Package ‘MM’

Type Package
Title The Multiplicative Multinomial Distribution
Description Various utilities for the Multiplicative Multinomial distribution.
Version 1.6-5
Depends R (>= 2.10.0), Oarray (>= 1.4-6), partitions (>= 1.9-14)
Imports magic (>= 1.5-6), abind, emulator (>= 1.2-13), methods
Date 2018-05-16
Author Robin K. S. Hankin and P. M. E. Altham
Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-16 09:21:57 UTC

R topics documented:

MM-package ... 2
danaher .. 3
Extract.paras ... 4
gunter .. 5
Lindsey ... 6
MB .. 8
MM .. 11
multinomial ... 13
NormC ... 14
optimizer .. 14
paras .. 16
pollen ... 17
powell .. 18
rMM ... 18
MM-package

The Multiplicative Multivariate distribution, and the Multivariate
Multiplicative Binomial Distribution

Description

Two generalizations of the Multiplicative Binomial distribution of Altham (1978).

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2012-02-29</td>
</tr>
<tr>
<td>License:</td>
<td>GPL</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

Robin K. S. Hankin and P. M. E. Altham
Maintainer: <hankin.robin@gmail.com>

References

Examples

data(voting)
lindsey(voting, voting_tally)
jj <- paras(3)
danaher

Description

Dataset due to Danaher; also an analysis \textit{ab initio}

Usage

data(danaher)

Format

- \texttt{danaher} is a matrix (of class \texttt{array}) that represents Danaher and Hardie’s Table 1

Details

Since bacon is often \textit{eaten} with eggs, it is reasonable to expect that it is \textit{purchased} with eggs. Danaher and Hardie use a dataset obtained from a sample of 548 households over four consecutive store trips. They considered only grocery shopping trips with a total basket value of at least five dollars. For each household, they counted the total number of bacon purchases in their four eligible shopping trips, and the total number of egg purchases for the same trips.

Object \texttt{danaher} is a five-by-five matrix of class \texttt{array} with entry (i,j) indicating the number of shoppers buying bacon on i occasions and eggs on j occasions (note the zero offset). Thus \texttt{danaher}[1,2]=16 indicates that 16 shoppers bought bacon on 1 occasion and eggs on 2 occasions.

References

See Also

optimizer

Examples

data(danaher)
Lindsey_MB(danaher)

Dataset from table 3 follows; see also the example at Lindsey.Rd
mags <-
c(2463, 35, 44, 14, 16, 7, 262, 20, 2, 2, 0, 0, 0, 2, 17, 2,
0, 2, 0, 0, 3, 8, 0, 0, 1, 0, 0, 4, 8, 0, 1, 1, 0, 0, 3, 3,
0, 0, 0, 0, 1, 52, 2, 1, 0, 2, 0, 22)
Extract.paras

Description
Methods for "]" and "]<-", i.e., extraction or subsetting of paras objects.

Arguments

- x Object of class paras
- i Elements to extract or replace
- value Replacement value

Value
Always returns an object of class paras.

Methods

- x[i]
- x[i] <- value
- x[i,j]
- x[i,j] <- value

Note
These methods are included for completeness; it’s not clear to me that they are likely to be used by anyone. It might be better to always use constructions like x <- paras(4) ; p(x)[2] <- 0.1 instead; YMMV.

Author(s)
Robin K. S. Hankin

Examples

x <- paras(4)
x[2] <- 0.1
x[1,2] <- 0.12
x
Convert from multiple multivariate observations to tabular form

Description
Convert from a matrix with rows corresponding to multivariate observations, to a tabular form listing every possible combination together with the number of times that combination was observed.

Usage
gunter(obs)
S3 method for class 'gunter'
print(x, ...)

Arguments
obs Argument. If a matrix, interpret each row as a multivariate observation (so the rowsums are constant). If an object of class MB, interpret appropriately; if an Oarray, coerce to an MB object
x Object of class gunter to be printed by the print method
... Further arguments, currently ignored

Value
For matrices and data frames, function gunter() returns an object of class gunter: a list of two elements, the first being a matrix (‘obs’) with rows being possible observations, and the second (‘d’) a vector with one entry for each row of matrix obs.
For MB objects and Oarray objects, function gunter() returns an object of class gunter_MB.
The print method returns its argument, invisibly, after printing it coerced to a list.

