Package ‘MNM’

March 3, 2018

Type Package
Title Multivariate Nonparametric Methods. An Approach Based on Spatial Signs and Ranks
Version 1.0-3
Date 2018-03-02
Author Klaus Nordhausen, Jyrki Mottonen, Hannu Oja
Maintainer Klaus Nordhausen <klaus.nordhausen@tuwien.ac.at>
Depends R (>= 2.9.2), ICSNP, SpatialNP
Imports ellipse, ICS
Suggests Flury, gamlss, mvtnorm
Description Multivariate tests, estimates and methods based on the identity score, spatial sign score and spatial rank score are provided. The methods include one and c-sample problems, shape estimation and testing, linear regression and principal components. The methodology is described in Oja (2010) <doi:10.1007/978-1-4419-0468-3> and Nordhausen and Oja (2011) <doi:10.18637/jss.v043.i05>.
License GPL (>= 2)
LazyLoad yes
Encoding latin1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-03-03 00:54:59 UTC

R topics documented:

MNM-package .. 2
affine.trans ... 3
anova.mvl1lm ... 4
beans ... 5
coef.mvl1lm .. 6
fitted.mvl1lm ... 7
mv.1sample.est .. 7
Multivariate Nonparametric Methods. An Approach Based on Spatial Signs and Ranks.

Multivariate tests, estimates and methods based on the identity score, spatial sign score and spatial rank score are provided. The methods include one and c-sample problems, shape estimation and testing, linear regression and principal components.
The methods implemented here are mainly described in Oja (2010) and the package can be used to reproduce most of the examples in the book. The book will be referred to as the MNM book.

Author(s)

Klaus Nordhausen, Jyrki Möttönen and Hannu Oja

Maintainer: Klaus Nordhausen, <klaus.nordhausen@tuwien.ac.at>

References

affine.trans

Function For Affine Data Transformation

Description

Function for transformations of the form \(Ax + b \) or \(A^{1/2}x + b \)

Usage

affine.trans(X, A = diag(1, dim(X)[2]), b = rep(0, dim(X)[2]), A.sqrt = FALSE, na.action = na.fail)

Arguments

X a numeric data frame or matrix with p columns.
A full rank p times p matrix.
b numeric vector of length p.
A.sqrt logical. If TRUE the symmetric square root of A will be used.
na.action a function which indicates what should happen when the data contain 'NA's. Default is to fail.
Value

a matrix.

Author(s)

Klaus Nordhausen

Examples

data(iris)
IRIS <- iris[,1:4]
colMeans(IRIS)
cov(IRIS)
IRIS.trans <- affine.trans(IRIS, solve(cov(IRIS)), colMeans(IRIS), TRUE)
colMeans(IRIS.trans)
cov(IRIS.trans)

Description

Comparisons between nested multivariate linear models fitted by \texttt{mv} \texttt{l1lm}. The comparison can be based on score type of tests and Wald type of tests.

Usage

\texttt{anova(object, object2 = NULL, test = "Score", ...)}

Arguments

\begin{itemize}
\item \texttt{object} - an object of class \texttt{mvl1lm}. This gives the full model.
\item \texttt{object2} - an object of class \texttt{mvl1lm} or \texttt{NULL}. This gives the restricted (nested) model.
\item \texttt{test} - The test to be used. Options are \texttt{Score} and \texttt{Wald}. The score version is the default.
\item ... - needed for other methods.
\end{itemize}

Details

If only \texttt{object} is provided the function tests if all parameters equal zero. If \texttt{object} and \texttt{object2} are provided the function tests the null hypothesis that the the restricted model (\texttt{object2}) is true. For details see chapter 13 of the MNM book. Note that it is the users responsibility to make sure that the two models are nested and fitted on the same data. For the regular L2 regression \texttt{anova.mlm} provides more options.
Value

A list with class `anovamvl1lm` containing the following components:

- **models**: the model call(s) of object and object2.
- **method**: type of the test used.
- **statistic**: value of the test statistic.
- **parameter**: degrees of freedom.
- **p.value**: p-value of the test.

Author(s)

Klaus Nordhausen

References

Examples

```r
# creating simple data
X <- cbind(rep(1,100),rmvnorm(100,c(0,0,0)))
B <- matrix(c(4,1,1,0.5,-3,2,2,2),ncol=4, byrow=TRUE)
Y <- X %*% t(B)+ rmvnorm(100,c(0,0), diag(0.2,2))
DAT <- data.frame(x1=X[,2],x2=X[,3], x3=X[,4])

FullModel <- mv.l1lm(Y ~ x1 + x2 + x3, scores= "s", stand= "i", data=DAT)
RestModel <- mv.l1lm(Y ~ x1, scores= "s", stand= "i", data=DAT)

anova(FullModel)
anova(FullModel, RestModel)
anova(FullModel, RestModel, test="W")
```

beans

Randomized Block Experiment of Plots of Beans

Description

Results of a randomized block experiment in the Cook Islands involving the effect of six different treatments on plots of beans infested by the serpentine leaf miner insect.

Usage

data(beans)
Format

A data frame with 24 observations on the following 5 variables.

- Block a factor with levels 1, 2, 3, 4.
- Treatment a factor with levels 1, 2, 3, 4, 5, 6.
- y1 a numeric vector. The number of miners per leaf.
- y2 a numeric vector. The weight of beans per plot (in kg).
- y3 a numeric vector. 1/sin(sqrt(p)), where p is the proportion of leaves infested with borer.

Details

The value of variable y3 in Block 4 for Treatment 2 is an estimate of a missing value.

Source

Data courtesy of Dr. R. Fullerton.

References

Examples

data(beans)
plot(beans)

coef.mvl1lm Coefficients of an mvl1lm Object

Description

Extracts the coefficients of an mvl1lm object.

