Package ‘MESS’

January 14, 2019

Type Package
Title Miscellaneous Esoteric Statistical Scripts
Version 0.5.5
Date 2019-01-14
Maintainer Claus Thorn Ekstrøm <claus@rprimer.dk>
Depends R (>= 3.1), geepack, geeM,
Imports MASS, Matrix, Rcpp, glmnet, kinship2, methods, mvtnorm, parallel
LinkingTo Rcpp, RcppArmadillo
Suggests knitr, lme4, magrittr, rmarkdown, testthat
Description A mixed collection of useful and semi-useful diverse statistical functions, some of which may even be referenced in The R Primer book.

URL https://github.com/ekstroem/MESS
BugReports https://github.com/ekstroem/MESS/issues
Encoding UTF-8
ByteCompile true
License GPL-2
RoxygenNote 6.1.1
NeedsCompilation yes
Author Claus Thorn Ekstrøm [aut, cre]
Repository CRAN
Date/Publication 2019-01-14 18:40:03 UTC

R topics documented:

 adaptive.weights .. 3
 add_torows .. 4
 age ... 5
R topics documented:

- auc .. 6
- bdstat ... 7
- bees .. 8
- bin .. 9
- categorize .. 10
- clotting .. 11
- cmd .. 12
- col.alpha .. 13
- col.shade ... 13
- col.tint .. 14
- common.shared .. 15
- conditional_rowMeans 16
- cumsumbinning .. 17
- drop1.geeglm ... 18
- drop1.geem ... 19
- earthquakes .. 20
- expand_table ... 21
- extended.shared ... 21
- fac2num ... 23
- feature.test .. 23
- filldown .. 25
- geekin ... 26
- gkgamma .. 28
- greenland ... 29
- happiness .. 30
- ht ... 31
- icecreamads .. 32
- ks_cumtest .. 32
- kwdata .. 33
- lifeexpect ... 34
- lower.tri.vector ... 34
- matched .. 35
- MESS ... 36
- mfastLmCpp .. 36
- monte_carlo_chisq_test 37
- nh4 .. 38
- ordered.clusters 39
- pairwise.cor.test 40
- pairwise_combination_indices 41
- pairwise_Schur_product 42
- panel.hist .. 43
- panel.r2 ... 44
- picea ... 45
- power_binom_test .. 45
- power_mcnemar_test 46
- power_prop_test .. 48
- power_t_test .. 49
- prepost.test .. 51
adaptive.weights

Compute weights for use with adaptive lasso.

Description

Fast computation of weights needed for adaptive lasso based on Gaussian family data.

Usage

adaptive.weights(x, y, nu = 1, weight.method = c("multivariate", "univariate"))

Arguments

- **x**: input matrix, of dimension nob x nvars; each row is an observation vector.
- **y**: response variable.
- **nu**: non-negative tuning parameter
- **weight.method**: Should the weights be computed for multivariate regression model (only possible when the number of observations is larger than the number of parameters) or by individual marginal/univariate regression coefficients.
Details

The weights returned are 1/abs(beta_hat)^nu where the beta-parameters are estimated from the corresponding linear model (either multivariate or univariate).

Value

Returns a list with two elements:
weights the computed weights
nu the value of nu used for the computations

Author(s)

Claus Ekstrom <claus@rprimer.dk>

References

See Also

glmnet

Examples

```r
set.seed(1)
x <- matrix(rnorm(50000), nrow=50)
y <- rnorm(50, mean=x[,1])
weights <- adaptive.weights(x, y)

if (requireNamespace("glmnet", quietly = TRUE)) {
  res <- glmnet::glmnet(x, y, penalty.factor=weights$weights)
  head(res)
}
```

add_torows

Fast addition of vector to each row of matrix

Description

Fast addition of vector to each row of a matrix. This corresponds to t(t(x) + v)

Usage

`add_torows(x, v)`
Arguments

- **x**: A matrix with dimensions n*k.
- **v**: A vector of length k.

Value

A matrix of dimension n*k where v is added to each row of x

Author(s)

Claus Ekstrom <claus@rprimer.dk>

Examples

```r
A <- matrix(1:12, ncol=3)
B <- c(1, 2, 3)
add_torows(A, B)
```

age

Compute the age of a person from two dates.

Description

Compute the age in years of an individual based on the birth date and another date

Usage

```r
age(from, to)
```

Arguments

- **from**: a vector of dates (birth dates)
- **to**: a vector of current dates

Details

For linear interpolation the auc function computes the area under the curve using the composite trapezoid rule. For area under a spline interpolation, auc uses the splinefun function in combination with the integrate to calculate a numerical integral. The auc function can handle unsorted time values, missing observations, ties for the time values, and integrating over part of the area or even outside the area.

Value

A vector of ages (in years)
Author(s)
Claus Ekstrom <claus@rprimer.dk>

See Also
as.POSIXlt

Examples

```r
born <- c("1971-08-18", "2000-02-28", "2001-12-20")
check <- c("2016-08-28")
age(born, check)
```

auc

Compute the area under the curve for two vectors.

Description

Compute the area under the curve using linear or natural spline interpolation for two vectors where one corresponds to the x values and the other corresponds to the y values.

Usage

```r
auc(x, y, from = min(x, na.rm = TRUE), to = max(x, na.rm = TRUE),
    type = c("linear", "spline"), absolutearea = FALSE, ...)
```

Arguments

- **x**
 a numeric vector of x values.

- **y**
 a numeric vector of y values of the same length as x.

- **from**
 The value from where to start calculating the area under the curve. Defaults to the smallest x value.

- **to**
 The value from where to end the calculation of the area under the curve. Defaults to the greatest x value.

- **type**
 The type of interpolation. Defaults to "linear" for area under the curve for linear interpolation. The value "spline" results in the area under the natural cubic spline interpolation.

- **absolutearea**
 A logical value that determines if negative areas should be added to the total area under the curve. By default the auc function subtracts areas that have negative y values. Set absolutearea=TRUE to add the absolute value of the negative areas to the total area.

- **...**
 additional arguments passed on to approx. In particular rule can be set to determine how values outside the range of x is handled.
Details

For linear interpolation the auc function computes the area under the curve using the composite trapezoid rule. For area under a spline interpolation, auc uses the splinefun function in combination with the integrate to calculate a numerical integral. The auc function can handle unsorted time values, missing observations, ties for the time values, and integrating over part of the area or even outside the area.

Value

The value of the area under the curve.

Author(s)

Claus Ekstrom <claus@rprimer.dk>

See Also

approx, splinefun, integrate

Examples

```r
x <- 1:4
y <- c(0, 1, 1, 5)
auc(x, y)

# AUC from 0 to max(x) where we allow for extrapolation
auc(x, y, from=0, rule=2)

# Use value 0 to the left
auc(x, y, from=0, rule=2, yleft=0)

# Use 1/2 to the left
auc(x, y, from=0, rule=2, yleft=.5)

# Use 1/2 to the left with spline interpolation
auc(x, y, from=0, rule=2, yleft=.5)
```

bdstat

Danish live births and deaths

Description

Monthly live births and deaths in Denmark from January 1901 to March 2013.
bees

Bee data. Number of different types of bees caught.

Description

Number of different types of bees caught in plates of different colours. There are four locations and within each location there are three replicates consisting of three plates of the three different colours (yellow, white and blue). Data are collected at 5 different dates over the summer season. Only data from one date available until data has been published.

Format

A data frame with 72 observations on the following 7 variables.

Locality a factor with levels Havreholm Kragevig Saltrup Svaerdborg. Four different localities in Denmark.

Replicate a factor with levels A B C

Color a factor with levels Blue White Yellow. Colour of plates
Time a factor with levels july1 july14 june17 june3 june6. Data collected at different dates in summer season. Only one day is present in the current data frame until the full data has been released.

Type a factor with levels Bumblebees Solitary. Type of bee.

Number a numeric vector. The response variable with number of bees caught.

id a numeric vector. The id of the clusters (each containing three plates).

Source

Data were kindly provided by Casper Ingerslev Henriksen, Department of Agricultural Sciences, KU-LIFE. Added by Torben Martinussen <tma@life.ku.dk>

Examples

```r
data(bees)
model <- glm(Number ~ Locality + Type*Color,
             family=poisson, data=bees)
```

bin

Fast binning of numeric vector into equidistant bins

Description

Fast binning of numeric vector into equidistant bins

Usage

```
bin(x, width, origin = 0, missinglast = FALSE)
```

Arguments

- **x**
 - A matrix of regressor variables. Must have the same number of rows as the length of y.
- **width**
 - The width of the bins
- **origin**
 - The starting point for the bins. Any number smaller than origin will be disregarded
- **missinglast**
 - Boolean. Should the missing observations be added as a separate element at the end of the returned count vector.

Details

Missing values (NA, Inf, NaN) are added at the end of the vector as the last bin returned if missinglast is set to TRUE
categorize

Value

An list with elements counts (the frequencies), origin (the origin), width (the width), missing (the number of missings), and last_bin_is_missing (boolean) telling whether the missing last is true or not.

Author(s)

Hadley Wickham (from SO: https://stackoverflow.com/questions/13661065/superimpose-histogram-fits-in-one-plot-ggplot) - adapted here by Claus Ekstrøm <claus@rprimer.dk>

Examples

```r
set.seed(1)
x <- sample(10, 20, replace = TRUE)
bin(x, 15)
```

categorize is a wrapper to xtabs or table such that a data frame can be given as the first argument.

Description

Accepts a data frame as input and computes a contingency table for direct use in combination with the magrittr package.

Usage

categorize(.data, ...)

Arguments

- `.data` A data frame
- `...` A formula (as in xtabs) or one or more objects which can be interpreted as factors (including character strings), or a list (or data frame) whose components can be so interpreted.

Details

categorize is a wrapper to xtabs or table such that a data frame can be given as the first argument.

Value

A table (possibly as an xtabs class if a model formula was used)

Author(s)

Claus Ekstrøm <claus@rprimer.dk>
clotting

Examples

```r
if (requireNamespace("magrittr", quietly = TRUE)) {
  library(magrittr)
  esoph %>% categorize(algp, agegp)
  esoph %>% categorize(~ algp + agegp)
}
```

clotting

Blood clotting for 158 rats

Description

Blood clotting activity (PCA) is measured for 158 Norway rats from two locations just before (baseline) and four days after injection of an anticoagulant (bromadiolone). Normally this would cause reduced blood clotting after 4 days compared to the baseline, but these rats are known to possess anticoagulant resistance to varying extent. The purpose is to relate anticoagulant resistance to gender and location and perhaps weight. Dose of injection is, however, administered according to weight and gender.