Author(s)
Bert Gunter, with tiny alterations by Robin Hankin

Examples
data(wilson)
gunter(non_met)

data(danaher)
gunter(danaher) # object of class gunter_MB
Description

Function Lindsey() returns a maximum likelihood fit of the multiplicative multinomial using the Poisson device of Lindsey and Mersch (1992), and in the context of the multiplicative multinomial by Altham and Lindsey (1998).

Function Lindsey_MB() returns a maximum likelihood fit for the multivariate multiplicative binomial, for the special case of a bivariate distribution. An example of coercing a table to the correct form for use with Lindsey_MB() is given in the examples section below. Also, see danaher for another example.

Usage

Lindsey(obs, n = NULL, give_fit = FALSE)
Lindsey_MB(a)
S3 method for class 'Lindsey_output'
print(x, ...)

Arguments

obs In Lindsey(), an integer matrix with each row corresponding to an observation. All row sums must match
n Vector with elements corresponding to the rows of obs; default of NULL corresponds to observing each row of obs once
a In Lindsey_MB(), an object that is coerced to one of class gunter_MB. Typically, the user supplies an 0array object or an MB object
give_fit Boolean, with default FALSE meaning to return just the fit, coerced to an object of class paras and TRUE meaning to return a list with two elements, the first being a paras object and the second being the fit returned by glm()
x In the print method, object of class Lindsey_output
... In the print method, further arguments, currently ignored

Details

Uses the device first described by Lindsey in 1992; the ‘meat’ of which has R idiom

Off <- -rowSums(lfactorial(jj$tbl))
glm(jj$d ~ -1 + offset(Off) + (.)^2, data=data, family=poisson)

Function Lindsey(...., give_fit=TRUE) returns an object of class Lindsey_output, which has its own print method (which prints the summary of the fit rather than use the default method).

Function Lindsey(...., give_fit=FALSE) returns an object of class paras, which can then be passed on to functions such as rMM(), which take a paras object.

Function Lindsey_MB() returns an object of class glm.
Author(s)

P. M. E. Altham and Robin K. S. Hankin

References

See Also

gunter, danaher

Examples

data(voting)
(o <- Lindsey(voting, voting_tally))
rm(10,5,o)

data(danaher)
Lindsey_MB(danaher)

Not run: #(takes a long time)
data(pollen)
Lindsey(pollen)

End(Not run)

Example of Lindsey_MB() in use follows.
a <- matrix(c(63,40,26,7,69,42,19,5,48,21,16,2,33,11,9,1,21,8,9,0,
7,8,1,0,5,3,1,0,9,2,0,0),byrow=TRUE,nrow=4)

Alternatively, you can get this from the pscl package as follows:
library(pscl); data(bioChemists)
a <- table(subset(bioChemists, fem == 'Men' & art < 8))

dimnames(a) <- list(papers=0:7,children=0:3)
require(Oarray)
a <- as.Oarray(a,offset=0)
thus a[3,1]==11 means that 11 subjects had 3 papers and 1 child

summary(Lindsey_MB(a))
Multivariate multiplicative binomial distribution

Description

Various utilities to coerce and manipulate MB objects

Usage

MB(dep, m, pnames=character(0))
S3 method for class 'MB'
as.array(x, ...)
S4 method for signature 'MB'
getM(x)
S3 method for class 'gunter_MB'
print(x, ...)

Arguments

dep Primary argument to MB(). Typically a matrix with each row being an observation (see ‘details’ section below for an example). If an object of class oarray, function MB() coerces to an MB object
m Vector containing the relative sizes of the various marginal binomial distributions
x Object of class MB to be converted to an oarray object
... Further arguments to as.array(), currently ignored
pnames In function MB(), a character vector of names for the entries

Details

Function MB() returns an object of class MB. This is essentially a matrix with one row corresponding to a single observation; repeated rows indicate identical observations as shown below. Observational data is typically in this form. The idea is that the user can coerce to a gunter_MB object, which is then analyzable by Lindsey().