Usage

```r
## S3 method for class 'mvl1lm'
coef(object, ...)
```

Arguments

- object an object of class mvl1lm.
- ... needed for other methods.

Details

Note that for rank scores the intercept, even when specified in the model, is not considered a coefficient.
fitted.mvl1lm

Author(s)

Klaus Nordhausen

fitted.mvl1lm
Fitted Values of an mvl1lm Object

Description

Extracts the fitted values of an mvl1lm object.

Usage

```r
## S3 method for class 'mvl1lm'
fitted(object, ...)
```

Arguments

- `object` an object of class `mvl1lm`.
- `...` needed for other methods.

mv.1sample.est
Multivariate One Sample Location Estimates

Description

Estimates the multivariate location for different score functions and their asymptotic covariance matrices in the one sample case.

Usage

```r
mv.1sample.est(X, score = "identity", stand = "outer", maxiter = 100,
eps = 1e-06, na.action = na.fail, ...)
```

Arguments

- `X` a numeric data frame or matrix.
- `score` the score to be used. Possible choices are `identity`, `sign` and `rank`.
- `stand` the standardization method used. Possible choices are `outer` and `inner`.
- `maxiter` maximum number of iterations. Used only for `score = "sign"` and `score = "rank"`.
- `eps` convergence tolerance. Used only for `score = "sign"` and `score = "rank"`.
- `...` arguments that can be passed on to functions used for the estimation of location.
- `na.action` a function which indicates what should happen when the data contain 'NA's. Default is to fail.
Details

For identity scores the location estimate is the regular mean vector. For the spatial sign score it is the spatial median in the outer standardization case and the Hettmansperger-Randles estimate in the inner standardization case. The rank estimate is the spatial Hodges-Lehmann estimator, either regular (stand = "outer") or affine equivariant (stand = "inner").

Computation with outer standardization is faster than with inner standardization and especially the rank version might be slow and memory consuming.

For further details see chapters 3, 5, 6, 7 and 8 of the MNM book.

Value

A list with class 'mvloc' containing the following components:

- location: the location estimate as a vector.
- vcov: the asymptotic covariance matrix of the location estimate.
- est.name: name of the location estimate.
- dname: name of the data set.

Author(s)

Klaus Nordhausen

References

See Also

spatial.sign, spatial.signrank, spatial.median, HR.Mest

Examples

```r
set.seed(1)
X <- rmvt(100, diag(c(1, 2, 0.5)), 3)

est.Hot.X <- mv.1sample.est(X)
est.SS.o.X <- mv.1sample.est(X,"s")
est.SS.i.X <- mv.1sample.est(X,"s","i")
est.SR.o.X <- mv.1sample.est(X,"r")
est.SR.i.X <- mv.1sample.est(X,"r","i")

est.SR.o.X
summary(est.SR.o.X)

# plotting
plot(est.Hot.X, est.SS.i.X, est.SR.i.X, X)
```
Description

Tests for multivariate location using different score functions.

Usage

```r
mv.1sample.test(X, mu = 0, score = "identity", stand = "outer",
                   method = "approximation", n.simu = 1000,
                   na.action = na.fail)
```

Arguments

- `X`: a numeric data frame or matrix.
- `mu`: the null hypothesis value. Default is the zero vector.
- `score`: the score to be used. Possible choices are `identity`, `sign` and `rank`.
- `stand`: the standardization method used. Possible choices are `outer` and `inner`.
- `method`: method for the computation of the p-value for the spatial sign and spatial signed-rank tests. Possible choices are `approximation` and `signchange`.
- `n.simu`: number of simulated sign changes if `method=signchange`.
- `na.action`: a function which indicates what should happen when the data contain `NA's`. Default is to fail.

Details

The tests provided here are the Hotelling's T^2 test, the spatial sign test and the signed-rank test and their affine invariant versions in the one sample location case.

Note that for the identity score the provided test is not the traditional Hotelling's T^2 test because here the covariance matrix is computed wrt to the null value and not wrt to the sample mean. Use the function `HotellingsT2` for the traditional version of Hotelling's T^2 test. Details about the tests can be found in the chapters 5-8 of the MNM book.

Value

A list with class 'htest' containing the following components:

- `statistic`: the value of the test statistic.
- `parameter`: the degrees of freedom for the test statistic or the number of replications in the simulation.
- `p.value`: the p-value for the test.
null.value the specified hypothesized value of the location.
alternative a character string with the value 'two.sided'.
method a character string indicating what type of test was performed.
data.name a character string giving the name of the data set.

Author(s)
Klaus Nordhausen

References

See Also
HotellingsT2, sr.loc.test

Examples
library(mvtnorm)
X <- rmvt(100, diag(c(1, 2, 0.5)), 3)

mv.1sample.test(X, mu=c(0,0,0.5))
mv.1sample.test(X, score="s", stand="i")
mv.1sample.test(X, score="s", stand="i", method="s")
mv.1sample.test(X, score="r", stand="o")
mv.1sample.test(X, score="r", stand="i")
Arguments

- **x**: a numeric data frame or matrix.
- **g**: a factor with two levels.
- **score**: the score to be used. Possible choices are `identity`, `sign` and `rank`.
- **stand**: the standardization method used. Possible choices are `outer` and `inner`.
- **maxiter**: maximum number of iterations. Used only for `score = "sign"` and `score = "rank"`.
- **eps**: convergence tolerance. Used only for `score = "sign"` and `score = "rank"`.
- **na.action**: a function which indicates what should happen when the data contain 'NA's. Default is to fail.
- **...**: arguments that can be passed on to functions used for the estimation of location.

Details

This implements the location estimates and their asymptotic covariance matrices as described in chapter 11 of the MNM book. Note that the shift is the parameter for the difference between 'values of level 1 - values of level 2' where the levels are as defined in the factor `g`.