Format

A data frame with 158 observations on the following 6 variables.

- `rat` a numeric vector
- `locality` a factor with levels `Loc1 Loc2`
- `sex` a factor with levels `F M`
- `weight` a numeric vector
- `PCA0` a numeric vector with percent blood clotting activity at baseline
- `PCA4` a numeric vector with percent blood clotting activity on day 4

Source

Ann-Charlotte Heiberg, project at The Royal Veterinary and Agricultural University, 1999.
Added by Ib M. Skovgaard <ims@life.ku.dk>

Examples

```r
data(clotting)
dim(clotting)
head(clotting)
day0 = transform(clotting, day=0, pca=PCA0)
day4 = transform(clotting, day=4, pca=PCA4)
day.both = rbind(day0, day4)
```
cmd

Correlation matrix distance

Description
Computes the correlation matrix distance between two correlation matrices

Usage
cmd(x, y)

Arguments
x First correlation matrix
y Second correlation matrix

Value
Returns the correlation matrix distance, which is a value between 0 and 1. The correlation matrix distance becomes zero for equal correlation matrices and unity if they differ to a maximum extent.

Author(s)
Claus Ekstrom <claus@rprimer.dk>

References

Examples
m1 <- matrix(rep(1, 16), 4)
m2 <- matrix(c(1, 0, .5, .5, 0, 1, .5, .5, .5, 1, .5, .5, .5, .5, 1, 4))
m3 <- matrix(c(1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1), 4)
cmd(m1, m1)
cmd(m1, m2)
cmd(m2, m3)
col.alpha

Add and set alpha channel for RGB color

Description

Add and set alpha channel

Usage

```r
col.alpha(col, alpha = 1)
```

Arguments

- `col`: a vector of RGB color(s)
- `alpha`: numeric value between 0 and 1. Zero results fully transparent and 1 means full opacity

Details

This function adds and set an alpha channel to a RGB color

Author(s)

Claus Ekstrom <claus@rprimer.dk>

References

Ekstrom, CT (2011) *The R Primer.*

Examples

```r
newcol <- col.alpha("blue", .5)
```

col.shade

Shade an RGB color

Description

Shades an RBG color

Usage

```r
col.shade(col, shade = 0.5)
```
Arguments
- **col**: a vector of RGB color(s)
- **shade**: numeric value between 0 and 1. Zero means no change and 1 results in black

Details
This function shades an RGB color and returns the shaded RGB color (with alpha channel added)

Author(s)
Claus Ekstrom <claus@rprimer.dk>

References
Ekstrom, CT (2011) *The R Primer*.

Examples
```r
newcol <- col.shade("blue")
```

Description
Tints an RBG color

Usage
```r
col.tint(col, tint = 0.5)
```

Arguments
- **col**: a vector of RGB color(s)
- **tint**: numeric value between 0 and 1. Zero results in white and 1 means no change

Details
This function tints an RGB color and returns the tinted RGB color (with alpha channel added)

Author(s)
Claus Ekstrom <claus@rprimer.dk>
References

Examples
newcol <- col.tint("blue")

common.shared Compute a common shared environment matrix

Description
Compute the common shared environment matrix for a set of related subjects. The function is
generic, and can accept a pedigree, or pedigreeList as the first argument.

Usage
common.shared(id, ...)

S3 method for class 'pedigreeList'
common.shared(id, ...)

S3 method for class 'pedigree'
common.shared(id, ...)

Arguments
id either a pedigree object or pedigreeList object
... Any number of optional arguments. Not used at the moment

Details
When called with a pedigreeList, i.e., with multiple families, the routine will create a block-
diagonal-symmetric ‘bdsmatrix’ object. Since the [i,j] value of the result is 0 for any two unrelated
individuals i and j and a ‘bdsmatrix’ utilizes sparse representation, the resulting object is often or-
ders of magnitude smaller than an ordinary matrix. When called with a single pedigree and ordinary
matrix is returned.

Value
a matrix of shared environment coefficients

Author(s)
Claus Ekstrom <claus@rprimer.dk>
conditional_rowMeans

See Also
pedigree, kinship.

Examples

library(kinship)
test1 <- data.frame(id = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14),
mom = c(0, 0, 0, 2, 2, 4, 4, 6, 2, 0, 0, 12, 13),
dad = c(0, 0, 0, 1, 1, 3, 3, 7, 0, 0, 11, 10),
sex = c(1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 2))
tped <- with(test1, pedigree(id, dad, mom, sex))
common.shared(tped)

conditional_rowMeans Parallel means conditional on number of non-missing

Description
Form row means for multiple vectors, numeric arrays (or data frames) conditional on the number of non-missing observations. NA is returned unless a minimum number of observations is observed.

Usage
conditional_rowMeans(..., minobs = 1L)

Arguments
...

a series of numeric vectors, arrays, or data frames that have can be combined with cbind

minobs

an integer stating the minimum number of non-NA observations necessary to compute the row mean. Defaults to 1.

Value
A numeric vector containing the row sums or NA if not enough non-NA observations are present

Examples
conditional_rowMeans(1:5, c(1:4, NA), c(1:3, NA, NA))
conditional_rowMeans(1:5, c(1:4, NA), c(1:3, NA, NA), minobs=0)
conditional_rowMeans(1:5, c(1:4, NA), c(1:3, NA, NA), minobs=2)
cumsumbinning

Binning based on cumulative sum with reset above threshold

Description

Fast binning of cumulative vector sum with new groups when the sum passes a threshold or the group size becomes too large.

Usage

cumsumbinning(x, cutoff, maxgroupsize = NULL)

Arguments

x A matrix of regressor variables. Must have the same number of rows as the length of y.
cutoff The value of the threshold that the cumulative group sum must not cross.
maxgroupsize An integer that defines the maximum number of elements in each group. NULL (the default) corresponds to no group size.

Details

Missing values (NA, Inf, NaN) are completely disregarded and pairwise complete cases are used.

Value

An integer vector giving the group indices

Author(s)

Claus Ekstrom <claus@rprimer.dk>

Examples

set.seed(1)
x <- sample(10, 20, replace = TRUE)
cumsumbinning(x, 15)
cumsumbinning(x, 15, 3)
drop1.geeglm

Drop All Possible Single Terms to a geeglm Model Using Wald or Score Test

Description

Compute all the single terms in the scope argument that can dropped from the model, and compute a table of the corresponding Wald test statistics.

Usage

```r
## S3 method for class 'geeglm'
drop1(object, scope, test = c("Wald", "none", "score", "sasscore"),
      method = c("robust", "naive", "sandwich"), ...)  
```

Arguments

- `object`: a fitted object of class `geese`.
- `scope`: a formula giving the terms to be considered for adding or dropping.
- `test`: the type of test to include.
- `method`: Indicates which method is used for computing the standard error. `robust` is the default and corresponds to the modified sandwich estimator. `naive` is the classical naive variance estimate. `sandwich` is an alias for `robust`.

Value

An object of class "anova" summarizing the differences in fit between the models.

Author(s)

Claus Ekstrom <claus@ekstroem.dk>

See Also

- `drop1`, `geeglm`, `geese`

Examples

```r
library(geepack)
data(ohio)
fit <- geeglm(resp ~ age + smoke + age:smoke, id=id, data=ohio,
              family=binomial, corstr="exch", scale.fix=TRUE)
drop1(fit)
```
Description

Compute all the single terms in the scope argument that can dropped from the model, and compute a table of the corresponding Wald test statistics.

Usage

```r
## S3 method for class 'geem'
drop1(object, scope, test = c("Wald", "none", "score", "sasscore"), method = c("robust", "naive", "sandwich"), ...)
```

Arguments

- `object`: a fitted object of class geese.
- `scope`: a formula giving the terms to be considered for adding or dropping.
- `test`: the type of test to include.
- `method`: Indicates which method is used for computing the standard error. robust is the default and corresponds to the modified sandwich estimator. naive is the classical naive variance estimate. sandwich is an alias for robust.
- `...`: other arguments. Not currently used.

Value

An object of class "anova" summarizing the differences in fit between the models.

Author(s)

Claus Ekstrom <claus@ekstroem.dk>

See Also

drop1.geem

Examples

```r
library(geeM)
library(geepack)
data(ohio)
## Not run:
fit <- geem(resp ~ age + smoke + age:smoke, id=id, data=ohio, family="binomial", corstr="exch", scale.fix=TRUE)
drop1(fit)
```
Description

Information on earthquakes worldwide in 2015 with a magnitude greater than 3 on the Richter scale. The variables are just a subset of the variables available at the source.

Format

A data frame with 19777 observations on the following 22 variables.

- **time**: a factor with time of the earthquake
- **latitude**: a numeric vector giving the decimal degrees latitude. Negative values for southern latitudes
- **longitude**: a numeric vector giving the decimal degrees longitude. Negative values for western longitudes
- **depth**: Depth of the event in kilometers
- **mag**: The magnitude for the event
- **place**: a factor giving a textual description of named geographic region near to the event.
- **type**: a factor with levels earthquake mining explosion rock burst

Source

http://earthquake.usgs.gov/

Examples

```r
data(earthquakes)
with(earthquakes, place[which.max(mag)])
```
expand_table
Expand table or matrix to data frame

Description

Expands a contingency table to a data frame where each observation in the table becomes a single observation in the data frame with corresponding information for each for each combination of the table dimensions.

Usage

```r
expand_table(x)
```

Arguments

- `x` A table or matrix

Value

A data frame with the table or matrix expanded

Author(s)

Claus Ekstrom <claus@rprimer.dk>

Examples

```r
expand_table(diag(3))
m <- matrix(c(2, 1, 3, 0, 0, 2), 3)
expand_table(m)
result <- expand_table(UCBAmissions)
head(result)

# Combine into table again
xtabs(~Admit + Gender + Dept, data=result)
```

extended.shared
Compute a common shared environment matrix

Description

Compute the common shared environment matrix for a set of related subjects. The function is generic, and can accept a pedigree, or pedigreeList as the first argument.
Usage

extended.shared(id, rho = 1, theta = 1, ...)
S3 method for class 'pedigreeList'
extended.shared(id, rho = 1, theta = 1, ...)
S3 method for class 'pedigree'
extended.shared(id, rho = 1, theta = 1, ...)

