2, t_to_d, f_to_d, p_to_d1, p_to_d2, ancova_to_d1, ancova_to_d2, tt.ancova_to_d, f.ancova_to_d, r_to_d, p.ancova_to_d2, lor_to_d, prop_to_or, prop_to_d, r_from_chi, r_from_d, r_from_d1, r_from_t
p.ancova_to_d2

Two-tailed p-value from ANCOVA to Standardized Mean Difference (d)

Description

Converts a two-tailed p-value from ANCOVA reported in the primary study to a standardized mean difference (d)

Usage

p.ancova_to_d2(p, n.1, n.2, R, q)

Arguments

p Two-tailed p-value reported in primary study.
n.1 Treatment group sample size.
n.2 Comparison group sample size.
R Covariate outcome correlation or multiple correlation.
q number of covariates.

d Standardized mean difference (d).
var_d Variance of d.

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

d_to_g, mean_to_d, t_to_d, f_to_d, p_to_d1, p_to_d2, ancova_to_d1, ancova_to_d2, tt.ancova_to_d, f.ancova_to_d, r_to_d, p.ancova_to_d1, p.ancova_to_d2, lor_to_d, prop_to_or, prop_to_d, r_from_chi, r_from_d, r_from_d1, r_from_t
plotcat

Categorical Moderator Graph

Description

Outputs boxplot graphic for each level of the specified moderator.

Usage

plotcat(g, var, mod, data, modname=NULL, title=NULL, ...)

Arguments

- **g**: Hedges g (unbiased estimate of d) effect size.
- **var**: Variance of g.
- **mod**: Categorical moderator variable used for moderator analysis.
- **data**: data.frame with values above.
- **modname**: Name of moderator to appear on x axis of plot. Default is NULL.
- **title**: Plot title. Default is NULL.
- **...**: Additional arguments to be passed to ggplot.

Value

Boxplot graph with median, max, min, and outliers from a fixed or random effects categorical moderator analysis. Places jitter points (for each study) on the boxplots. The size of each point (representing a study in the analysis) are based on study weights where more precise studies have larger points. The ggplot2 package outputs the graphics.

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

macat, plotcon
Examples

```r
id <- c(1, 1)
N1 <- c(10, 20, 13, 22, 28, 12, 12, 36, 19, 12, 36, 13, 75, 33, 121, 37, 14, 40, 16, 14, 20)
N2 <- c(11, 22, 10, 20, 25, 12, 12, 36, 19, 11, 34, 75, 33, 120, 37, 14, 40, 16, 10, 21)
g <- c(.68, .56, .23, .64, .49, -.04, 1.49, 1.33, .58, 1.18, -.11, 1.27, .26, .40, .49, .51, .40, .34, .42, 1.16)
var.g <- c(.08, .06, .03, .04, .09, .04, .009, .033, .0058, .018, .011, .027, .026, .0040, .049, .0051, .040, .034, .0042, .016)
mod <- factor(c(rep(c(1, 2, 3), 5)))
df <- data.frame(id, N1, N2, g, var.g, mod)

# Example

## Not run: plotcat(g = g, var = var.g, mod = mod, data = df, method = "random",
## modname = "Moderator")
## End(Not run)
```

plotcon
Meta Regression Scatterplot

Description

Outputs a scatterplot from a fixed or random effects meta regression (continuous and/or categorical).

Usage

```r
plotcon(g, var, mod, data, method = "random", modname = NULL,
        title = NULL, ...)
```

Arguments

- **g**: Hedges g (unbiased estimate of d) effect size.
- **var**: Variance of g.
- **mod**: Categorical moderator variable used for moderator analysis.
- **method**: Default is random (Restricted-Maximal Likelihood), which is the standard random effects method. For fixed effects, use fixed.
- **data**: data.frame with values above.
- **modname**: Name of moderator to appear on x axis of plot. Default is NULL.
- **title**: Plot title. Default is NULL.
- **...**: Additional arguments to be passed to ggplot.

Value

Scatterplot with fixed or random effects regression line with size of visual points based on study weights, where the more precise studies have larger points. The ggplot2 package outputs the rich graphics.
Assess for Publication Bias

Description

Assess for publication bias in the meta-analytic data

Usage

PubBias(data)

Arguments

data: data.frame having been analyzed by the weights function with id and z.score (standardized z-value).
p_to_d1

Value
k Number of studies.
Z Overall z-value for data set.
k0 Number of studies needed to include with effect size = 0 (null) in order for the p > .05 (null hypothesis retained).
k_per Number of missing studies for every observed study for the overall effect to be nullified.