For the general c sample location case the function `mv.11lm` might be used.

Value

A list with class 'mvloc' containing the following components:

- **location**: the location estimate as a vector.
- **vcov**: the asymptotic covariance matrix of the location estimate.
- **est.name**: name of the location estimate.
- **dname**: name of data set for which the location was computed.

Author(s)

Klaus Nordhausen

References

See Also

- `spatial.sign`, `spatial.signrank`
Examples

```r
X1 <- rmvnorm(50, c(0, 0, 0))
X2 <- rmvnorm(70, c(1, 1, 2))
X <- rbind(X1, X2)
g <- factor(rep(1:2, c(50, 70)))

est.Hot.X <- mv.2sample.est(X, g)
est.SS.o.X <- mv.2sample.est(X, g, "s")
est.SS.i.X <- mv.2sample.est(X, g, "s", "i")
est.SR.o.X <- mv.2sample.est(X, g, "r")
est.SR.i.X <- mv.2sample.est(X, g, "r", "i")

est.SS.o.X

summary(est.SS.o.X)

# plotting

plotMvloc(est.Hot.X, est.SS.i.X, est.SR.i.X)
```

mv.2way.est

Treatment Effect Estimates in the Randomized Complete Block Case

Description

The treatment effect estimates for different score functions and their asymptotic covariance matrices in the randomized complete block case.

Usage

```r
mv.2way.est(x, block, treatment, score = c("identity", "sign", "rank"),
            stand = c("outer", "inner"),
            eps=1.0e-10, n.iter=1000, na.action = na.fail)
```

Arguments

- **x**: a numeric data frame or matrix.
- **block**: a factor with at least two levels.
- **treatment**: a factor with at least two levels.
- **score**: the score to be used. Possible choices are identity, sign and rank.
- **stand**: the standardization method used. Possible choices are outer and inner.
- **eps**: convergence criterion.
- **n.iter**: maximum number of iterations.
- **na.action**: a function which indicates what should happen when the data contain ‘NA’s. Default is to fail.
mv.2way.test

Details

This implements the treatment effect estimates described in chapter 12 of the MNM book.

Value

A list of length c(c-1)/2 with class 'mvcloc' where c is the number of treatments. Each component of the list is a list with class 'mvloc' containing the following components:

- location: the adjusted treatment effect estimate when comparing the treatment pair given in dname.
- vcov: the asymptotic covariance matrix of the adjusted treatment effect estimate.
- est.name: name of the adjusted treatment effect estimate.
- dname: the treatment pair for which the adjusted treatment effect estimate was computed.

Author(s)

Jyrki Möttönen <jyrki.mottonen@helsinki.fi>

References

See Also

mv.2way.test, mv.1sample.est, mv.2sample.est

Examples

data(beans)
est<-mv.2way.est(beans[,3:5],beans$Block,beans$Treatment,score="r",stand="i")
summary(est)

mv.2way.test Randomized Complete Block Design.

Description

Multivariate tests for testing the null hypothesis that there is no treatment effect in a randomized complete block design using different scores.

Usage

mv.2way.test(x, block, treatment, score = c("identity", "sign", "rank"), stand = c("outer", "inner"), method = c("approximation", "permutation"), n.simu = 1000, eps=1.0e-10, n.iter=10000, na.action = na.fail)
Arguments

x a numeric data frame or matrix of response variables.
block a factor with at least two levels.
treatment a factor with at least two levels.
score the score to be used. Possible choices are identity, sign and rank.
stand the standardization method used. Possible choices are outer and inner.
method method for the computation of the p-value for the spatial sign and spatial rank tests. Possible choices are approximation and permutation.
n.simu number of simulated permutations if method="permutation".
eps convergence criterion.
n.iter maximum number of iterations.
na.action a function which indicates what should happen when the data contain 'NA's. Default is to fail.

Details

This implements the tests described in chapter 12 of the MNM book.

Value

A list with class 'htest' containing the following components:

statistic the value of the test statistic.
parameter the degrees of freedom for the test statistic or the number of replications in the simulation.
p.value the p-value for the test.
null.value the specified null hypothesis value of the location.
alternative a character string with the value 'two.sided'.
method a character string indicating what type of test was performed.
data.name a character string giving the name of the data set and of the grouping vector.

Author(s)

Jyrki Möttönen <jyrki.mottonen@helsinki.fi>

References

See Also

mv.1sample.test, mv.Csample.test, mv.2way.est
Examples

```r
blocks <- gl(10, 5)
treatments <- factor(rep(1:5, 10))
X <- rmvnorm(n = 50, mean = c(1,2,3), sigma = diag(3))
mv.2way.test(X, blocks, treatments, score="r", stand="i", method="a")
```

mv.Csample.test
C Sample Test of Location

Description

Several samples location tests using different scores.

Usage

```r
mv.Csample.test(X, g, score = "identity", stand = "outer", method = "approximation", n.simu = 1000, na.action = na.fail, ...)
```

Arguments

- **X**
 a numeric data frame or matrix of response values.
- **g**
 a factor with at least two levels.
- **score**
 the score to be used. Possible choices are identity, sign and rank.
- **stand**
 the standardization method used. Possible choices are outer and inner.
- **method**
 method for the computation of the p-value for the spatial sign and spatial signed-rank tests. Possible choices are approximation and permutation.
- **n.simu**
 number of simulated sign changes if method="permutation".
- **na.action**
 a function which indicates what should happen when the data contain 'NA's. Default is to fail.
- **...**
 arguments that can be passed on to functions used for the estimation of the spatial signs and spatial ranks.