Arguments

id either a pedigree object or pedigreeList object
rho The correlation between spouses
theta The partial path coefficient from parents to offspring
 ... Any number of optional arguments. Not used at the moment

Details

When called with a pedigreeList, i.e., with multiple families, the routine will create a block-diagonal-symmetric ‘bdsmatrix’ object. Since the [i,j] value of the result is 0 for any two unrelated individuals i and j and a ‘bdsmatrix’ utilizes sparse representation, the resulting object is often orders of magnitude smaller than an ordinary matrix. When called with a single pedigree and ordinary matrix is returned.

Value

a matrix of shared environment coefficients

Author(s)

Claus Ekstrom <claus@rprimer.dk>

See Also

pedigree, kinship.

Examples

library(kinship2)
test1 <- data.frame(id = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14),
 mom = c(0, 0, 0, 0, 0, 2, 2, 4, 0, 6, 8, 0, 10, 11),
 dad = c(0, 0, 0, 0, 1, 1, 3, 0, 5, 7, 0, 9, 12),
 sex = c(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2))

tped <- with(test1, pedigree(id, dad, mom, sex))
extended.shared(tped)
fac2num
Convert factor to numeric vector

Description
Converts the factor labels to numeric values and returns the factor as a numeric vector.

Usage
`fac2num(x)`

Arguments
- `x`: A factor

Details
Returns a vector of numeric values. Elements in the input factor that cannot be converted to numeric will produce NA.

Value
Returns a numeric vector of the same length as `x`.

Author(s)
Claus Ekstrom <claus@rprimer.dk>

Examples

```r  
f <- factor(c(1,2,1,3,2,1,2,3,1))  
fac2num(f)  
```

feature.test
Inference for features identified by the Lasso

Description
Performs randomization tests of features identified by the Lasso.

Usage
`feature.test(x, y, B = 100, type.measure = "deviance",
s = "lambda.min", keeplambda = FALSE, olsestimates = TRUE,
penalty.factor = rep(1, nvars), alpha = 1, control = list(trace =
FALSE, maxcores = 24), ...)`
Arguments

- **x**: input matrix, of dimension nob \(\times \) nvars; each row is an observation vector.
- **y**: quantitative response variable of length nob.
- **B**: The number of randomizations used in the computations.
- **type.measure**: loss to use for cross-validation. See `cv.glmnet` for more information.
- **s**: Value of the penalty parameter 'lambda' at which predictions are required. Default is the entire sequence used to create the model. See `coef.glmnet` for more information.
- **keeplambda**: If set to `TRUE` then the estimated lambda from cross validation from the original dataset is kept and used for evaluation in the subsequent randomization datasets. This reduces computation time substantially as it is not necessary to perform cross validation for each randomization. If set to a value then that value is used for the value of lambda. Defaults to `FALSE`.
- **olsestimates**: Logical. Should the test statistic be based on OLS estimates from the model based on the variables selected by the lasso. Defaults to `TRUE`. If set to `FALSE` then the coefficients from the lasso is used as test statistics.
- **penalty.factor**: a vector of weights used for adaptive lasso. See `glmnet` for more information.
- **alpha**: The elasticnet mixing parameter. See `glmnet` for more information.
- **control**: A list of options that control the algorithm. Currently `trace` is a logical and if set to `TRUE` then the function produces more output. `maxcores` sets the maximum number of cores to use with the `parallel` package.
- **...**: Other arguments passed to `glmnet`.

Value

Returns a list of 7 variables:

- **p.full**: The p-value for the test of the full set of variables selected by the lasso (based on the OLS estimates).
- **ols.selected**: A vector of the indices of the non-zero variables selected by `glmnet` sorted from (numerically) highest to lowest based on their ols test statistic.
- **p.maxols**: The p-value for the maximum of the OLS test statistics.
- **lasso.selected**: A vector of the indices of the non-zero variables selected by `glmnet` sorted from (numerically) highest to lowest based on their absolute lasso coefficients.
- **p.maxlasso**: The p-value for the maximum of the lasso test statistics.
- **lambda.orig**: The value of lambda used in the computations.
- **B**: The number of permutations used.

Author(s)

Claus Ekstrom <ekstrom@sund.ku.dk> and Kasper Brink-Jensen <kbrink@life.ku.dk>
 References

 See Also

glmnet

 Examples

 # Simulate some data
 x <- matrix(rnorm(30*100), nrow=30)
 y <- rnorm(30, mean=1*x[,1])

 # Make inference for features
 ## Not run: feature.test(x, y)

 filldown

 Description

Fill down missing values with the latest non-missing value

 Usage

filldown(x)

 Arguments

x A vector

 Value

A vector or list with the NA's replaced by the last observed value.

 Author(s)

Claus Ekstrom <claus@rprimer.dk>
Examples

```r
a <- c(1:5, "Howdy", NA, NA, 2:3, NA)
filldown(a)
filldown(c(NA, NA, NA, 3:5))
```

geekin

Fit a generalized estimating equation (GEE) model with fixed additive correlation structure

Description

The `geekin` function fits generalized estimating equations but where the correlation structure is given as linear function of (scaled) fixed correlation structures.

Usage

```r
geekin(formula, family = gaussian, data, weights, subset, id, na.action,
       control = geepack::geese.control(...), varlist, ...)
```

Arguments

- `formula`: See corresponding documentation to `glm`.
- `family`: See corresponding documentation to `glm`.
- `data`: See corresponding documentation to `glm`.
- `weights`: See corresponding documentation to `glm`.
- `subset`: See corresponding documentation to `glm`.
- `id`: a vector which identifies the clusters. The length of `id` should be the same as the number of observations. Data must be sorted so that observations on a cluster are contiguous rows for all entities in the formula. If not the function will give an error.
- `na.action`: See corresponding documentation to `glm`.
- `control`: See corresponding documentation to `glm`.
- `varlist`: a list containing one or more matrix or bdsmatrix objects that represent the correlation structures
- `...`: further arguments passed to or from other methods.

Details

The `geekin` function is essentially a wrapper function to `geeglm`. Through the `varlist` argument, it allows for correlation structures of the form

\[R = \sum_{i=1}^{k} \alpha_i R_i \]

where \(\alpha_i \) are (nuisance) scale parameters that are used to scale the off-diagonal elements of the individual correlation matrices, \(R_i \).
Value

Returns an object of type geeglm.

Author(s)

Claus Ekstrom <claus@rprimer.dk>

See Also

lmekin, geeglm

Examples

```r
# Get dataset
library(kinship2)
library(mvtnorm)
data(minnbreast)

breastpeda <- with(minnbreast[order(minnbreast$famid),], pedigree(id, fatherid, motherid, sex, status=(cancer & !is.na(cancer)), affected=proband, famid=famid))

set.seed(10)
nfam <- 6
breastped <- breastpeda[1:nfam]

# Simulate a response

# Make dataset for lme4
df <- lapply(1:nfam, function(xx) {
  as.data.frame(breastped[xx])
})

mydata <- do.call(rbind, df)
mydata$famid <- rep(1:nfam, times=unlist(lapply(df, nrow)))

y <- lapply(1:nfam, function(xx) {
  x <- breastped[xx]
  rmvtnorm.pedigree(1, x, h2=0.3, c2=0)
})

yy <- unlist(y)

library(geepack)
geekin(yy ~ 1, id=mydata$famid, varlist=list(2*kinship(breastped)))
# lmekin(yy ~ 1 + (1|id), data=mydata, varlist=list(2*kinship(breastped)), method="REML")
```
Description

Compute Goodman-Kruskal's gamma statistic for a two-dimensional table of ordered categories

Usage

gkgamma(x, conf.level = 0.95)

Arguments

x A matrix or table representing the two-dimensional ordered contingency table of observations
conf.level Level of confidence interval

Value

A list with class htest containing the following components:

statistic the value the test statistic for testing no association
p.value the p-value for the test
estimate the value the gamma estimate
conf.int the confidence interval for the gamma estimate
method a character string indicating the type of test performed
data.name a character string indicating the name of the data input
observed the observed counts
s0 the SE used when computing the test statistics
s1 the SE used when computing the confidence interval

Author(s)

Claus Ekstrom <claus@rprimer.dk>

References

greenland

See Also

chisq.test

Examples

Data from the Glostrup study comparing smoking to overall health in males
smoke <- matrix(c(16, 15, 13, 10, 1, 73, 75, 59, 81, 29, 6, 6, 7, 17, 3, 1, 0, 1, 3, 1), ncol=4)
colnames(smoke) <- c("VGGood", "Good", "Fair", "Bad") # General health status
rownames(smoke) <- c("Never", "No more", "1-14", "15-24", "25+") # Smoke amount
gkgamma(smoke)
chisq.test(smoke)

greenland

Average yearly summer air temperature for Tasiilaq, Greenland

Description

Average yearly summer (June, July, August) air temperature for Tasiilaq, Greenland

Format

A data frame with 51 observations on the following 2 variables.

year year
airtemp average air temperature (degrees Celcius)

Source

Data provided by Sebastian Mernild.
Added by Claus Ekstrom <ekstrom@life.ku.dk>

References

Aktuelt Naturvidenskab september 2010.

Examples

data(greenland)
model <- lm(airtemp ~ year, data=greenland)
plot(greenland$year, greenland$airtemp, xlab="Year", ylab="Air temperature")
abline(model, col="red")
Description

Dataset on subjective happiness, tax rates, population sizes, continent, and major religion for 148 countries.

Format

A data frame with 148 observations on the following 6 variables.

- **country**: a factor with 148 levels that contain the country names
- **happy**: a numeric vector with the average subject happiness score (on a scale from 0-10)
- **tax**: a numeric vector showing the tax revenue as percentage of GDP
- **religion**: a factor with levels Buddhist Christian Hindu Muslim None or Other
- **continent**: a factor with levels AF, AS, EU, NA, OC, SA, corresponding to the continents Africa, Asia, Europe, North America, Oceania, South America, respectively
- **population**: a numeric vector showing the population (in millions)

Source

Data collected by Ellen Ekstroem.