Author(s)
AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also
weights

Description
One-tailed p-value reported in the primary study to Standardized Mean Difference (d)

Usage
p_to_d1(p, n.1, n.2)

Arguments
p One-tailed p-value reported in primary study.
n.1 Sample size of treatment group.
n.2 Sample size of comparison group.

Value
d Standardized mean difference (d).
var_d Variance of d.
Description

One-tailed p-value reported in primary study to Standardized Mean Difference (d)

Usage

```r
p_to_d2(p, n.1, n.2)
```

Arguments

- **p**: Two-tailed p-value reported in primary study.
- **n.1**: Sample size of treatment group.
- **n.2**: Sample size of comparison group.

Value

- **d**: Standardized mean difference (d).
- **var_d**: Variance of d.

Author(s)

AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>
References

See Also

d_to_g, mean_to_d, mean_to_d2, t_to_d, f_to_d, p_to_d, ancova_to_d1, ancova_to_d2, tt.ancova_to_d, f.ancova_to_d, r_to_d, p.ancova_to_d1, p.ancova_to_d2, lor_to_d, prop_to_or, prop_to_d, r_from_chi, r_from_d, r_from_d1, r_from_t

r2

Explained Variance

Description

Compares tau-squared from empty model (omnibus or overall weighted mean) to model with moderators and provides percentage of explained variance.

Usage

```r
r2(x)
```

Arguments

- `x` Will take either a `mareg` (meta-regression), or `macat` (single predictor categorical moderator analysis) object and evaluate.

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

Examples

```r
# Sample data
id<-c(1:20)
n.1<-c(10,20,13,22,28,12,12,36,19,12,36,75,33,121,37,14,40,16,14,20)
n.2 <- c(11,22,10,20,25,12,12,36,19,11,34,75,33,120,37,14,40,16,10,21)
g <- c(.68,.56,.23,.64,.49,-.04,.49,.13,.33,.58,.18,-.11,.12,.26,.40,.49,
/.51,.40,.34,.42,1.16)
var.g <- c(.08,.06,.03,.04,.09,.04,.009,.009,.0058,.018,.011,.027,.026,.0040,
.049,.0051,.040,.034,.0042,.016)
mod<-factor(c(rep(c(1,2,3),5)))
mods2<-c(rep(1:5,4))
df<-data.frame(id, n.1,n.2, g, var.g,mod, mods2)
```
robustSE

Examples

morreg function
temp <- morreg(g~mod + mods2, var = var.g, method = "REML", data = df)

t2(temp)

robustSE Robust standard error

Description

When the correlation between dependent effect sizes are unknown, one approach is to conduct the meta-analysis by assuming that the effect sizes are independent. Then, Hedges et al. (2010) robust standard error procedure can be calculated to adjust for dependence.

Usage

robustSE(model, cluster=NULL, CI=.95, digits=3)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>omnibus or moderator model object fitted from morreg() function.</td>
</tr>
<tr>
<td>cluster</td>
<td>Name of variable where the dependencies are present. This will typically be the variable for study id where length(unique(study_id))>1.</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval. Defaults to .95.</td>
</tr>
<tr>
<td>digits</td>
<td>Number of digits to output. Defaults to 3.</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>estimate</td>
<td>Meta-regression coefficient estimate.</td>
</tr>
<tr>
<td>se</td>
<td>Adjusted Standard error of the estimate coefficient.</td>
</tr>
<tr>
<td>t</td>
<td>t-value.</td>
</tr>
<tr>
<td>ci.l</td>
<td>Adjusted Lower 95% confidence interval.</td>
</tr>
<tr>
<td>ci.u</td>
<td>Adjusted Upper 95% confidence interval.</td>
</tr>
<tr>
<td>p</td>
<td>p-value.</td>
</tr>
</tbody>
</table>

Author(s)

Mike Cheung with modifications by AC Del Re

References

Chi-Squared to Correlation

Converting Chi-squared statistic (with 1 degree of freedom) reported in primary study to \(r \)

Usage

\[
\text{r_from_chi}(\text{chi.sq}, \text{n})
\]

Arguments

- **chi.sq**: Chi squared statistic from primary study.
- **n**: Sample size in primary study.

Value

Computes correlation coefficient (r).
Correlation from Mean Difference

Description
Converts d (mean difference) to r where n.tmt = n.comparison (see section 12.5.4, Borenstein, 2009; pp. 234).

Usage
r_from_d(d, var.d, a = 4)

Arguments
- d: Mean difference statistic (d) reported in primary study.
- var.d: Variance of d reported in primary study.
- a: Used to compute correlation. Default is 4.