Details

This implements the location tests based on identity, sign or rank scores as described in chapter 11 of the MNM book.
Value

A list with class 'htest' containing the following components:

- **statistic**: the value of the test statistic.
- **parameter**: the degrees of freedom for the test statistic or the number of replications in the simulation.
- **p.value**: the p-value for the test.
- **null.value**: the specified hypothesized value of the location.
- **alternative**: a character string with the value 'two.sided'.
- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name of the data set and of the grouping vector.

Author(s)

Klaus Nordhausen

References

See Also

spatial.sign, spatial.rank, HotellingsT2

Examples

```r
X <- rmvt(150, diag(1,3))
g1 <- gl(3,50)
mv.Csample.test(X, g1)
mv.Csample.test(X, g1, score = "s")
mv.Csample.test(X, g1, score = "r")

Y <- rbind(rmvnorm(40, c(0,0,0)), rmvnorm(60, c(0,0,0.4)))
g2 <- factor(rep(1:2, c(40, 60)))
mv.Csample.test(Y, g2, score = "r")
mv.Csample.test(Y, g2, score = "r", method="p")
```
Description

Tests for independence of two vectors using different scores.

Usage

mv.ind.test(X, Y, score = "identity", method = "approximation",
 n.simu = 1000, na.action = na.fail)

Arguments

X a numeric data frame or matrix. Must have the same number of rows as Y.
Y a numeric data frame or matrix. Must have the same number of rows as X.
score the score to be used. Possible are identity, sign, symm and rank.
method method for for computation of the p-value for the spatial sign and spatial signed-rank tests. Possible are approximation and permutation.
n.simu number of permutations if method="permutation".
na.action a function which indicates what should happen when the data contain 'NA's. Default is to fail.

Details

This implements the independence tests as described in chapter 10 of the MNM book. Note that only inner test versions are implemented and that for the symmetrized sign score only the approximative method for the computation of the p-value is available.

Value

A list with class 'htest' containing the following components:

- statistic: the value of the test statistic.
- parameter: the degrees of freedom for the test statistic or the number of replications in the simulation.
- p.value: the p-value for the test.
- null.value: the specified null hypothesis value.
- alternative: a character string with the value 'two.sided'.
- method: a character string indicating what type of test was performed.
- data.name: a character string giving the name of the two data matrices.

Author(s)

Klaus Nordhausen

References

Examples

```r
X <- rmvt(150, diag(1,3), df=3)
Y <- rmvt(150, matrix(c(1,0.5,0.5,1), nrow=2), df=3)

mv.ind.test(X, Y)
mv.ind.test(X, Y, method = "p")

mv.ind.test(X, Y, score = "si")
mv.ind.test(X, Y, score = "si", method = "p")

mv.ind.test(X, Y, score = "r")
mv.ind.test(X, Y, score = "r", method = "p")
mv.ind.test(X, Y, score = "sy")
```

mv.l1lm

Linear Regression Based on Identity, Spatial Sign or Spatial Rank Scores

Description

This function fits a multivariate linear regression model based on identity, spatial sign or spatial rank scores. Both inner and outer standardization are possible.

Usage

```r
mv.l1lm(formula, scores = "identity", stand = "outer",
         maxiter = 1000, eps = 1e-06, eps.S = 1e-06,
         x = TRUE, y = TRUE, data = subset, na.action)
```

Arguments

- `formula` an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The left part of the formula (the response) must be a n x p matrix with at least two columns.
- `scores` score to be used. Can be either "identity", "sign" or "rank".
- `stand` can be "outer" or "inner".
- `maxiter` maximum number of iterations. Used only for score = "sign" and score = "rank".
- `eps` convergence tolerance. Used only for score = "sign" or score = "rank".
- `eps.S` lower limit for the residual norms. Used only for score = "sign" or score = "rank" in the iteration procedure to avoid to divide by a zero norm.
logical. Indicating whether the design matrix \(x \) returned from the model matrix should be stored. Default is \texttt{TRUE}. Might be needed for example in the \texttt{anova} function.

\texttt{y}

logical. Indicating whether the response matrix \(y \) should be stored. Default is \texttt{TRUE}.

\texttt{data}

an optional data frame, list or environment (or object coercible by \texttt{as.data.frame} to a data frame) containing the variables in the model. If not found in \texttt{data}, the variables are taken from \texttt{environment(formula)} or \texttt{environment(mv.l1lm)} if available.

\texttt{subset}

an optional vector specifying a subset of observations to be used in the fitting process.

\texttt{na.action}

a function which indicates what should happen when the data contain \texttt{NA}'s.

Details

The theory behind this function is described in detail in Chapter 13 of the MNM book. For regular multivariate L2-regression the function \texttt{lm} might be more efficient and offers more methods. Note however that the results given by \texttt{lm} and \texttt{mv.l1lm} may differ slightly due to different divisors of the covariance matrix.

The algorithms for the sign and rank scores are still in an early phase and therefore any feedback is very welcome. For example if \(p+1 \) residuals are 0, then the algorithms may not return correct values. Note also that the computations for rank scores might be slow.

Rank regression does not provide an estimate for the intercept parameter is not considered a parameter, a Hodges-Lehmann estimator of the residuals is then an estimate when an intercept term is in the formula. For the one sample case however the function cannot be used for rank scores. We recommend that the regression function should not be used for the one or two sample case. There are distinct functions designed for that purpose. Note furthermore that in the two sample case the covariance matrix returned from the regression function differs slightly from the one returned by the function \texttt{mv.2sample.est} since there matrix \(A \) is computed in a different way.

In general it is recommended to use the \texttt{data} argument and specify there the data frame that contains the variables and matrices. For having a matrix \(Y \) in a data frame for example the following methods work:

- \(\texttt{MyData} <- \texttt{data.frame(I(Y),...)} \)
- \(\texttt{MyData} <- \texttt{data.frame(...)} \)
 \(\texttt{MyData}\$Y \leftarrow Y \)

Otherwise also the function \texttt{cbind} can be used on the left side of the formula to combine numeric vectors on the fly.