Examples

```r
data(happiness)
with(happiness, symbols(tax, happy, circles=sqrt(population)/8, inches=FALSE, bg=continent))

# Make a prettier image with transparent colors
#
newcols <- rgb(t(col2rgb(palette())), alpha=100, maxColorValue=255)
```
with(happiness, symbols(tax, happy, circles=sqrt(population)/8, inches=FALSE, bg=newcols[continent], xlab="Tax (% of GDP)", ylab="Happiness"))

Simple analysis
#
res <- lm(happy ~ religion + population + tax:continent, data=happiness)
summary(res)

ht # Show the head and tail of an object

Description

Show both the head and tail of an R object

Usage

ht(x, n = 6L, m = n, returnList = FALSE, ...)

Arguments

- x The object to show
- n The number of elements to list for the head
- m The number of elements to list for the tail
- returnList Logical. Should the result be returned as a list
- ... additional arguments passed to functions (not used at the moment)

Details

This function does no error checking and it is up to the user to ensure that the input is indeed symmetric, positive-definite, and a matrix.

Value

NULL unless returnList is set to TRUE in which case a list is returned

Author(s)

Claus Ekstrom, <claus@rprimer.dk>.
Examples

```r
ht(trees)
ht(diag(20))
ht(1:20)
ht(1:20, returnList=TRUE)
```

icecreamads
Ice cream consumption and advertising

Description

The impact of advertising impact, temperature, and price on ice cream consumption

Format

A data frame with 30 observations on the following 4 variables.

- **Price**
 a numeric vector character vector giving the standardized price

- **Temperature**
 temperature in degrees Fahrenheit

- **Consumption**
 a factor with levels **1_low** 2_medium 3_high

- **Advertise**
 a factor with levels **posters** radio television

Source

Unknown origin

Examples

```r
data(icecreamad)
```

ks_cumtest
Kolmogorov-Smirnov goodness of fit test for cumulative discrete data

Description

Kolmogorov-Smirnov goodness of fit test for cumulative discrete data.

Usage

```r
ks_cumtest(x, B = 10000L, prob = NULL)
```
Arguments

- **x**: A vector representing the contingency table.
- **B**: The number of simulations used to compute the p-value.
- **prob**: A positive vector of the same length as **x** representing the distribution under the null hypothesis. It will be scaled to sum to 1. If NULL (the default) then a uniform distribution is assumed.

Details

The name of the function might change in the future so keep that in mind!

Simulation is done by random sampling from the null hypothesis.

Value

A list of class "htest" giving the simulation results.

Author(s)

Claus Ekstrom <claus@rprimer.dk>

Examples

```r
x <- 1:6
ks_cumtest(x)
```

kwdata
Non-parametric Kruskal Wallis data example

Description

Artificial dataset to show that the p-value obtained for the Kruskal Wallis is only valid _after_ the distributional form has been checked to be the same for all groups.

Format

An artificial data frame with 18 observations in each of three groups.

- **x**: measurements for group 1
- **y**: measurements for group 2
- **z**: measurements for group 3

Source

Data example found on the internet
lower.tri.vector

Split Matrix by Clusters and Return Lower Triangular Parts as Vector

Description
Split a matrix into block diagonal sub matrices according to clusters and combine the lower triangular parts into a vector

Usage
lower.tri.vector(x, cluster = rep(1, nrow(x)), diag = FALSE)
matched

Arguments

x
a square matrix
cluster numeric or factor. Is used to identify the sub-matrices of x from which the lower triangular parts are extracted. Defaults to the full matrix.
diag logical. Should the diagonal be included?

Value

Returns a numeric vector containing the elements of the lower triangular sub matrices.

Author(s)

Claus Ekstrom <claus@ekstroem.dk>

See Also

lower.tri

Examples

m <- matrix(1:64, ncol=8)
cluster <- c(1, 1, 1, 1, 2, 2, 3, 3)
lower.tri.vector(m, cluster)

matched

Flu hospitalization

Description

Researchers in a Midwestern county tracked flu cases requiring hospitalization in those residents aged 65 and older during a two-month period one winter. They matched each case with 2 controls by sex and age (150 cases, 300 controls). They used medical records to determine whether cases and controls had received a flu vaccine shot and whether they had underlying lung disease. They wanted to know whether flu vaccination prevents hospitalization for flu (severe cases of flu). Underlying lung disease is a potential confounder.

Format

A data frame with 450 observations on the following 4 variables.

id a numeric vector
iscase a factor with levels Control Case
vaccine a factor with levels Not Vaccinated
lung a factor with levels None Disease

matched

Flu hospitalization
mfastLmCpp

Source

Examples

data(matched)

MESS

Collection of miscellaneous useful and semi-useful functions

Description

Collection of miscellaneous useful and semi-useful functions and add-on functions that enhances a number of existing packages and provides in particular in relation to statistical genetics.

Details

- **Package:** MESS
- **Type:** Package
- **Version:** 1.0
- **Date:** 2012-03-29
- **License:** GPL-2

how to use the package, including the most important ~~

Author(s)

Claus Thorn Ekstrøm <claus@rprimer.dk>
Maintainer: Claus Thorn Ekstrøm <claus@rprimer.dk>

References

mfastLmCpp

Fast marginal simple regression analyses

Description

Fast computation of simple regression slopes for each predictor represented by a column in a matrix.
monte_carlo_chisq_test

Usage

mfastLmCpp(y, x, addintercept = TRUE)

Arguments

y A vector of outcomes.

x A matrix of regressor variables. Must have the same number of rows as the length of y.

addintercept A logical that determines if the intercept should be included in all analyses (TRUE) or not (FALSE)

Details

No error checking is done

Value

A data frame with three variables: coefficients, stderr, and tstat that gives the slope estimate, the corresponding standard error, and their ratio for each column in x.

Author(s)

Claus Ekstrom <claus@rprimer.dk>

Examples

Not run:
// Generate 100000 predictors and 100 observations
x <- matrix(rnorm(100*100000), nrow=100)
y <- rnorm(100, mean=x[,1])
mfastLmCpp(y, x)

End(Not run)

monte_carlo_chisq_test

Two-sided table test with fixed margins

Description

Monte Carlo test in a two-way contingency table with the total number of observations fixed, row margin fixed, or both margins fixed.

Usage

monte_carlo_chisq_test(x, margin = c("N", "rows", "both"), B = 100000L)
Arguments

x A matrix representing the contingency table.

margin A string that determines which margin is fixed: Either "N" for the total number
of observations (the default), "rows" for fixed row sums, and "both" for simulta-
neously fixed row and column sums.

b The number of simulations used to compute the p-value.

Details

Simulation is done by random sampling from the set of all tables with given marginal(s), and works
only if the relevant marginal(s) are strictly positive. Continuity correction is never used, and the
statistic is quoted without it.

Value

A list of class "htest" giving the simulation results.

Author(s)

Claus Ekstrom <claus@rprimer.dk>

Examples

m <- matrix(c(12, 4, 8, 6), 2)
chisq.test(m)
chisq.test(m, correct=FALSE)
monte_carlo_chisq_test(m)

fisher.test(m)
monte_carlo_chisq_test(m, margin="both")

m2 <- matrix(c(9, 3, 3, 7), 2)
monte_carlo_chisq_test(m, margin="N")
monte_carlo_chisq_test(m, margin="both")

Description

Ammonia nitrogen found in river

NH4 Monthly levels of ammonia nitrogen in a river over two years
Format

A data frame with 120 observations on the following 3 variables.

- **nh4**: The ammonia nitrogen levels (mg/l). A value of zero corresponds to a censoring, but it really is censored at <0.01
- **cens**: A logical vector indicating if the value was censored
- **year**: The year

Source

Found on the internet and partly simulated

Examples

```r
data(nh4)
```

ordered.clusters
Check if unique elements of a vector appear in contiguous clusters

Description

ordered.clusters determines if identical elements of a vector appear in contiguous clusters, and returns TRUE if the do and FALSE otherwise.

Usage

```r
ordered.clusters(id)
```

Arguments

- **id**: a vector

Value

The function returns TRUE if the elements appear in contiguous clusters and FALSE otherwise

Author(s)

Claus Ekstrom <claus@ekstroem.dk> with suggestions from Peter Dalgaard.

See Also

duplicated
Examples

```r
x <- c(1, 1, 1, 2, 2, 3, 4, 1, 5, 5, 5)
ordered.clusters(x)
ordered.clusters(sort(x))
ordered.clusters(x[order(x)])
```

pairwise.cor.test

Pairwise Tests for Association/Correlation Between Paired Samples

Description

Calculate pairwise correlations between group levels with corrections for multiple testing.

Usage

```r
pairwise.cor.test(x, g, p.adjust.method = p.adjust.methods,
                   method = c("pearson", "kendall", "spearman"), ...)
```

Arguments

- `x`: response vector.
- `g`: grouping vector or factor.
- `method`: string argument to set the method to compute the correlation. Possibilities are "pearson" (the default), "kendall", and "spearman"
- `...`: additional arguments passed to `cor.test`.

Details

Note that correlation tests require that the two vectors examined are of the same length. Thus, if the grouping defines groups of varying lengths then the specific correlation is not computed and a `NA` is returned instead. The adjusted p values are only based on the actual correlation that are computed. Extra arguments that are passed on to `cor.test` may or may not be sensible in this context.

Value

Object of class `pairwise.htest`

Examples

```r
attach(airquality)
Month <- factor(Month, labels = month.abb[5:9])
pairwise.cor.test(Ozone, Month)
pairwise.cor.test(Ozone, Month, p.adj = "bonf")
detach()
```
pairwise_combination_indices

Compute all pairwise combinations of indices

Description

Fast computation of indices of all pairwise element of a vector of length n.

Usage

pairwise_combination_indices(n, self = FALSE)

Arguments

n A number giving the number of elements to create all pairwise indices from
self A logical that determines whether a column should also be multiplied by itself.

Details

Note that the output order of columns corresponds to the order of the columns in x. First column 1 is multiplied with each of the other columns, then column 2 with the remaining columns etc.

Value

A matrix with n*(n+1)/2 rows (if self=TRUE) or n*(n-1)/2 rows (if self=FALSE, the default) and two columns giving all possible combinations of indices.

Author(s)

Claus Ekstrom <claus@rprimer.dk>

Examples

pairwise_combination_indices(3)
pairwise_combination_indices(4, self=TRUE)
pairwise_Schur_product

Compute Schur products (element-wise) of all pairwise combinations of columns in matrix

Description

Fast computation of all pairwise element-wise column products of a matrix.