The multivariate multiplicative binomial distribution is defined by

\[
\prod_{i=1}^{t} \binom{m_i}{x_i z_i} p_i^{x_i} q_i^{z_i} \theta_i^{x_i z_i} \prod_{i<j} \phi_{ij}^{x_i x_j}
\]

Thus if \(\theta = \phi = 1 \) the system reduces to a product of independent binomial distributions with probability \(p_i \) and size \(m_i \) for \(i = 1, \ldots, k \).

There follows a short R transcript showing the MB class in use, with annotation.

The first step is to define an m vector:
This means that \(m_1 = 2, m_2 = 3, m_3 = 1 \). So \(m_1 = 2 \) means that \(i = 1 \) corresponds to a binomial distribution with size 2 (that is, the observation is in the set \(\{0, 1, 2\} \)); and \(m_2 = 3 \) means that \(i = 2 \) corresponds to a binomial with size 3 (ie the set \(\{0, 1, 2, 3\} \)).

Now we need some observations:

```r
R> a <- matrix(c(1,0,0, 1,0,0, 1,1,1, 2,3,1, 2,0,1),5,3,byrow=T)
R> a
 [1,]  1  0  0
 [2,]  1  0  0
 [3,]  1  1  1
 [4,]  2  3  1
 [5,]  2  0  1
```

In matrix \(a \), the first observation, viz \(c(1,0,0) \) is interpreted as \(x_1 = 1, x_2 = 0, x_3 = 0 \). Thus, because \(x_i + z_i = m_i \), we have \(z_1 = 1, z_2 = 3, z_3 = 1 \). Now we can create an object of class \(MB \), using function \(MB() \):

```r
R> mx <- MB(a, m, letters[1:3])
```

The third argument gives names to the observations corresponding to the columns of \(a \). The values of \(m_1, m_2, m_3 \) may be extracted using \(getM() \):

```r
R> getM(mx)
a b c
2 3 1
```

The \(getM() \) function returns a named vector, with names given as the third argument to \(MB() \).

Now we illustrate the print method:

```r
R> mx
 a na b nb c nc
[1,]  1  1  0  3  0  1
[2,]  1  1  0  3  0  1
[3,]  1  1  1  2  1  0
[4,]  2  0  3  0  1  0
[5,]  2  0  0  3  1  0
```

See how the columns are in pairs: the first pair total 2 (because \(m_1 = 2 \)), the second pair total 3 (because \(m_2 = 3 \)), and the third pair total 1 (because \(m_3 = 1 \)). Each pair of columns has only a single degree of freedom, because \(m_i \) is known.

Also observe how the column names are in pairs. The print method puts these in place. Take the first two columns. These are named ‘a’ and ‘na’: this is intented to mean ‘a’ and ‘not a’.

We can now coerce to a gunter_MB:
Take the second line of the element `tbl` of `gx`, as an example. This reads c(1, 0, 0) corresponding to the observations of a, b, c respectively, and the second line of element `d` ["d" for "data"], viz 2, shows that this observation occurred twice (and in fact these were the first two lines of a).

Now we can coerce object `mx` to an array:

```r
R> (ax <- as.array(mx))
 , , c = 0

 b
 a  0 1 2 3
 0 0 0 0 0
 1 0 0 2 0
 2 0 0 0 0

 , , c = 1

 b
 a  0 1 2 3
 0 0 1 0 0
 1 0 0 0 0
 2 1 1 0 0
```

(actually, `ax` is an `array` object). The location of an element in `ax` corresponds to an observation of abc, and the entry corresponds to the number of times that observation was made. For example, `ax[1,2,0]=2` shows that c(1,2,0) occurred twice (the first two lines of a).

The Lindsey Poisson device is applicable: see `help(danaher)` for an application to the bivariate case and `help(lindsey)` for an example where a table is created from scratch.