Value

\texttt{mv.l1lm} returns an object of \texttt{class} \texttt{mv11lm}.

The functions \texttt{summary} is the best choice to view the results. The generic accessor functions \texttt{coefficients, fitted, residuals} and \texttt{vcov} extract various useful features of the value returned by \texttt{mv.l1lm}.

mv.l1lm

logical. Indicating whether the design matrix \(x \) should be stored. Default is \texttt{TRUE}. Might be needed for example in the \texttt{anova} function.

\texttt{y}

logical. Indicating whether the response matrix \(y \) should be stored. Default is \texttt{TRUE}.

\texttt{data}

an optional data frame, list or environment (or object coercible by \texttt{as.data.frame} to a data frame) containing the variables in the model. If not found in \texttt{data}, the variables are taken from \texttt{environment(formula)} or \texttt{environment(mv.l1lm)} if available.

\texttt{subset}

an optional vector specifying a subset of observations to be used in the fitting process.

\texttt{na.action}

a function which indicates what should happen when the data contain \texttt{NA}'s.

Details

The theory behind this function is described in detail in Chapter 13 of the MNM book. For regular multivariate L2-regression the function \texttt{lm} might be more efficient and offers more methods. Note however that the results given by \texttt{lm} and \texttt{mv.l1lm} may differ slightly due to different divisors of the covariance matrix.

The algorithms for the sign and rank scores are still in an early phase and therefore any feedback is very welcome. For example if \(p+1 \) residuals are 0, then the algorithms may not return correct values. Note also that the computations for rank scores might be slow.

Rank regression does not provide an estimate for the intercept parameter is not considered a parameter, a Hodges-Lehmann estimator of the residuals is then an estimate when an intercept term is in the formula. For the one sample case however the function cannot be used for rank scores. We recommend that the regression function should not be used for the one or two sample case. There are distinct functions designed for that purpose. Note furthermore that in the two sample case the covariance matrix returned from the regression function differs slightly from the one returned by the function \texttt{mv.2sample.est} since there matrix \(A \) is computed in a different way.

In general it is recommended to use the \texttt{data} argument and specify there the data frame that contains the variables and matrices. For having a matrix \(Y \) in a data frame for example the following methods work:

- \(\texttt{MyData} <- \texttt{data.frame(I(Y),...)} \)
- \(\texttt{MyData} <- \texttt{data.frame(...)} \)
 \(\texttt{MyData}\$Y \leftarrow Y \)

Otherwise also the function \texttt{cbind} can be used on the left side of the formula to combine numeric vectors on the fly.

Value

\texttt{mv.l1lm} returns an object of \texttt{class} \texttt{mv11lm}.

The functions \texttt{summary} is the best choice to view the results. The generic accessor functions \texttt{coefficients, fitted, residuals} and \texttt{vcov} extract various useful features of the value returned by \texttt{mv.l1lm}.

mv.l1lm

logical. Indicating whether the design matrix \(x \) should be stored. Default is \texttt{TRUE}. Might be needed for example in the \texttt{anova} function.

\texttt{y}

logical. Indicating whether the response matrix \(y \) should be stored. Default is \texttt{TRUE}.

\texttt{data}

an optional data frame, list or environment (or object coercible by \texttt{as.data.frame} to a data frame) containing the variables in the model. If not found in \texttt{data}, the variables are taken from \texttt{environment(formula)} or \texttt{environment(mv.l1lm)} if available.

\texttt{subset}

an optional vector specifying a subset of observations to be used in the fitting process.

\texttt{na.action}

a function which indicates what should happen when the data contain \texttt{NA}'s.

Details

The theory behind this function is described in detail in Chapter 13 of the MNM book. For regular multivariate L2-regression the function \texttt{lm} might be more efficient and offers more methods. Note however that the results given by \texttt{lm} and \texttt{mv.l1lm} may differ slightly due to different divisors of the covariance matrix.

The algorithms for the sign and rank scores are still in an early phase and therefore any feedback is very welcome. For example if \(p+1 \) residuals are 0, then the algorithms may not return correct values. Note also that the computations for rank scores might be slow.

Rank regression does not provide an estimate for the intercept parameter is not considered a parameter, a Hodges-Lehmann estimator of the residuals is then an estimate when an intercept term is in the formula. For the one sample case however the function cannot be used for rank scores. We recommend that the regression function should not be used for the one or two sample case. There are distinct functions designed for that purpose. Note furthermore that in the two sample case the covariance matrix returned from the regression function differs slightly from the one returned by the function \texttt{mv.2sample.est} since there matrix \(A \) is computed in a different way.

In general it is recommended to use the \texttt{data} argument and specify there the data frame that contains the variables and matrices. For having a matrix \(Y \) in a data frame for example the following methods work:

- \(\texttt{MyData} <- \texttt{data.frame(I(Y),...)} \)
- \(\texttt{MyData} <- \texttt{data.frame(...)} \)
 \(\texttt{MyData}\$Y \leftarrow Y \)

Otherwise also the function \texttt{cbind} can be used on the left side of the formula to combine numeric vectors on the fly.

Value

\texttt{mv.l1lm} returns an object of \texttt{class} \texttt{mv11lm}.

The functions \texttt{summary} is the best choice to view the results. The generic accessor functions \texttt{coefficients, fitted, residuals} and \texttt{vcov} extract various useful features of the value returned by \texttt{mv.l1lm}.

mv.l1lm

logical. Indicating whether the design matrix \(x \) should be stored. Default is \texttt{TRUE}. Might be needed for example in the \texttt{anova} function.

\texttt{y}

logical. Indicating whether the response matrix \(y \) should be stored. Default is \texttt{TRUE}.