Usage

pairwise_Schur_product(x, self = FALSE)

Arguments

x
A matrix with dimensions r*c.

self
A logical that determines whether a column should also be multiplied by itself.

Details

Note that the output order of columns corresponds to the order of the columns in x. First column 1 is multiplied with each of the other columns, then column 2 with the remaining columns etc.

Value

A matrix with the same number of rows as x and a number of columns corresponding to c choose 2 (+ c if self is TRUE), where c is the number of columns of x.

Author(s)

Claus Ekstrom <claus@rprimer.dk>

Examples

X <- cbind(rep(1, 4), 1:4, 4:1)
pairwise_Schur_product(X)
pairwise_Schur_product(X, self=TRUE)
Description

Prints the histogram and corresponding density curve

Usage

```r
panel.hist(x, col.bar = "gray", ...)
```

Arguments

- **x**: a numeric vector of x values
- **col.bar**: the color of the bars
- **...**: options passed to `hist`

Details

This function prints a combined histogram and density curve for use with the `pairs` function

Author(s)

Claus Ekstrom <claus@rprimer.dk>

References

Ekstrom, CT (2011) *The R Primer.*

Examples

```r
pairs(~ Ozone + Temp + Wind + Solar.R, data=airquality, 
    lower.panel=panel.smooth, diag.panel=panel.hist, 
    upper.panel=panel.r2)
```
panel.r2

Panel plot of R2 values for pairs

Description

Prints the R2 with text size depending on the size of R2

Usage

panel.r2(x, y, digits = 2, cex.cor, ...)

Arguments

x
a numeric vector of x values

y
a numeric vector of y values

digits
a numeric value giving the number of digits to present

cex.cor
scaling factor for the size of text

...
extra options (not used at the moment)

Details

This function is a slight modification of the panel.cor function defined on the pairs help page. It calculated and prints the squared correlation, R2, with text size depending on the proportion of explained variation.

Author(s)

Claus Ekstrom <claus@rprimer.dk>

References

Examples

pairs(~ Ozone + Temp + Wind + Solar.R, data=airquality, lower.panel=panel.smooth, upper.panel=panel.r2)
Description

Damage scores (ordinal scale) for Picea Sitchensis shoots at two dates, at four temperatures, and 4 ozone Levels

Format

An artificial data frame with 18 observations in each of three groups.

- **date**: a character vector giving the date
- **temp**: temperature in degrees Celcius
- **conc**: Ozone concentration at 4 different levels
- **damage**: the damage score from 0-4, higher is more damage
- **count**: The number of occurrences of this group

Source

Examples

```r
data(picea)
```

power_binom_test
Power Calculations for Exact Test of a simple null hypothesis in a Bernoulli experiment

Description

Compute power of test, or determine parameters to obtain target power.

Usage

```r
power_binom_test(n = NULL, p0 = NULL, pa = NULL, sig.level = 0.05,
                  power = NULL, alternative = c("two.sided", "less", "greater"))
```
power_mcnemar_test

Description

Compute power of test, or determine parameters to obtain target power for matched case-control studies.

Arguments

- `n`: Number of observations
- `p0`: Probability under the null
- `pa`: Probability under the alternative
- `sig.level`: Significance level (Type I error probability)
- `power`: Power of test (1 minus Type II error probability)
- `alternative`: One- or two-sided test

Details

The procedure uses uniroot to find the root of a discontinuous function so some errors may pop up due to the given setup that causes the root-finding procedure to fail. Also, since exact binomial tests are used we have discontinuities in the function that we use to find the root of but despite this the function is usually quite stable.

Value

Object of class `power.htest`, a list of the arguments (including the computed one) augmented with method and note elements.

Author(s)

Claus Ekstrom <claus@rprimer.dk>

See Also

- `binom.test`

Examples

```r
power_binom_test(n = 50, p0 = .50, pa = .75)  # => power = 0.971
power_binom_test(p0 = .50, pa = .75, power = .90)  # => n = 41
power_binom_test(n = 50, p0 = .25, power = .90, alternative="less")  # => pa = 0.0954
```
power_mcnemar_test

Usage

```r
power_mcnemar_test(n = NULL, paid = NULL, psi = NULL,
  sig.level = 0.05, power = NULL, alternative = c("two.sided",
  "one.sided"), method = c("normal", "exact", "cond.exact"))
```

Arguments

- `n`: Number of observations (number of pairs)
- `paid`: The probability that a case patient is not exposed and that the corresponding control patient was exposed (specifying p_12 in the 2 x 2 table).
- `psi`: The relative probability that a control patient is not exposed and that the corresponding case patient was exposed compared to the probability that a case patient is not exposed and that the corresponding control patient was exposed (p_{12} / p_{21} in the 2x2 table). Also called the discordant proportion ratio
- `sig.level`: Significance level (Type I error probability)
- `power`: Power of test (1 minus Type II error probability)
- `alternative`: One- or two-sided test
- `method`: Power calculations based on exact or asymptotic test. The default (normal) corresponds to an approximative test, "exact" is the unconditional exact test, while "cond.exact" is a conditional exact test (given fixed n).

Details

If psi is less than 1 then the two probabilities p_{12} and p_{21} are reversed.

Value

Object of class `power.htest`, a list of the arguments (including the computed one) augmented with method and note elements.

Note

`uniroot` is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

Author(s)

Claus Ekstrom `<claus@rprimer.dk>

References

Duffy, S (1984). Asymptotic and Exact Power for the McNemar Test and its Analogue with R Controls per Case

See Also

mcnemar.test

Examples

Assume that pi_21 is 0.125 and we wish to detect an OR of 2.
This implies that pi_12=0.25, and with alpha=0.05, and a power of 90% you get
power_mcnemar_test(n=NULL, paid=.125, psi=2, power=.9)

power_mcnemar_test(n=NULL, paid=.1, psi=2, power=.8, method="normal")

power_mcnemar_test(n=NULL, paid=.1, psi=2, power=.8)

power_prop_test

Power Calculations for Two-Sample Test for Proportions with unequal sample size

Description

Compute power of test, or determine parameters to obtain target power for equal and unequal sample sizes.

Usage

power_prop_test(n = NULL, p1 = NULL, p2 = NULL, sig.level = 0.05,
 power = NULL, ratio = 1, alternative = c("two.sided", "one.sided"),
 tol = .Machine$double.eps^0.25)

Arguments

n Number of observations (in group 1)

p1 Probability in one group

p2 Probability in other group

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

ratio The ratio n2/n1 between the larger group and the smaller group. Should be a value equal to or greater than 1 since n2 is the larger group. Defaults to 1 (equal group sizes)

alternative String. Can be one- or two-sided test. Can be abbreviated.

tol Numerical tolerance used in root finding, the default providing (at least) four significant digits
Details

Exactly one of the parameters n, delta, power, sd, sig.level, ratio sd.ratio must be passed as NULL, and that parameter is determined from the others. Notice that the last two have non-NULL defaults so NULL must be explicitly passed if you want to compute them.

Value

Object of class power.htest, a list of the arguments (including the computed one) augmented with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

Author(s)

Claus Ekstrom <claus@rprimer.dk>

See Also

power.prop.test, power_t_test, power.t.test

Examples

power_prop_test(n=NULL, p1=.65, p2=.85, power=.8, ratio=2)
Arguments

- **n**: Number of observations (in the smallest group if two groups)
- **delta**: True difference in means
- **sd**: Standard deviation
- **sig.level**: Significance level (Type I error probability)
- **power**: Power of test (1 minus Type II error probability)
- **ratio**: The ratio \(n_2/n_1\) between the larger group and the smaller group. Should be a value equal to or greater than 1 since \(n_2\) is the larger group. Defaults to 1 (equal group sizes). If ratio is set to NULL (i.e., find the ratio) then the ratio might be smaller than 1 depending on the desired power and ratio of the sd’s.
- **sd.ratio**: The ratio \(sd_2/sd_1\) between the standard deviations in the larger group and the smaller group. Defaults to 1 (equal standard deviations in the two groups)
- **type**: Type of t test
- **alternative**: One- or two-sided test
- **df.method**: Method for calculating the degrees of default. Possibilities are welch (the default) or classical.
- **strict**: Use strict interpretation in two-sided case

Details

Exactly one of the parameters \(n\), \(delta\), \(power\), \(sd\), \(sig.level\), \(ratio\) \(sd.ratio\) must be passed as NULL, and that parameter is determined from the others. Notice that the last two have non-NULL defaults so NULL must be explicitly passed if you want to compute them.

If **strict** = TRUE is used, the power will include the probability of rejection in the opposite direction of the true effect, in the two-sided case. Without this the power will be half the significance level if the true difference is zero.

Value

Object of class **power_t_test**, a list of the arguments (including the computed one) augmented with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

Author(s)

Claus Ekstrom <claus@rprimer.dk>

See Also

- **power.t.test**, **power_prop_test**, **power_prop.test**
Examples

Sampling with a ratio of 1:4
power_t_test(delta=300, sd=450, power=.8, ratio=4)

Equal group sizes but different sd’s
The sd in the first group is twice the sd in the second group
power_t_test(delta=300, sd=450, power=.8, sd.ratio=.5)

Fixed group one size to 50 individuals, but looking for the number of individuals in the
second group. Different sd’s with twice the sd in the larger group
power_t_test(n=50, delta=300, sd=450, power=.8, ratio=NULL, sd.ratio=2)

prepost.test Pretest-posttest RCT for quantitative observations with possible missing values

Description

In a typical pretest-posttest RCT, subjects are randomized to two treatments, and response is measured at baseline, prior to intervention with the randomized treatment (pretest), and at prespecified follow-up time (posttest). Interest focuses on the effect of treatments on the change between mean baseline and follow-up response. Missing posttest response for some subjects is routine, and disregarding missing cases can lead to invalid inference.

Usage

prepost.test(baseline, post, treatment, conf.level = 0.95,
 delta = "estimate")

Arguments

baseline A vector of quantitative baseline measurements
post A vector of quantitative post-test measurements with same length as baseline. May contain missing values
Treatment A vector of 0s and 1s corresponding to treatment indicator. 1 = treated. Same length as baseline
conf.level confidence level of the interval
delta A numeric between 0 and 1 OR the string "estimate" (the default). The proportion of observation treated.