Author(s)

Robin K. S. Hankin
Various multiplicative multinomial probability utilities

Description
Various multiplicative multinomial probability utilities for different types of observation

Usage

```
 MM(y, n=NULL, paras)  
 MM_allsameSum(y, n=NULL, paras)  
 MM_differsums(y, n=NULL, paras)  
 MM_allsameSum_A(y, paras)  
 MM_differsums_A(y, paras)  
 MM_single(yrow, paras, givelog=FALSE)  
 MM_support(paras, ss)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Observations: a matrix, each row is a single observation</td>
</tr>
<tr>
<td>yrow</td>
<td>A single observation corresponding to one row of matrix y</td>
</tr>
<tr>
<td>n</td>
<td>Integer vector with one element for each row of y. Default value of NULL means to interpret each row of y as being observed once</td>
</tr>
<tr>
<td>ss</td>
<td>Sufficient statistics, as returned by suffstats()</td>
</tr>
<tr>
<td>givelog</td>
<td>Boolean in MM_single() with TRUE meaning to return the log likelihood and default FALSE meaning to return the likelihood</td>
</tr>
<tr>
<td>paras</td>
<td>Object of class paras</td>
</tr>
</tbody>
</table>

Examples

```r
a <- matrix(c(1,0,0,1,0,0,1,1,1,2,3,1,2,0,1),5,3,byrow=TRUE)
m <- c(2,3,1)
mx <- MB(a, m, letters[1:3])  # mx is of class 'MB'; column headings  # mean "a" and "not a".
ax <- as.array(mx)
gx <- gunter(ax)
ax2 <- as.array(gx)
data(danaher)
summary(Lindsey_MB(danaher))
```
Details

Consider non-negative integers \(y_1, \ldots, y_k\) with \(\sum y_i = y\). Then suppose the frequency function of the distribution \(Y_1, \ldots, Y_k\) is

\[
C \cdot \binom{y}{y_1, \ldots, y_k} \prod_{i=1}^{k} p_i^{y_i} \prod_{1 \leq i < j \leq k} \theta_{ij}^{y_i y_j}
\]

where \(p_1, \ldots, p_k \geq 0, \sum p_i = 1\) correspond to probabilities; and \(\theta_{ij} > 0\) for \(1 \leq i < j \leq k\) are additional parameters.

Here \(C\) stands for a normalization constant:

\[
C = C(p, \theta, Y) = \sum_{y_1 + \cdots + y_k = y} \prod_{i=1}^{k} p_i^{y_i} \prod_{1 \leq i < j \leq k} \theta_{ij}^{y_i y_j}
\]

which is evaluated numerically. This is expensive.

The usual case is to use function \(\text{mm}\).

- Function \(\text{mm}\) returns the log of the probability of a matrix of rows of independent multinomial observations. It is a wrapper for \(\text{mm}_\text{allsamesum}\) and \(\text{mm}_\text{differsums}\). Recall that optional argument \(n\) specifies the number of times that each row is observed. Calls \(\text{NormC}\).
- Function \(\text{mm}_\text{allsamesum}\) gives the log of the probability of observing a matrix where the rowsums are identical. Calls \(\text{NormC}\).
- Function \(\text{mm}_\text{differsums}\) gives the log of the probability of observing a matrix where the rowsums are not necessarily identical. \textbf{Warning:} This function takes a long time to run. Calls \(\text{NormC}\), possibly many times.
- Functions \(\text{mm}_\text{allsamesum}_A\) and \(\text{mm}_\text{differsums}_A\) are analogous to functions \(\text{mm}_\text{allsamesum}\) and \(\text{mm}_\text{differsums}\) but interpret the matrix \(y\) as having rows corresponding to observations; each row is observed once, as in \text{data(pollen)}). Both call \(\text{NormC}\).
- Function \(\text{mm}_\text{single}\) gives a likelihood function for a \text{paras} object with a single multinomial observation (that is, a single line of matrix \(y\)). Does not call \(\text{NormC}\).
- Function \(\text{mm}_\text{support}\) gives the support (that is, the log-likelihood) of a \text{paras} object; argument \(ss\) is the sufficient statistic, as returned by \text{suffstats}). Does not call \(\text{NormC}\).
- Function \(d\text{mm}\) [documented more fully at \text{rmm.Rd}] gives the probability of a single multivariate observation (ie a single row of the matrix argument \(y\)). Calls \(\text{NormC}\).

Author(s)

Robin K. S. Hankin

Examples

data(voting)

data(voting)
p <- Lindsey(voting, voting_tally)
multinomial

\[\mathbb{M}(\text{voting}, \text{voting_tally}, p) \] # No other value of 'p' gives a bigger value

\[\text{multinomial} \]

Multinomial function

Description

The multinomial function and its logarithm

Usage

\[\text{multinomial}(x) \]
\[\text{lmultinomial}(x) \]

Arguments

- \(x \) Numeric vector

Details

Function `multinomial()` returns

\[\binom{n}{n_1, n_2, \ldots, n_k} = \frac{n!}{n_1!n_2!\cdots n_k!} \]

where \(\sum_i n_i = n \), and function `lmultinomial()` returns the natural logarithm of this.

Note

Uses logarithmic functions to avoid overflow.

Author(s)

Robin K. S. Hankin

Examples

\[x \leftarrow \text{runif}(10) \]

\[\exp(\text{lmultinomial}(x)) - \text{multinomial}(x) \] # should be small
NormC

Normalizing constant for the multiplicative multinomial

Description

Calculates the normalizing constant for the multiplicative multinomial using direct numerical summation.

Usage