Value
Outputs a correlation coefficient (r).

Author(s)
AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also
d_to_g, mean_to_d, mean_to_d2, t_to_d, f_to_d, p_to_d1, p_to_d2, ancova_to_d1, ancova_to_d2, tt.ancova_to_d, f.ancova_to_d, r_to_d, p.ancova_to_d1, p.ancova_to_d2, ltor_to_d, prop_to_or, prop_to_d, r_from_d, r_from_d1, r_from_t
r_from_d1
Correlation from Mean Difference II

Description

Converts d (mean difference) reported in primary study to r (correlation coefficient) where sample size of the treatment group is not equal to the sample size of the comparison group (see section 12.5.4, Borenstein, 2009; pp. 234).

Usage

\[
r_{from_d1}(d, n.1, n.2, var.d)
\]

Arguments

- **d**: Mean difference statistic (d) reported in primary study.
- **n.1**: sample size of group one reported in primary study.
- **n.2**: sample size of group two reported in primary study.
- **var.d**: variance of d reported in primary study.

Value

Computes a correlation coefficient (r).

Author(s)

AC Del Re & William T. Hoyt
Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

\[d_to_g, mean_to_d, mean_to_d2, t_to_d, f_to_d, p_to_d1, p_to_d2, ancova_to_d1, ancova_to_d2, tt.ancova_to_d, f.ancova_to_d, r_to_d, p.ancova_to_d1, p.ancova_to_d2, lor_to_d, prop_to_or, prop_to_d, r_from_chi, r_from_d, r_from_t\]
Description

Compute correlation from t-value reported in the primary study (see section 12.5.4, Borenstein, 2009; pp. 234).

Usage

\[r_{\text{from} \ t}(t, n) \]

Arguments

- \(t \): t-statistic value reported in primary study.
- \(n \): Sample size reported in primary study.

Value

Outputs the correlation coefficient (\(r \)).

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

- `d_to_g`
- `mean_to_d`
- `mean_to_d2`
- `t_to_d`
- `f_to_d`
- `p_to_d1`
- `p_to_d2`
- `ancova_to_d1`
- `ancova_to_d2`
- `tt_ancova_to_d`
- `f_ancova_to_d`
- `r_to_d`
- `p_ancova_to_d1`
- `p_ancova_to_d2`
- `lor_to_d`
- `prop_to_or`
- `prop_to_d`
- `r_from_chi`
- `r_from_d`
- `r_from_dQ`
- `tt_ancova_to_dQ`
- `f_ancova_to_dQ`
- `r_to_dQ`
- `p_ancova_to_d1Q`
- `p_ancova_to_d2Q`
- `lor_to_dQ`
- `prop_to_orQ`
- `prop_to_dQ`
r_to_d
Correlation (r) to Standardized Mean Difference (d)

Description

Converts a correlation (r) to standardized mean difference (d).

Usage

```r
r_to_d(r, N)
```

Arguments

- `r`
 Correlation coefficient.

- `N`
 Total sample size.

Value

- `d`
 Standardized mean difference (d).

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

- `d_to_g`
- `mean_to_d`
- `mean_to_d2`
- `t_to_d`
- `f_to_d`
- `p_to_d1`
- `p_to_d2`
- `ancova_to_d1`
- `ancova_to_d2`
- `tt.ancova_to_d`
- `f.ancova_to_d`
- `p.ancova_to_d1`
- `p.ancova_to_d2`
- `lor_to_d`
- `prop_to_or`
- `prop_to_d`
- `r_from_chi`
- `r_from_d`
- `r_from_d1`
- `r_from_t`
tt.ancova_to_d

t-test Value from ANCOVA to Standardized Mean Difference (d)

Description

Converts a t-test value from ANCOVA to a standardized mean difference (d)

Usage

```r
tt.ancova_to_d(t, n.1, n.2, R, q)
```

Arguments

- `t` t-test value reported in primary study.
- `n.1` Treatment group sample size.
- `n.2` Comparison group sample size.
- `R` Covariate outcome correlation or multiple correlation.
- `q` number of covariates.

Value

- `d` Standardized mean difference (d)
- `var_d` Variance of d

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

`d_to_g`, `mean_to_d`, `mean_to_d2`, `t_to_d`, `f_to_d`, `p_to_d1`, `p_to_d2`, `ancova_to_d1`, `ancova_to_d2`, `f.ancova_to_d`, `r_to_d`, `p.ancova_to_d1`, `p.ancova_to_d2`, `lor_to_d`, `prop_to_or`, `prop_to_d`, `r_from_chi`, `r_from_d`, `r_from_d1`, `r_from_t`
t_to_d
t-test Value to Standardized Mean Difference (d)

Description

Converts a t-test value reported in the primary study to a standardized mean difference (d).