Author(s)

Claus Ekstrom <ekstrom@sund.ku.dk>

References

See Also

chisq.test

Examples

From Altman
expo = c(rep(1,9), rep(0,7))
bplw = c(137, 120, 141, 137, 140, 144, 134, 123, 142, 139, 134, 136, 151, 147, 137, 149)
bp_base = c(147, 129, 158, 164, 134, 155, 151, 153, 133, 129, 152, 161, 154, 141, 156)
diff = bplw - bp_base
prepost.test(bp_base, bplw, expo)
Quasi Information Criterion

Description

Function for calculating the quasi-likelihood under the independence model information criterion (QIC), quasi-likelihood, correlation information criterion (CIC), and corrected QIC for one or several fitted geeglm model object from the geepack package.

Usage

```r
## S3 method for class 'geeglm'
QIC(object, tol = .Machine$double.eps, ...)

## S3 method for class 'ordgee'
QIC(object, tol = .Machine$double.eps, ...)

## S3 method for class 'geekin'
QIC(object, tol = .Machine$double.eps, ...)

QIC(object, tol = .Machine$double.eps, ...)
```

Arguments

- `object`: a fitted GEE model from the geepack package. Currently only works on geeglm objects
- `tol`: the tolerance used for matrix inversion
- `...`: optionally more fitted geeglm model objects

Details

QIC is used to select a correlation structure. The QICu is used to compare models that have the same working correlation matrix and the same quasi-likelihood form but different mean specifications. CIC has been suggested as a more robust alternative to QIC when the model for the mean may not fit the data very well and when models with different correlation structures are compared. Models with smaller values of QIC, CIC, QICu, or QICC are preferred.

If the MASS package is loaded then the `ginv` function is used for matrix inversion. Otherwise the standard `solve` function is used.

Value

A vector or matrix with the QIC, QICu, quasi likelihood, CIC, the number of mean effect parameters, and the corrected QIC for each GEE object

Author(s)

Claus Ekstrom <claus@rprimer.dk>
References

See Also

geeglm

Examples

library(geepack)
data(ohtio)
fit <- geeglm(resp ~ age + smoke + age:smoke, id=id, data=ohtio,
 family=binomial, corstr="exch", scale.fix=TRUE)
QIC(fit)

qpcr Gene expression from real-time quantitative PCR

Description

Gene expression levels from real-time quantitative polymerase chain reaction (qPCR) experiments on two different plant lines. Each line was used for 7 experiments each with 45 cycles.

Format

A data frame with 630 observations on the following 4 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flour</td>
<td>numeric</td>
<td>Fluorescence level</td>
</tr>
<tr>
<td>line</td>
<td>factor</td>
<td>Plant lines rnt (mutant) and wt (wildtype)</td>
</tr>
<tr>
<td>cycle</td>
<td>numeric</td>
<td>Cycle number for the experiment</td>
</tr>
<tr>
<td>transcript</td>
<td>factor</td>
<td>Transcript used for the different runs</td>
</tr>
</tbody>
</table>

Source

Data provided by Kirsten Jorgensen <kij@life.ku.dk>.
Added by Claus Ekstrom <ekstrom@life.ku.dk>
References

Examples

data(qpcr)

Analyze a single run for the wt line, transcript 1
#
run1 <- subset(qpcr, transcript==1 & line=="wt")

model <- nls(flour ~ fmax/(1+exp(-(cycle-c)/b))+fb,
start=list(c=25, b=1, fmax=100, fb=0), data=run1)

print(model)

plot(run1$cycle, run1$flour, xlab="Cycle", ylab="Fluorescence")
lines(run1$cycle, predict(model))

quadform

Fast quadratic form computation

Description
Fast computation of a quadratic form $t(x) \ast M \ast x$.

Usage
quadform(x, M, invertM = FALSE, transposeX = FALSE)

Arguments

x A matrix with dimensions n*k.
M A matrix with dimensions n*n. If it is to be inverted then the matrix should be symmetric and positive definite (no check is done for this)
invertM A logical. If set to TRUE then M will be inverted before computations (defaults to FALSE)
transposeX A logical. Should the matrix be transposed before computations (defaults to FALSE).

Value

A matrix with dimensions k * k giving the quadratic form
Author(s)

Claus Ekstrom <claus@rprimer.dk>

Description

Five raters were asked to guess the number of points in a swarm for 10 different figures (which - unknown to the raters - were each repeated three times).

Format

A data frame with 30 observations on the following 6 variables.

- **SAND**: The true number of points in the swarm. Each picture is replicated thrice
- **ME**: Ratings from judge 1
- **TM**: Ratings from judge 2
- **AJ**: Ratings from judge 3
- **BM**: Ratings from judge 4
- **LO**: Ratings from judge 5

Details

The raters had approximately 10 seconds to judge each picture, and the thought it was 30 different pictures. Before starting the experiment they were shown 6 (unrelated) pictures and were told the number of points in each of those pictures. The SAND column contains the picture id and the true number of points in the swarm.

Source

Collected by Claus Ekstrom.

Examples

```r
data(rainman)
long <- data.frame(stack(rainman[,2:6]), figure=factor(rep(rainman$SAND,5)))
figind <- interaction(long$figure,long$ind)
# Use a linear random effect model from the
# lme4 package if available
if(require(lme4)) {
  model <- lmer(values ~ (1|ind) + (1|figure) + (1|figind), data=long)
}
```

Point swarms were generated by the following program

```r
point swarms were generated by the following program
```
#

set.seed(2) # Original
npoints <- sample(4:30)*4
nplots <- 10
dpdf(file="swarms.pdf", onefile=TRUE)

s1 <- sample(npoints[1:nplots])
print(s1)
for (i in 1:nplots) {
 n <- s1[i]
 set.seed(n)
 x <- runif(n)
 y <- runif(n)
 plot(x,y, xlim=c(-15, 1.15), ylim=c(-15, 1.15), pch=20, axes=FALSE,
 xlab="", ylab="")
}
s1 <- sample(npoints[1:nplots])
print(s1)
for (i in 1:nplots) {
 n <- s1[i]
 set.seed(n)
 x <- runif(n)
 y <- runif(n)
 plot(y,x, xlim=c(-15, 1.15), ylim=c(-15, 1.15), pch=20, axes=FALSE,
 xlab="", ylab="")
}
s1 <- sample(npoints[1:nplots])
print(s1)
for (i in 1:nplots) {
 n <- s1[i]
 set.seed(n)
 x <- runif(n)
 y <- runif(n)
 plot(-x,y, xlim=c(-1.15, .15), ylim=c(-1.15, 1.15), pch=20, axes=FALSE,
 xlab="", ylab="")
}
dev.off()

repmat

Fast replication of a matrix

Description

Fast generation of a matrix by replicating a matrix row- and column-wise in a block-like fashion

Usage

repmat(x, nrow = 1L, ncol = 1L)
residualplot.default

Arguments

- **x**: A matrix with dimensions r*c.
- **nrow**: An integer giving the number of times the matrix is replicated row-wise
- **ncol**: An integer giving the number of times the matrix is replicated column-wise

Value

A matrix with dimensions (r*nrow) x (c*ncol)

Author(s)

Claus Ekstrom <claus@rprimer.dk>

Examples

```r
m <- matrix(1:6, ncol=3)
repmat(m, 2) # Stack two copies of m on top of each other
repmat(m, 2, 3) # Replicate m with two copies on top and three copies side-by-side
```

residualplot.default
Plots a standardized residual

Description

Plots a standardized residual plot from an lm or glm object and provides additional graphics to help evaluate the variance homogeneity and mean.

Usage

```r
## Default S3 method:
residualplot(x, y = NULL, candy = TRUE,
              bandwidth = 0.3, xlab = "Fitted values", ylab = "Std.res.",
              col.sd = "blue", col.alpha = 0.3, ylim = NA, ...)

## S3 method for class 'lm'
residualplot(x, y, candy = TRUE, bandwidth = 0.3,
              xlab = "Fitted values", ylab = "Stud.res.", col.sd = "blue",
              col.alpha = 0.3, ...)

## S3 method for class 'glm'
residualplot(x, y, candy = TRUE, bandwidth = 0.4,
              xlab = "Fitted values", ylab = "Std. dev. res.", col.sd = "blue",
              col.alpha = 0.3, ...)

residualplot(x, y = NULL, candy = TRUE, bandwidth = 0.3,
```

Arguments

\[
x \quad \text{lm object or a numeric vector}
\]
\[
y \quad \text{numeric vector for the y axis values}
\]
\[
candy \quad \text{logical. Should a lowess curve and local standard deviation of the residual be added to the plot. Defaults to TRUE}
\]
\[
bandwidth \quad \text{The width of the window used to calculate the local smoothed version of the mean and the variance. Value should be between 0 and 1 and determines the percentage of the window width used}
\]
\[
xlab \quad x \text{ axis label}
\]
\[
ylab \quad y \text{ axis label}
\]
\[
col.sd \quad \text{color for the background residual deviation}
\]
\[
col.alpha \quad \text{number between 0 and 1 determining the transparency of the standard deviation plotting color}
\]
\[
ylim \quad \text{pair of observations that set the minimum and maximum of the y axis. If set to NA (the default) then the limits are computed from the data.}
\]
\[
\ldots \quad \text{Other arguments passed to the plot function}
\]

Details

The y axis shows the studentized residuals (for \texttt{lm} objects) or standardized deviance residuals (for \texttt{glm} objects). The x axis shows the linear predictor, i.e., the predicted values for \texttt{lm} objects.

The blue area is a smoothed estimate of 1.96*SD of the standard residuals in a window around the predicted value. The blue area should largely be rectangular if the standardized residuals have more or less the same variance.

The dashed line shows the smoothed mean of the standardized residuals and should generally follow the horizontal line through (0,0).

Solid circles correspond to standardized residuals outside the range from [-1.96; 1.96] while open circles are inside that interval. Roughly 5

Value

Produces a standardized residual plot

Author(s)

Claus Ekstrom <claus@rprimer.dk>

See Also

\texttt{rstandard, predict}
Examples

Linear regression example
data(trees)
model <- lm(Volume ~ Girth + Height, data=trees)
residualplot(model)
model2 <- lm(Volume ~ Girth + I(Girth^2) + Height, data=trees)
residualplot(model2)

Description

Simulates residual multivariate t-distributed response data from a pedigree where the additive genetic, dominance genetic, and shared environmental effects are taken into account.