```
NormC(Y, paras, log = FALSE)
```

Arguments

- `Y`
 Total number of observations

- `paras`
 Object of class `paras`

- `log`
 Boolean, with default `FALSE` meaning to return the value, and `TRUE` meaning to return the natural logarithm

Author(s)

Robin K. S. Hankin

Examples

```
jj <- paras(3)
theta(jj) <- 2
NormC(5, jj)
```

optimizer

Maximum likelihood estimator for the MM

Description

Maximum likelihood estimator for the MM.

Usage

```
optimizer(y, n = NULL, start = NULL, method = "nlm",
          printing = FALSE, give_fit=FALSE, ...
)
optimizer_allsameSum(y, n = NULL, start = NULL, method = "nlm",
                      printing = FALSE, give_fit=FALSE, ...
)
optimizer_differSums(y, n = NULL, start = NULL, method = "nlm",
                      printing = FALSE, give_fit=FALSE, ...
)
```
Arguments

- **y**: Matrix with each row being a possible observation
- **n**: Counts of observations corresponding to rows of y
- **start**: Start value for optimization routine, taken to be an object of class paras. Default value of NULL means to start with Lindsey(y, n), which theoretically should be the maximum likelihood estimate
- **method**: String giving which optimization method to use. Default of Nelder means to use optim() with the Nelder-Mead method; the other supported option is nlm
- **printing**: Boolean, with TRUE meaning to print information as the optimization progresses and default FALSE meaning to print nothing
- **give_fit**: Boolean, with default FALSE meaning to return the maximum likelihood estimate in the form of a paras object, and TRUE meaning to return a two-element list, the first being the output of nlm() or optim() and the second being the MLE
- **...**: Further arguments passed to the optimization routine. In particular, note that hessian=TRUE is useful in conjunction with give_fit=TRUE

Details

Function optimizer() is the user-friendly version: it is a wrapper for optimizer_samesum() and optimizer_differsums(); it dispatches according to whether the rowsums are identical or not.

These functions are slow because they need to evaluate NormC() repeatedly, which is expensive.

Function optimizer_samesum() nominally produces the same output as Lindsey(), but is more computationally intensive.

Author(s)

Robin K. S. Hankin

See Also

Lindsey

Examples

data(voting)
p1 <- Lindsey(voting, voting_tally)
p2 <- optimizer(voting, voting_tally, start=p1)

theta(p1) - theta(p2) # Should be zero

Not run:
data(pollen)
p1 <- optimizer(pollen)
p2 <- Lindsey(pollen)
theta(p1) - theta(p2) # Isn't zero...numerical scruff...
Manipulate a paras object

Description

Various utilities to manipulate paras objects. Functions pnames() and pnames<-() operate on MB objects as expected.

Usage

paras(x, p, theta, pnames = character(0))
p(x) <- value
theta(x) <- value
p(x)
theta(x)
pnames(x)
pnames(x) <- value
getVals(x)
S4 method for signature 'paras'
length(x)

Arguments

x Object of class paras
p In function paras(), a vector of the first \(k - 1 \) elements of the probabilities
theta In function paras(), a \(k \) by \(k \) matrix with diagonal composed of ones
pnames In function paras(), a character vector of names for the entries
value Replacement value

Details

A paras object contains the parameters needed to specify a multiplicative multinomial distribution. Suppose \(p \) is an object of class paras object. Then \(p \) is a list of two elements. The first element, \(p \), is a vector of length length(\(p \)) and the second is an upper-diagonal matrix square matrix of size length(\(p \)). The vignette gives further details.

The functions documented here allow the user to inspect and change paras objects.

Author(s)

Robin K. S. Hankin

See Also

MM, MB
Examples

jj <- paras(5)
pnames(jj) <- letters[1:5]
p(jj) <- c(0.1, 0.1, 0.3, 0.1)
theta(jj) <- matrix(1:25, 5, 5)
pnames(jj) <- letters[1:5]
jj

OK, we've defined jj, now use it with some other functions:
dMM(rep(1,5),jj)
MM_single(1:5,jj)
rMM(2,9,jj)

Description

Data from Mosimann 1962 detailing forest pollen counts

Usage

data(pollen)

Format

A matrix with four columns and 76 rows.

Details

The rows each sum to 100; the values are counts of four different types of pollen. Each row corresponds to a different level in the core; the levels are in sequence with the first row being most recent and the last row being the oldest.

References

J. E. Mosimann 1962. “On the compound multinomial distribution, the multivariate \(\beta \)-distribution, and correlations among proportions”. *Biometrika*, volume 49, numbers 1 and 2, pp65-82.

Examples