\texttt{data}

an optional data frame, list or environment (or object coercible by \texttt{as.data.frame} to a data frame) containing the variables in the model. If not found in \texttt{data}, the variables are taken from \texttt{environment(formula)} or \texttt{environment(mv.l1lm)} if available.

\texttt{subset}

an optional vector specifying a subset of observations to be used in the fitting process.

\texttt{na.action}

a function which indicates what should happen when the data contain \texttt{NA}'s.
An object of class `mv.l1lm` is a list which contains different information depending on the scores and standardization used. To see its content use the function `str`.

Author(s)
Klaus Nordhausen

References

See Also

`lm`, `mv.1sample.est`, `mv.1sample.test`, `mv.2sample.est`, `mv.Csample.test`

Examples

```r
# creating simple data

X <- cbind(rep(1,100), rmvnorm(100,c(0,0)))
B <- matrix(c(4,1,1,0.5,-3,2,2,2), ncol=4, byrow=TRUE)
Y <- X %*% t(B) + rmvnorm(100,c(0,0), diag(0.2,2))
DAT <- data.frame(x1=X[,2], x2=X[,3], x3=X[,4], Y=1(Y))

# true B
t(B)

# example using identity scores

test1 <- mv.l1lm(Y ~ x1 + x2 + x3, data=DAT)

print(test1)
summary(test1)
coef(test1)
vcov(test1)
head(fitted(test1))
head(residuals(test1))

# example using outer sign scores

test2 <- mv.l1lm(Y ~ x1 + x2 + x3, scores = "s", data=DAT)

print(test2)
summary(test2)
coef(test2)
vcov(test2)
head(fitted(test2))
head(residuals(test2))

# example using inner sign scores

test3 <- mv.l1lm(Y ~ x1 + x2 + x3, scores = "s", stand="i", data=DAT)
```
print(test3)
summary(test3)
coef(test3)
vcov(test3)
head(fitted(test3))
head(residuals(test3))

example using outer rank scores

```r

# example using inner rank scores

test5 <- mv.l1lm(Y ~ x1 + x2 + x3, scores= "r", stand="i", data=DAT)

print(test5)
summary(test5)
coef(test5)
vcov(test5)
head(fitted(test5))
head(residuals(test5))

# prediction

newData <- data.frame(x1=c(1,-2),x2=c(0,0.7), x3=c(-1,-1))

newData
predict(test1,newData)
predict(test2,newData)
predict(test3,newData)
predict(test4,newData)
predict(test5,newData)
```

mv.shape.est

Shape Matrices

Description

Shape matrix estimates using different score functions.
Usage

mv.shape.est(X, score = "identity", estimate = "outer",
 location = NULL, na.action = na.fail, ...)

Arguments

x
score
estimate
location
na.action
...

 Arguments

x a numeric data frame or matrix.

score score to be used. Can be either "identity", "sign", "symmsign" or "rank".

estimate can be "outer" or "inner".

donot location If NULL the location vector is estimated. Alternatively a numeric p vector of

na.action a function which indicates what should happen when the data contain 'NA's. Default is to fail.

Further arguments passed to or from other methods.

Details

This function returns different shape matrices depending on the score function chosen. For details
see chapter 9 of the MNM book.

Value

a matrix

Author(s)

Klaus Nordhausen

References

See Also

cov, tyler.shape, duembgen.shape, HR.Mest, spatial.shape

Examples

data(iris)
IRIS <- iris[,1:4]
mv.shape.est(IRIS, "sign")
mv.shape.est(IRIS, "symmsign", "o")
mv.shape.est(IRIS, "rank")
Description

Test for sphericity based on different score functions.

Usage

mv.shape.test(X, score = "identity", location = "est",
na.action = na.fail, ...)

Arguments

X a numeric data frame or matrix.
score the score to be used. Possible are identity, sign, and symmsign.
location specifies if the location should be estimated or taken to be the origin. Possible choices are est and origin.
na.action a function which indicates what should happen when the data contain 'NA's. Default is to fail.
... arguments passed on to other functions.

Details

Note that here inner standardization is not logical. The rank score test is not implemented. Otherwise the tests are as described in chapter 9 of the MNM book.

To test for other "shapes" than sperical, transform the data accordingly and then test for spericity.

Value

A list with class 'htest' containing the following components:

statistic the value of the test statistic.
parameter the degrees of freedom for the test statistic or the number of replications in the simulation.
p.value the p-value for the test.
method a character string indicating what type of test was performed.
data.name a character string giving the name of the data used.

Author(s)

Klaus Nordhausen
References

See Also

sr.sphere.test

Examples

```r
X <- rmvt(150, diag(1,3))
mv.shape.test(X)
mv.shape.test(x,"sym")
```

mvPCA

Principal Component Analysis

Description

Principal component analysis based on different score functions

Usage

```r
mvPCA(X, score = "identity", estimate = "outer", na.action = na.fail, ...)
```

Arguments

- **X**
 - a numeric data frame or matrix with p columns.
- **score**
 - score to be used. Can be either "identity", "sign", "symmsign" or "rank".
- **estimate**
 - can be "outer" or "inner".
- **na.action**
 - a function which indicates what should happen when the data contain 'NA's. Default is to fail.
- **...**
 - further arguments passed to or from other methods.

Details

PCA as described in chapter 9 of the MNM book. Note that here ALL scatter matrices used are standardized to have trace(p). This function differs from most other PCA functions in R in that it does not center the data. The 'mvPCA' class has a print, summary, plot and predict method.
pairs2

Value

A list with class ‘mvloc’ containing the following components:

- `eigenv` the standardized eigenvalues.
- `loadings` matrix with the corresponding loadings.
- `scores` matrix with the principal components.
- `dname` name of X.
- `method` Which shape matrix was used for the computation.
- `n.obs` number of observations used.
- `p` number of variables.