Usage

rmvt.pedigree(n = 1, pedigree, h2 = 0, c2 = 0, d2 = 0, df = 1)

Arguments

n numeric. The number of simulations to generate
pedigree a pedigree object
h2 numeric. The heritability
c2 numeric. The environmentability
d2 numeric. The dominance deviance effect
df numeric. The degrees of freedom for the t distribution

Details

The three parameters should have a sum: h2+c2+d2 that is less than 1. The total variance is set to 1, and the mean is zero.

Value

Returns a matrix with the simulated values with n columns (one for each simulation) and each row matches the corresponding individual from the pedigree

Author(s)

Claus Ekstrom <claus@rprimer.dk>
See Also

pedigree, kinship.

Examples

```r
library(kinship2)
library(mvtnorm)
mydata <- data.frame(id=1:5,
  dadid=c(NA, NA, 1, 1, 1),
  momid=c(NA, NA, 2, 2, 2),
  sex=c("male", "female", "male", "male", "male"),
  famid=c(1,1,1,1,1))
relation <- data.frame(id1=c(3), id2=c(4), famid=c(1), code=c(1))
ped <- pedigree(id=mydata$id, dadid=mydata$dadid, momid=mydata$momid,
  sex=mydata$sex, relation=relation)
rmvt.pedigree(2, ped, h2=.25, df=4)
```

Description

Simulates residual multivariate Gaussian response data from a pedigree where the additive genetic, dominance genetic, and shared environmental effects are taken into account.

Usage

```r
rmvt.norm.pedigree(n = 1, pedigree, h2 = 0, c2 = 0, d2 = 0)
```

Arguments

- `n` numeric. The number of simulations to generate
- `pedigree` a pedigree object
- `h2` numeric. The heritability
- `c2` numeric. The environmentability
- `d2` numeric. The dominance deviance effect

Details

The three parameters should have a sum: h2+c2+d2 that is less than 1. The total variance is set to 1, and the mean is zero.

Value

Returns a matrix with the simulated values with n columns (one for each simulation) and each row matches the corresponding individual from the pedigree.
Description

Create a hanging rootogram for a quantitative numeric vector and compare it to a Gaussian distribution.

Usage

```r
rootonorm(x, breaks = "Sturges", type = c("hanging", "deviation"),
          scale = c("sqrt", "raw"), zeroline = TRUE, linecol = "red",
          rectcol = "lightgrey", xlab = xname, ylab = "sqrt(frequency)",
          yaxt = "n", ylim = NULL, mu = mean(x), s = sd(x), gap = 0.1,
          ...)```

**Arguments**

- **x**: a numeric vector of values for which the rootogram is desired
- **breaks**: Either the character string ‘Sturges’ to use Sturges’ algorithm to decide the number of breaks or a positive integer that sets the number of breaks.
- **type**: if “hanging” then a hanging rootogram is plotted, and if “deviation” then deviations from zero are plotted.
- **scale**: The type of transformation. Defaults to "sqrt" which takes square roots of the frequencies. "raw" yields untransformed frequencies.
zeroline logical; if TRUE a horizontal line is added at zero.
linecol The color of the density line for the normal distribution. The default is to make a red density line.
rectcol a colour to be used to fill the bars. The default of lightgray yields lightgray bars.
xlab, ylab plot labels. The xlab and ylab refer to the x and y axes respectively
yaxt Should y axis text be printed. Defaults to n.
ylim the range of y values with sensible defaults.
mu the mean of the Gaussian distribution. Defaults to the sample mean of x.
s the standard deviation of the Gaussian distribution. Defaults to the sample std.dev. of x.
gap The distance between the rectangles in the histogram.
... further arguments and graphical parameters passed to plot.

Details
The mean and standard deviation of the Gaussian distribution are calculated from the observed data unless the mu and s arguments are given.

Value
Returns a vector of counts of each bar. This may be changed in the future. The plot is the primary output of the function.

Author(s)
Claus Ekstrom <claus@rprimer.dk>

References

Examples

oldpar <- par()
par(mfrow=c(2,2))
rootonorm(rnorm(200))
rootonorm(rnorm(200), type="deviation", scale="raw")
rootonorm(rnorm(200), mu=1)
rootonorm(rexp(200), mu=1)
par(oldpar)
Round vector of number to percentages

Description

Rounds a vector of numeric values to percentages ensuring that they add up to 100

Usage

round_percent(x, decimals = 0L, ties = c("random", "last"))

Arguments

- `x`: A numeric vector with non-negative values.
- `decimals`: An integer giving the number of decimals that are used.
- `ties`: A string that is either 'random' (the default) or 'last'. Determines how to break ties. Random is random, last prefers to break ties at the last position.

Details

Returns a vector of numeric values.

Value

Returns a numeric vector of the same length as `x`

Author(s)

Claus Ekstrom <claus@rprimer.dk>

Examples

```r
f <- c(1,2,1,3,2,1,2,3,1)
round_percent(f)
```
**rud**

*Simulate randomized urn design*

**Description**

Simulates a randomized treatment based on an urn model.

**Usage**

```r
rud(n, alpha = c(1, 1), beta = 1, labels = seq(1, length(alpha)), data.frame = FALSE, startid = 1)
```

**Arguments**

- `n` the number of individuals to randomize
- `alpha` a non-negative integer vector of weights for each treatment group. The length of the vector corresponds to the number of treatment groups.
- `beta` a non-negative integer of weights added to the groups that were not given treatment
- `labels` a vector of treatment labels. Must be the same length as the length of alpha.
- `data.frame` A logical that determines if the function should return a vector of group indices (the default, if FALSE) or a data frame (if TRUE).
- `startid` margin parameters; vector of length 4 (see `par`)

**Details**

The urn model can be described as follows: For \( k \) different treatments, the urn design is initiated with a number of balls in an urn corresponding to the start weight (the alpha argument), where each treatment has a specific colour. Whenever a patient arrives, a random ball is drawn from the urn and the colour decides the treatment for the patient. For each of the treatments that weren’t chosen we add beta balls of the corresponding colour(s) to the urn to update the probabilities for the next patient.

**Value**

A vector with group indices. If the argument `data.frame=TRUE` is used then a data frame with three variables is returned: id, group, and treatment (the group label).

**Examples**

```r
rud(5)
rud(5, alpha=c(1,1,10), beta=5)
```
**scorefct**

*Internal functions for the MESS package*

**Description**

Internal functions for the MESS package

**Usage**

```r
scorefct(o, beta = NULL, testidx = NULL, sas = FALSE)
```

**Arguments**

- `o`: input geepack object from a geeglm fit.
- `beta`: The estimated parameters. If set to `NULL` then the parameter estimates are extracted from the model fit object `o`.
- `testidx`: Indices of the beta parameters that should be tested equal to zero.
- `sas`: Logical. Should the SAS version of the score test be computed. Defaults to `FALSE`.

**Author(s)**

Claus Ekstrom <claus@rprimer.dk>

---

**screen_variables**

*Screen variable before penalized regression*

**Description**

Expands a contingency table to a data frame where each observation in the table becomes a single observation in the data frame with corresponding information for each for each combination of the table dimensions.

**Usage**

```r
screen_variables(x, y, lambda = 0.1, method = c("global-strong", "global-DPP"))
```

**Arguments**

- `x`: A table or matrix
- `y`: A vector of outcomes
- `lambda`: a vector of positive values used for the penalization parameter.
- `method`: a string giving the method used for screening. Two possibilities are "global-strong" and "global-DPP"
Details

Note that no standardization is done (not necessary?)

Value

A list with three elements: lambda which contains the lambda values, selected which contains the indices of the selected variables, and method a string listing the method used.

Author(s)

Claus Ekstrom <claus@rprimer.dk>

References


Examples

```r
x <- matrix(rnorm(50*100), nrow=50)
y <- rnorm(50, mean=x[,1])
screen_variables(x, y, lambda=c(.1, 1, 2))
```

Description

Segregate di-allelic genes down through the generations of a pedigree. It is assumed that the founders are independent and that the genes are in Hardy Weinberg equilibrium in the population.

Usage

`segregate.genes(pedigree, maf)`

Arguments

- `pedigree`: a pedigree object
- `maf`: a vector of minor allele frequencies for each diallelic gene to segregate through the pedigree

Value

Returns a data frame. Each row matches the order of the individuals in the pedigree and each column corresponds to each of the segregated genes. The data frame contains values 0, 1, or 2 corresponding to the number of copies of the minor allele frequency allele that person has.


**Author(s)**
Claus Ekstrom <claus@rprimer.dk>

**See Also**
pedigree, kinship,

**Examples**

```r
library(kinship2)
mydata <- data.frame(id=1:5,
 dadid=c(NA, NA, 1, 1, 1),
 momid=c(NA, NA, 2, 2, 2),
 sex=c("male", "female", "male", "male", "male"),
 famid=c(1,1,1,1,1))
relation <- data.frame(id1=c(3), id2=c(4), famid=c(1), code=c(1))
ped <- pedigree(id=mydata$id, dadid=mydata$dadid, momid=mydata$momid,
 sex=mydata$sex, relation=relation)
segregate.genes(ped, c(.1, .3, .5))
```

---

**sinv**

*Invert a symmetric positive-definite matrix*

**Description**

Inverts a symmetric positive-definite matrix without requiring the Matrix package.

**Usage**

```r
sinv(obj)
```

**Arguments**

- **obj**
  
  The symmetric positive-definite matrix

**Details**

This function does no error checking and it is up to the user to ensure that the input is indeed symmetric, positive-definite, and a matrix.

**Value**

A matrix of the same size as the input object

**Author(s)**

Claus Ekstrom, <claus@rprimer.dk>. 
Examples

```r
m <- matrix(c(1, 0, .5, .5, 0, 1, .5, .5, .5, 1, .5, .5, .5, 1, 4), 4)
sinv(m)
```

**smokehealth**  
*Effect of smoking on self reported health*

**Description**

Effect of smoking at 45 years of age on self reported health five years later. Data are on a sample of males from the Glostrup survey.

**Format**

A table with daily smoking categories for the rows and self reported health five years later as the columns.

**Source**

Data example found on the internet but originates from Svend Kreiner

**Examples**