Usage

```r
t_to_d(t, n.1, n.2)
```

Arguments

- **t**: t-test value reported in primary study.
- **n.1**: Sample size of treatment group.
- **n.2**: Sample size of comparison group.

Value

- **d**: Standardized mean difference (d).
- **var_d**: Variance of d.

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

- `d_to_g`, `mean_to_d`, `mean_to_d2`, `f_to_d`, `p_to_d1`, `p_to_d2`, `ancova_to_d1`, `ancova_to_d2`, `ancova_to_d`, `ancova_to_d`, `r_to_d`, `p.ancova_to_d1`, `p.ancova_to_d2`, `lor_to_d`, `prop_to_or`, `prop_to_d`, `r_from_chi`, `r_from_d`, `r_from_d1`, `r_from_t`
Description

Function for exporting MA output to nicely formatted Word tables.

Usage

wd(object, get = FALSE, new = FALSE, ...)

Arguments

object Will take either an omni (Omnibus), mareg (meta-regression), or macat (single predictor categorical moderator analysis) object and export to Word in a formatted table.

get Start up the Word program? TRUE if an instance of Word is not currently open.

new Output data into a new Word document? TRUE or FALSE.

... Additional arguments to be passed to R2wd functions.

Details

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>

References

See Also

omni, mareg, macat

Examples

Sample data
id<-c(1:20)
n.1<-c(10,20,13,22,28,12,12,36,19,12,36,75,33,121,37,14,40,16,14,20)
n.2<-c(11,22,10,20,25,12,12,36,19,11,34,75,33,120,37,14,40,16,10,21)
g<-c(0.68,0.56,0.23,0.64,0.49,0.04,1.49,1.33,0.58,1.18,0.11,1.27,0.26,0.40,0.49,0.51,0.40,0.34,0.42,0.16)
var.g<-c(0.08,0.06,0.03,0.04,0.09,0.04,0.009,0.033,0.0058,0.018,0.011,0.027,0.026,0.0040,

.049, .0051, .040, .034, .0042, .016)
mod<-factor(c(rep(c(1,1,2,3),5)))
mods2<-c(rep(1:5,4))
df<-data.frame(id, n.1,n.2, g, var.g,mod, mods2)

Examples

install R2wd
install.packages('R2wd', dependencies = TRUE)

mareg function
temp <- mareg(g~ mod + mods2, var = var.g, method = "REML", data = df)

Export data to Word in formatted table
Not run: wd(temp, get = TRUE, new = TRUE)

wgts

Weights added to Meta Data

Description

Adds weights to the meta-analysis data set.

Usage

wgts(g, var.g, data)

Arguments

- **g**: Hedges g (unbiased standardized mean difference estimate).
- **var.g**: Variance of g.
- **data**: data.frame with values above.

Value

Adds fixed and random-effects weights and confidence intervals to meta data set.

Author(s)

AC Del Re & William T. Hoyt

Maintainer: AC Del Re <acdelre@gmail.com>
Index

*Topic **aggregation**
agg, 7

*Topic **aplot**
plotcat, 39
plotcon, 40

*Topic **arith**
ancova_to_d1, 10
ancova_to_d2, 11
d_to_g, 20
f.ancova_to_d, 21
f_to_d, 23
fail_to_d, 22
lor_to_d, 27
mean_to_d, 34
mean_to_d2, 35
or_to_d, 36
p.ancova_to_d1, 37
p.ancova_to_d2, 38
p_to_d1, 42
p_to_d2, 43
r_from_chi, 46
r_from_d, 47
r_from_d1, 48
r_from_t, 49
r_to_d, 50
t_to_d, 52
tt.ancova_to_d, 51

*Topic **data**
atten, 12
compute_dgs, 13
compute_ds, 14
compute_gs, 16
dat.cooper15.3, 17
dat.cooperA2, 17
dat.hoyt, 18
dat.sim.es, 18
dat.sim.final, 18
dat.sim.raw, 19
dat.sim1, 19
dat.sim2, 19
PubBias, 41
wgts, 54