```r
## Not run:
data(pollen)
Lindsey(pollen)
```

End(Not run)
powell
Dataset due to Powell (1990)

Description
Dataset due to Powell (1990)

Usage
```r
data(powell)
```

Format
A frequency table of counts of association data.

Source
- W. Powell, M. Coleman and J. McNicol 1990 “The statistical analysis of potato culture data”.
 Plant Cell, Tissue and Organ Culture 23:159-164

Examples
```r
data(powell)
Lindsey(powell, powell_counts)
```

rMM
Random samples from the multiplicative multinomial

Description
Density, and random samples drawn from, the multiplicative multinomial

Usage
```r
rMM(n, Y, paras, burnin = 4*Y, every = 4*Y, start = NULL)
dMM(Y, paras)
```

Arguments
- `n` Number of observations to make
- `Y` Sum of each observation (for example, 100 for the pollen dataset, 4 for voting)
- `paras` Parameters of the MM distribution; an object of class `paras`
- `every` Each row is recorded every every steps through the Markov chain. Thus every=10 means every tenth row is written to the returned matrix during MH process (and the other nine values are discarded)
- `burnin` Number of initial observations to ignore
- `start` Observation to start simulation, with default NULL corresponding to using a random start vector
Details
Function `rM()` uses standard Metropolis-Hastings simulation.
Function `dM()` is documented here for convenience; see `help(M)` for related functionality.

Value
Returns a matrix with n rows and `length(paras)` columns. Each row is an observation.

Author(s)
Robin K. S. Hankin

See Also

Examples
```r
data(voting)
rM(10,4,Lindsey(voting,voting_tally))