Author(s)

Klaus Nordhausen

References

See Also

`princomp, prcomp`

Examples

data(iris)
IRIS <- iris[,1:4]
iris.pca <- mvPCA(IRIS, "sign", "i")
iris.pca
summary(iris.pca)
pairs(iris.pca$scores, col=iris[,5])

pairs2
Plotting two numeric matrices

Description

The function plots each variable contained in the matrix ’x’ against the all variables contained in matrix ’y’. The function is not very sophisticated and only used to consider the residuals in a multivariate regression.

Usage

`pairs2(x, y, mars = c(4, 4, 0.1, 0.1), ...)"
Arguments

x a numeric matrix. Same number or rows as y.
y a numeric matrix. Same number or rows as x.
mars A numerical vector of the form 'c(bottom, left, top, right)' which gives the number of lines of margin to be specified on the four sides of the plot. The default is c(4, 4, 0.1, 0.1).
...

Arguments to be passed to methods, such as graphical parameters (see par). Should not contain xlab and ylab.

Author(s)

Klaus Nordhausen

Examples

```r
X <- rmvnorm(50, c(0,0,1))
Y <- rmvnorm(50, c(20,1), matrix(rep(0.5,4),ncol=2))
colnames(X) <- LETTERS[1:3]
colnames(Y) <- letters[1:2]
pairs2(X,Y)
```

Description

Scatterplots of fitted vs. residual values of the response variable for an mvl1lm object.

Usage

```r
# S3 method for class 'mvl1lm'
plot(x, captation = "Residuals vs fitted", ...)
```

Arguments

x an object of class mvl1lm.
captation captation of the figure.
... optional plotting arguments.

Author(s)

Klaus Nordhausen
Description
Visually presents and compares different multivariate location estimates and their confidence ellipsoids.

Usage

```r
## S3 method for class 'mvloc'
plot(x, est2 = NULL, est3 = NULL, X = NULL, ...)```

Arguments

- **x**: an object of class `mv11m`.
- **est2**: An optional additional location estimate. A list with the components `location`, `vcov` and `est.name`, for example an object of class `mvloc`.
- **est3**: An optional additional location estimate. A list with the components `location`, `vcov` and `est.name`, for example an object of class `mvloc`.
- **X**: a numeric data frame or matrix. Optional data points on which the estimates could have been based.
- **...**: optional plotting arguments. For details see `plotMvloc`.

Details
The figure can be used to compare different multivariate location estimates. The location of the legend is currently problematic and it is recommended that the user should provide the coordinates for the legend. The function calls `plotMvloc`.

Author(s)
Klaus Nordhausen

See Also

`plotMvloc`

Examples

```r
X <- rmvt(50, diag(c(1, 2)), 3)
est1 <- mv.1sample.est(X)
est2 <- mv.1sample.est(X, "sign")
est3 <- mv.1sample.est(X, "rank", "inner")
plot(est1)```
plotMvloc

Function to Plot Multivariate Location Estimates and Their Confidence Ellipsoids.

Description

Visually presents and compares different multivariate location estimates and their confidence ellipsoids.

Usage

plotMvloc(est1, est2 = NULL, est3 = NULL, X = NULL, alim = NULL, color.ell = 2:4, color.points = grey(0.5), lty.ell = rep(1, 3), pch.ell = rep(16, 3), lwd.ell = rep(1, 3), cex.ell = rep(1, 3), pch.points = 1, level = 0.95, npoints = 100, x.legend, y.legend, cex.legend = 1, pty = "s", gap = 1, oma.bottom, labels, cex.labels = 2, main, ...)

Arguments

est1 The location of interest. A list with the components location, vcov and est.name, for example an object of class 'mvloc'.
est2 An optional additional location estimate. A list with the components location, vcov and est.name, for example an object of class 'mvloc'.
est3 An optional additional location estimate. A list with the components location, vcov and est.name, for example an object of class 'mvloc'.
X a numeric data frame or matrix. Optional data points on which the estimates could have been based.
alim can be NULL, both or ellipses. Specifies whether the plotting regions are are based on the confidence ellipsoids only or also the range of the data points. If NULL it chooses both if X is provided and otherwise ellipses.
color.ell vector of length 3 that gives the colors for the corresponding estimates 'est1', 'est2' and 'est3'.
color.points the color of the data points.
lty.ell line types of the confidence ellipsoids.
pch.ell plotting symbols for the location estimates, the centers of the confidence ellipsoids.
lwd.ell line width values of the confidence ellipsoids.
cex.ell cex values for the location estimates, the centers of the confidence ellipsoids.
pch.points plotting symbol for the data points X.
level the level of the confidence ellipsoids.
npoints the number of points used to approximate each ellipsoid.
x.legend vertical position of the legend. By default tries to find for 2 to 4 dimensional
data a good location. If NULL no legend is drawn.
y.legend horizontal position of the legend. By default tries to find for 2 to 4 dimensional
data a good location. If NULL no legend is drawn.
cex.legend cex for the legend.
pty pty value for the individual plots of the scatter matrix. Default is "s".
gap distance between subplots, in margin lines.
oma-bottom oma value of the bottom.
layers optional labels for the diagonals.
cex.labels cex for the labels. Default is 2.
main optional title of the plot.
... further arguments passed to or from other methods.

Details

The figure can be used to compare different multivariate location estimates. The location of the
legend is currently problematic and it is recommended that the user should provide the coordinates
for the legend.

Value

A scatterplot matrix.