*Topic **models**
macat, 28
macatC, 30

*Topic **package**
MAd-package, 2

*Topic **word**
r2, 44
wd, 53
agg, 7
ancova_to_d1, 10, 11, 12, 21–23, 28, 34–38, 43, 44, 47–52
ancova_to_d2, 11, 11, 12, 21–23, 28, 34–38, 43, 44, 47–52
atten, 12
compute_dgs, 13, 15, 17
compute_ds, 14, 14, 15, 17
compute_gs, 14, 16
d_to_g, 11, 12, 20, 21–23, 28, 34–38, 43, 44, 47–52
dat.cooper15.3, 17
dat.cooperA2, 17
dat.hoyt, 18
dat.sim.es, 18
dat.sim.final, 18
dat.sim.raw, 19
dat.sim1, 19
dat.sim2, 19

f.ancova_to_d, 11, 12, 21, 22, 23, 28, 34–38, 43, 44, 47–52
f_to_d, 11, 12, 21, 22, 23, 28, 34–38, 43, 44, 47–52
fail_to_d, 22
icc, 24
<table>
<thead>
<tr>
<th>Function</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kappa</td>
<td>26</td>
</tr>
<tr>
<td>lor_to_d</td>
<td>11, 12, 21–23, 27, 34–38, 43, 44, 47–52</td>
</tr>
<tr>
<td>macat</td>
<td>28, 31, 39, 53</td>
</tr>
<tr>
<td>macatC</td>
<td>30</td>
</tr>
<tr>
<td>MAD (MADE-package)</td>
<td>2</td>
</tr>
<tr>
<td>mareg</td>
<td>32, 41, 46, 53</td>
</tr>
<tr>
<td>mean_to_d</td>
<td>11, 12, 21–23, 28, 34, 35–38, 43, 44, 47–52</td>
</tr>
<tr>
<td>mean_to_d2</td>
<td>11, 12, 21–23, 28, 34, 35, 36, 37, 43, 44, 47–52</td>
</tr>
<tr>
<td>omni</td>
<td>53</td>
</tr>
<tr>
<td>or_to_d</td>
<td>36</td>
</tr>
<tr>
<td>p.ancova_to_d1</td>
<td>11, 12, 21–23, 28, 34–36, 37, 38, 43, 44, 47–52</td>
</tr>
<tr>
<td>p.ancova_to_d2</td>
<td>11, 12, 21–23, 28, 34–38, 38, 43, 44, 47–52</td>
</tr>
<tr>
<td>p_to_d1</td>
<td>11, 12, 21–23, 28, 34–38, 42, 44, 47–52</td>
</tr>
<tr>
<td>p_to_d2</td>
<td>11, 12, 21–23, 28, 34–38, 43, 43, 47–52</td>
</tr>
<tr>
<td>plotcat</td>
<td>29, 39, 41</td>
</tr>
<tr>
<td>plotcon</td>
<td>33, 39, 40</td>
</tr>
<tr>
<td>prop_to_d</td>
<td>11, 12, 21–23, 28, 34, 35, 37, 38, 43, 44, 47–52</td>
</tr>
<tr>
<td>prop_to_or</td>
<td>11, 12, 21–23, 28, 34–38, 43, 44, 47–52</td>
</tr>
<tr>
<td>PubBias</td>
<td>41</td>
</tr>
<tr>
<td>r2</td>
<td>44</td>
</tr>
<tr>
<td>r_from_chi</td>
<td>11, 12, 21–23, 28, 34–38, 43, 44, 46, 47–52</td>
</tr>
<tr>
<td>r_from_d</td>
<td>11, 12, 21–23, 28, 34–38, 43, 44, 47, 48–52</td>
</tr>
<tr>
<td>r_from_d1</td>
<td>11, 12, 21–23, 28, 34–38, 43, 44, 47, 48, 49–52</td>
</tr>
<tr>
<td>r_from_t</td>
<td>11, 12, 21–23, 28, 34–38, 43, 44, 47, 48, 49, 50–52</td>
</tr>
<tr>
<td>r_to_d</td>
<td>11, 12, 21–23, 28, 34–38, 43, 44, 47–49, 50, 51, 52</td>
</tr>
<tr>
<td>robustSE</td>
<td>45</td>
</tr>
<tr>
<td>t_to_d</td>
<td>11, 12, 21–23, 28, 34–38, 43, 44, 47–51, 52</td>
</tr>
<tr>
<td>tt.ancova_to_d</td>
<td>11, 12, 21–23, 28, 34–38, 43, 44, 47–50, 51, 52</td>
</tr>
<tr>
<td>wd</td>
<td>29, 33, 53</td>
</tr>
<tr>
<td>weights</td>
<td>42</td>
</tr>
<tr>
<td>wgts</td>
<td>54</td>
</tr>
</tbody>
</table>