p <- paras(3)
theta(p) <- 2
dM(1:3,p)
```

skellam

Brassica Dataset due to Catcheside

Description
Dataset due to Catcheside, used by Skellam (1948) and subsequently by Altham (1978).

Usage
```r
data(skellam)
```

Format
A frequency table of counts of association data.

Source
Examples

data(skellam)
lindsey(skellam, skellam_counts)

suffstats Sufficient statistics for the multiplicative multinomial

Description

Calculate, manipulate, and display sufficient statistics of the multiplicative multinomial. Functionality for analysing datasets, and distributions specified by their parameters is given; summary and print methods are also documented here.

Usage

suffstats(y, n = NULL)
expected_suffstats(L, Y)
S3 method for class 'suffstats'
print(x, ...)
S3 method for class 'suffstats'
summary(object, ...)
S3 method for class 'summary.suffstats'
print(x, ...)

Arguments

y, n
In function suffstats(), argument y is a matrix with each row being a possible observation and n is counts of observations corresponding to rows of y with default NULL interpreted as each row of y being observed once. If y is an object of class gunter, this is interpreted sensibly.

L, Y
In function expected_suffstats(), argument L is an object of class Lindsey [typically returned by function Lindsey()], and Y is the known constant sum (ie the rowSums() of the observations)

x, object
An object of class suffstats or summary.suffstats, to be printed or summarized

... Further arguments to the print or summary methods. Currently ignored

Details

Function suffstats() returns a list comprising a set of sufficient statistics for the observations y, [n].

This function requires that the rowsums of y are all identical.
sweets

Value

Function `suffstats()` returns a list of four components:

- **Y** Rowsums of `y`
- **nobs** Number of observations
- **row_sums** Column sums of `y`, counted with multiplicity
- **cross_prods** Matrix of summed squares

Function `summary.suffstats()` provides a summary of a `suffstats` object that is a list with two elements: `row_sums` and `cross_prods`, normalized with `nobs` and `Y` so that the values are comparable with that returned by `expected_suffstats()`. In particular, the sum of `row_sums` is the known sum `y`.

Author(s)

Robin Hankin and P. M. E. Altham

Examples

```r
data(voting)
suffstats(voting, voting_tally)

data(wilson)
wilson <- gunter(non_met)
suffstats(wilson)

L <- Lindsey(wilson)

expected_suffstats(L,5)
summary(suffstats(wilson))  # should match.