```r
data(smokehealth)
m <- smokehealth
m[3,] <- m[3,] + m[4,]
m[4,] <- m[4,] + m[5,]
m <- m[1:4, 1:3]
gkgamma(m)
chisq.test(m)
```

**soccer**  
*Danish national soccer players*

**Description**

Players on the Danish national soccer team. The dataset consists of all players who have been picked to play on the men’s senior A-team, their position, date-of-birth, goals and matches.
Format

A data frame with 805 observations on the following 5 variables.

- **name**: a factor with names of the players
- **DoB**: a Date. The date-of-birth of the player
- **position**: a factor with levels Forward Defender Midfielder Goalkeeper
- **matches**: a numeric vector. The number of A matches played by the player
- **goals**: a numeric vector. The number of goals scored by the player in A matches

Source

Data collected from the player database of DBU on March 21st, 2014. See [http://www.dbu.dk](http://www.dbu.dk) for more information.

Examples

```r
data(soccer)
birthmonth <- as.numeric(format(soccer$DoB, "%m"))
birthyear <- as.numeric(format(soccer$DoB, "%Y"))
```

superroot2

*Gene expression data from two-color dye-swap experiment*

Description

Gene expression levels from two-color dye-swap experiment on 6 microarrays. Arrays 1 and 2 represent the first biological sample (ie, the first dye swap), 3 and 4 the second, and arrays 5 and 6 the third.

Format

A data frame with 258000 observations on the following 5 variables.

- **color**: a factor with levels green red representing the dye used for the gene expression
- **array**: a factor with levels 1 2 3 4 5 6 corresponding to the 6 arrays
- **gene**: a factor with 21500 levels representing the genes on the arrays
- **plant**: a factor with levels rnt wt for the two types of plants: runts and wild type
- **signal**: a numeric vector with the gene expression level (normalized but not log transformed)

Source

Data provided by Soren Bak <bak@life.ku.dk>.
Added by Claus Ekstrom <ekstrom@sund.ku.dk>
References


Examples

data(superroot2)
  # Select one gene
  g1 <- superroot2[superroot2$gene=="AT2G24000.1",]
  model <- lm(log(signal) ~ plant + color + array, data=g1)
  summary(model)

tracemp

Fast computation of trace of matrix product

Description

Fast computation of the trace of the matrix product trace(t(A))

Usage

tracemp(A, B)

Arguments

A A matrix with dimensions n*k.
B A matrix with dimensions n*k.

Value

The trace of the matrix product

Author(s)

Claus Ekstrom <claus@rprimer.dk>

Examples

A <- matrix(1:12, ncol=3)
tracemp(A, A)
wallyplot.default  
Plots a Wally plot

Description

Produces a 3x3 grid of residual- or qq-plots plots from a lm object. One of the nine subfigures is the true residual plot/qqplot while the remaining are plots that fulfill the assumptions of the linear model.

Usage

```r
Default S3 method:
wallyplot(x, y = x, FUN = residualplot,
 hide = TRUE, simulateFunction = rnorm, ...)

S3 method for class 'lm'
wallyplot(x, y = x, FUN = residualplot, hide = TRUE,
 simulateFunction = rnorm, ...)
```

Arguments

- `x` a numeric vector of x values, or an lm object.
- `y` a numeric vector of y values of the same length as x or a n * 9 matrix of y values - one column for each of the nine plots to make. The first column is the one corresponding to the results from the dataset
- `FUN` a function that accepts an x, y and ... argument and produces a graphical model validation plots from the x and y values.
- `hide` logical; if TRUE (the default) then the identity of the true residual plot is hidden until the user presses a key. If FALSE then the true residual plot is shown in the center.
- `simulateFunction` The function used to produce y values under the null hypothesis. Defaults to rnorm
- `...` Other arguments passed to the plot function FUN

Details

Users who look at residual plots or qqnorm plots for the first time often feel they lack the experience to determine if the residual plot is okay or if the model assumptions are indeed violated. One way to convey "experience" is to plot a series of graphical model validation plots simulated under the model assumption together with the corresponding plot from the real data and see if the user can pinpoint one of them that looks like an odd-one-out. If the proper plot from the real data does not stand out then the assumptions are not likely to be violated.
The Wallyplot produces a 3x3 grid of plots from a lm object or from a set of pairs of x and y values. One of the nine subfigures is the true plot while the remaining are plots that fulfill the assumptions of the linear model. After the user interactively hits a key the correct residual plot (corresponding to the provided data) is shown.

The plotting function can be set using the FUN argument which should be a function that accepts x, y and ... arguments and plots the desired figure. When y is a single vector the same length as x then the function simulateFunction is used to generate the remaining y values corresponding the situations under the null.

For a description of the features of the default residual plot see the help page for `residualplot`.

Author(s)

Claus Ekstrom <claus@rprimer.dk>

References

Ekstrom, CT (2014) *Teaching 'Instant Experience' with Graphical Model Validation Techniques*. Teaching Statistics (36), p 23-26

Examples

```r
Not run:
data(trees)
res <- lm(Volume ~ Height + Girth, data=trees)
wallyplot(res)

Create a grid of QQ-plot figures
Define function to plot a qq plot with an identity line
qqnorm.wally <- function(x, y, ...) { qqnorm(y, ...); abline(a=0, b=1) }
wallyplot(res, FUN=qqnorm.wally, main="")

Define function to simulate components+residuals for Girth
cprsimulate <- function(n) { rnorm(n)+trees$Girth }
Create the cpr plotting function
cprplot <- function(x, y, ...) { plot(x, y, pch=20, ...);
lines(lowess(x, y), lty=3)}
Create the Wallyplot
wallyplot(trees$Girth, trees$Girth+residuals(res), FUN=cprplot,
simulateFunction=cprsimulate, xlab="Girth")

End(Not run)
```
write.xml

Write a data frame in XML format

Description

Writes the data frame to a file in the XML format.

Usage

write.xml(data, file = NULL, collapse = TRUE)

Arguments

data the data frame object to save
file the file name to be written to.
collapse logical. Should the output file be collapsed to make it fill less? (Defaults to TRUE)

Details

This function does not require the XML package to be installed to function properly.

Value

None

Author(s)

Claus Ekstrom, <claus@rprimer.dk> based on previous work by Duncan Temple Lang.

Examples

data(trees)
write.xml(trees, file="mydata.xml")
Index

*Tophitesti

**Textasciitildehtests**
- feature.test, 23

**Textasciitildekekw**
- scorefct, 66

*Topic datagen
- age, 5
- auc, 6
  - common.shared, 15
  - extended.shared, 21
  - rmvt.pedigree, 60
  - rmvtnorm.pedigree, 61
  - segregate.genes, 67

*Topic datasets
- bdstat, 7
- bees, 8
- clotting, 11
- earthquakes, 20
- greenland, 29
- happiness, 30
- icecreamads, 32
- kwdata, 33
- lifeexpect, 34
- matched, 35
- nh4, 38
- picea, 45
- qpcr, 54
- rainman, 56
- smokehealth, 69
- soccer, 69
- superroot2, 70

*Topic file
- sinv, 68
- write.xml, 74

*Topic hplot
- residualplot.default, 58
- rootonorm, 62

*Topic htest
- drop1.geeglm, 18
- drop1.geem, 19
- gkgamma, 28
- power_binom.test, 45
- power_mcnemar.test, 46
- power_prop.test, 48
- power_t.test, 49
- prepost.test, 51
- QIC.geeglm, 53

*Topic iplot
- col.alpha, 13
- col.shade, 13
- col.tint, 14
- panel.hist, 43
- panel.r2, 44
- wallyplot.default, 72

*Topic manip
- adaptive.weights, 3
- categorize, 10
- expand_table, 21
- fac2num, 23
- lower.tri.vector, 34
- monte_carlo_chisq.test, 37
- round_percent, 64
- screen_variables, 66

*Topic models
- geekin, 26

*Topic package
- MESS, 36

*Topic print
- ht, 31

*Topic univar
- cmd, 12

*Topic utilities
- ordered.clusters, 39
  - adaptive.weights, 3
  - add.torows, 4
  - age, 5
  - approx, 7
  - as.POSIXlt, 6
  - auc, 6
bdstat, 7
bees, 8
bin, 9
binom.test, 46
categorize, 10
chisq.test, 29, 52
clotting, 11
cmd, 12
col.alpha, 13
col.shade, 13
col.tint, 14
common.shared, 15
conditional_rowMeans, 16
cor.test, 40
cumsumbinning, 17
drop1, 18, 19
drop1.geeglm, 18
drop1.geem, 19
duplicated, 39
eartquakes, 20
expand_table, 21
extended.shared, 21
fac2num, 23
feature.test, 23
filldown, 25
geekin, 26
ginv, 53
gkgamma, 28
greenland, 29
happiness, 30
ht, 31
icecreamads, 32
integrate, 7
ks_cumtest, 32
kwdata, 33
lifeexpect, 34
lower.tri, 35
lower.tri.vector, 34
matched, 35
mcnemar.test, 48
MESS, 36
MESS-package (MESS), 36
mfastLmCpp, 36
monte_carlo_chisq_test, 37
nh4, 38
ordered.clusters, 39
p.adjust, 40
pairwise.cor.test, 40
pairwise_combination_indices, 41
pairwise_Schur_product, 42
panel.hist, 43
panel_r2, 44
par, 65
picea, 45
power.prop.test, 49, 50
power.t.test, 49, 50
power_binom_test, 45
power_mcnemar_test, 46
power_prop_test, 48, 50
power_t_test, 49, 49
predict, 59
prepost.test, 51
print.geekin (geekin), 26
qdiag, 52
QIC (QIC.geeglm), 53
QIC.geeglm, 53
qpcr, 54
quadform, 55
rainman, 56
repmat, 57
residualplot, 73
residualplot (residualplot.default), 58
residualplot.default, 58
rmvt pedigree, 60
rmvtnorm pedigree, 61
rootogram (rootonorm), 62
rootonorm, 62
round_percent, 64
rstandard, 59
rud, 65
scorefct, 66
screen_variables, 66
segregate.genes, 67
sinv, 68
smokehealth, 69
soccer, 69
solve, 53
splinefun, 7
superroot2, 70

tracemp, 71

wallyplot (wallyplot.default), 72
wallyplot.default, 72
write.xml, 74