summary(suffstats(rMM(10,5,L)))  # should be close.
```

sweets

Synthetic dataset due to Hankin

Description

Four objects:

- `sweets` is a $2 \times 3 \times 21$ array
- `sweets_tally` is a length 37 vector
- `sweets_array` is a $2 \times 3 \times 37$ vector
- `sweets_table` is a 37×6 matrix
Usage
data(sweets)

Details

Object sweets is the raw dataset; objects sweets_table and sweets_tally are processed versions which are easier to analyze.

The father of a certain family brings home nine sweets of type mm and nine sweets of type jb each day for 21 days to his children, AMH, ZJH, and AGH.

The children share the sweets amongst themselves in such a way that each child receives exactly 6 sweets.

- Array sweets has dimension c(2,3,21): 2 types of sweets, 3 children, and 21 days. Thus sweets[,1] shows that on the first day, AMH chose 0 sweets of type mm and 6 sweets of type jb; child ZJH chose 3 of each, and child AGH chose 6 sweets of type mm and 0 sweets of type jb.

 Observe the constant marginal totals: the kids have the same overall number of sweets each, and there are a fixed number of each kind of sweet.

- Array sweets_array has dimension c(2,3,37): 2 sweets, 3 children, and 37 possible ways of arranging a matrix with the specified marginal totals. This can be produced by allboards() of the aylmer package.

- sweets_table is a dataframe with six columns, one for each combination of child and sweet, and 37 rows, each row showing a permissible arrangement. All possibilities are present. The six entries of sweets[,1] correspond to the six elements of sweets_table[1,]; the column names are mnemonics.

- sweets_tally shows how often each of the arrangements in sweets_tally was observed (that is, it's a table of the 21 observations in sweets)

Source

The Hankin family

Examples
data(sweets)

show correspondence between sweets_table and sweets_tally:
cbind(sweets_table, sweets_tally)

Sum the data, by sweet and child and test:
fisher.test(apply(sweets,1:2,sum))
Not significant!

Now test for overdispersion.
First set up the regressors:
voting <- apply(sweets_array,3,tcrossprod)
jj1 <- apply(sweets_array,3,crossprod)
dim(jj1) <- c(2,2,37)
dim(jj2) <- c(3,3,37)

theta_xy <- jj1[1,2,]
phi_ab <- jj2[1,2,]
phi_ac <- jj2[1,3,]
phi_bc <- jj2[2,3,]

Now the offset:
Off <- apply(sweets_array,3,function(x){-sum(factorial(x))})

Now the formula:
f <- formula(sweets_tally~ -1 + theta_xy + phi_ab + phi_ac + phi_bc)

Now the Lindsey Poisson device:
out <- glm(formula=f, offset=Off, family=poisson)

summary(out)
See how the residual deviance is comparable with the degrees of freedom

voting

Synthetic dataset of voting behaviour due to Altham

Description

Synthetic dataset of voting behaviour due to Altham

Usage

data(voting)

Format

voting is a three-column matrix with each row being a configuration of voting in a household with four members, and three choices. Vector voting_tally is a list of how many households voted, and nvoting_tally is a more extreme dataset of the same type, used to uncover bugs in Lindsey().

Source

Supplied by P. M. E. Altham

Examples

data(voting)
Lindsey(voting,voting_tally)
Description

Dataset due to Wilson

Usage

data(wilson)

Format

Two objects, met_area and non_met, which have three columns and either 17 or 18 rows. Each row corresponds to a neighborhood of five households, each of which votes for one of three choices: US, S, or VS. Each column corresponds to one of these choices. The rowsums are constant because there are exactly five households in each neighborhood.

Source

Examples

data(wilson)
Lindsey(non_met)
Index

Topic datasets
- danaher, 3
- pollen, 17
- powell, 18
- skellam, 19
- sweets, 21
- voting, 23
- wilson, 24

Topic math
- Extract.paras, 4
- [.paras-method (Extract.paras), 4
- [.paras (Extract.paras), 4
- [<=.paras-method (Extract.paras), 4
- [<=.paras (Extract.paras), 4
- as.array.gunter_M (MB), 8
- as.array.M (MB), 8
- bioChemists (Lindsey), 6
- Catcheside (skellam), 19
- catcheside (skellam), 19
- counts (MB), 8
- counts_M-M-method (MB), 8
- danaher, 3, 7, 11
- dMM (rMM), 18
- expected_suffstats (suffstats), 20
- extract (Extract.paras), 4
- Extract.paras, 4
- getM (MB), 8
- getM_M-M-method (MB), 8
- getVals (paras), 16
- getVals.paras_method (paras), 16
- gunter, 5, 7
- gunter.data.frame-method (gunter), 5
- gunter.matrix-method (gunter), 5
- gunter_M-M-method (gunter), 5
- gunter.Oarray-method (gunter), 5
- length.paras-method (paras), 16
- Lindsey, 6, 11, 15
- Lindsey_MB (Lindsey), 6
- lmultinomial (multinomial), 13
- MB, 8, 16
- MB-class (MB), 8
- met_area (wilson), 24
- MM, 11, 11, 16, 19
- MM-package, 2
- MM_allssamesum (MM), 11
- MM_allssamesum_A (MM), 11
- MM_differsums (MM), 11
- MM_differsums_A (MM), 11
- MM_single (MM), 11
- MM_support (MM), 11
- multinomial, 13
- non_met (wilson), 24
- NormC, 14
- Nvoting_tally (voting), 23
- optimizer, 3, 14
- optimizer_allssamesum (optimizer), 14
- optimizer_differsums (optimizer), 14
- p (paras), 16
- p.paras-method (paras), 16
- p< (paras), 16
- p<.paras-method (paras), 16
- paras, 16
- paras-class (paras), 16
- pnames (paras), 16
- pnames_M-M-method (paras), 16
- pnames.paras-method (paras), 16
- pnames< (paras), 16
- pnames<.paras-method (paras), 16
- pollen, 17
- Powell (powell), 18
powell, 18
powell_counts (powell), 18
print.gunter (gunter), 5
print.gunter_M (MB), 8
print.Lindsey_output (Lindsey), 6
print.suffstats (suffstats), 20
print.summary.suffstats (suffstats), 20

rMM, 18

Skellam (skellam), 19
skellam, 19
skellam_counts (skellam), 19
suffstats, 20
summary.suffstats (suffstats), 20
sweets, 21
sweets_array (sweets), 21
sweets_table (sweets), 21
sweets_tally (sweets), 21

theta (paras), 16
theta, paras-method (paras), 16
theta<- (paras), 16
theta<-, paras-method (paras), 16

voting, 23
voting_tally (voting), 23

wilson, 24