Author(s)

Klaus Nordhausen

See Also

ellipse, plotShape

Examples

x <- rmvt(50, diag(c(1, 2)), 3)
est1 <- mv.1sample.est(x)
est2 <- mv.1sample.est(x, "sign")
est3 <- mv.1sample.est(x, "rank", "inner")

plotMvloc(est1)
plotMvloc(est1, est2, est3, x, alim="b", lty.ell=1:3, pch.ell=14:16)
plotMvloc(est1, est2, est3, x, alim="e")
plotshape

Pairwise Scatterplot Matrix of Shape Matrices

Description

Function for visual comparisons for up to three shape matrices.

Usage

plotShape(est1, est2 = NULL, est3 = NULL, X = NULL, alim = NULL, color.ell = 2:4, color.points = grey(0.5), lty.ell = rep(1, 3), pch.ell = rep(16, 3), lwd.ell = rep(1, 3), cex.ell = rep(1, 3), pch.points = 1, level = 0.5, npoints = 100, x.legend, y.legend, cex.legend = 1, pty = "s", gap = 1, oma.bottom, labels, cex.labels = 2, main, ...)

Arguments

est1 The shape matrix of interest. A list with the components location, scatter and est.name.
est2 An optional additional shape matrix. A list with the components location, scatter and est.name.
est3 An optional additional shape matrix. A list with the components location, scatter and est.name.
X a numeric data frame or matrix. Optional data points on which the estimates could have been based.
alim can be NULL, both or ellipses. Specifies when the plotting regions are computed if only the size of the ellipses are to be considered or also the range of the data points. If NULL it chooses both if X is provided and otherwise ellipses.
color.ell vector of length 3 that gives the colors for the corresponding estimates 'est1', 'est2' and 'est3'.
color.points the color of the data points.
lty.ell line types of the confidence ellipsoids.
pch.ell plotting symbols for the location estimates, the centers of the confidence ellipsoids.
lwd.ell line width values of the confidence ellipsoids.
cex.ell cex values for the location estimates, the centers of the confidence ellipsoids.
pch.points plotting symbol for the data points X.
level The proportion of the data points that should be inside the ellipses. If there is no data the value for t in the function ellipse.
npoints the number of points used to approximate each ellipsoid.
plotShape

x.legend vertical position of the legend. By default tries to find for 2 to 4 dimensional data a good location. If NULL no legend is drawn.
y.legend horizontal position of the legend. By default tries to find for 2 to 4 dimensional data a good location. If NULL no legend is drawn.
cex.legend cex for the legend.
pty pty value for the individual plots of the scatter matrix. Default is "s".
gap distance between subplots, in margin lines.
oma.bottom oma value of the bottom.
labels optional labels for the diagonals.
cex.labels cex for the labels. Default is 2.
main optional title of the plot.
... further arguments passed to or from other methods.

Details

All scatter matrices are standardized to have determinant 1. If X is given, the Mahalanobis distances based on the location and shape estimates are computed, and t in the function ellipse is the level quantile of the Mahalanobis distances. If no X is provided t equals level.

The location of the legend is currently problematic and it is recommended that the user should provide the coordinates for the legend.

Value

A scatter plot matrix.

Author(s)

Klaus Nordhausen

See Also

ellipse, plotMvloc

Examples

X <- rmvt(100, diag(3), df=3)
EST1 <- list(location=colMeans(X), scatter= cov(X), est.name="COV")
HR <- HR.Mest(X)
EST2 <- list(location=HR$center, scatter=HR$scatter, est.name="Tyler")
plotShape(EST1,EST2, X=X)
predict.mvPCA

Prediction Method for a Principal Component Object of Type mvPCA

Description

Prediction method for class mvPCA.

Usage

```r
## S3 method for class 'mvPCA'
predict(object, newdata, ...)  
```

Arguments

- `object`: an object of class mvPCA.
- `newdata`: New data with the same variables. If missing just the scores of object are returned.
- `...`: needed for other methods.

predict.mvPCA

Prediction Method for a Principal Component Object of Type mvPCA

Description

Predicted response values based on a model fitted by mv.11lm.

Usage

```r
## S3 method for class 'mv.11lm'
predict(object, newdata, na.action = na.pass, ...)
```

Arguments

- `object`: an object of class mv.11lm.
- `newdata`: An optional data frame with the values of the explaining variables. If omitted, the fitted values are used.
- `na.action`: function determining what should be done with missing values in ’newdata’.
- `...`: needed for other methods.

Author(s)

Klaus Nordhausen
Value

a matrix with the predicted principal components.

Author(s)

Klaus Nordhausen

print.anovamvl1lm Printing an Object of Class anovamvl1lm

Description

Printing an object of class 'anovamvl1lm'.

Usage

```r
## S3 method for class 'anovamvl1lm'
print(x, ...)
```

Arguments

- `x`: an object of class `anovamvl1lm`.
- `...`: needed for other methods.

Author(s)

Klaus Nordhausen

print.mvcloc Printing an 'mvcloc' Object

Description

Printing an mvcloc object.

Usage

```r
## S3 method for class 'mvcloc'
print(x, ...)
```

Arguments

- `x`: an object of class `mvcloc`.
- `...`: arguments that can be passed further on.

Author(s)

Jyrki Möttönen <jyrki.mottonen@helsinki.fi>
print.mvl1lm Printing an mvl1lm Object

Description
Printing of an mvl1lm object.

Usage
S3 method for class 'mvl1lm'
print(x, digits = 3, ...)

Arguments
- x an object of class mvl1lm.
- digits minimal number of _significant_ digits.
- ... needed for other methods.

Author(s)
Klaus Nordhausen

print.mvloc Printing an 'mvloc' Object

Description
Printing an mvloc object.

Usage
S3 method for class 'mvloc'
print(x, ...)

Arguments
- x an object of class mvloc.
- ... arguments that can be passed further on.

Author(s)
Klaus Nordhausen
print.mvPCA
Printing Method for a Principal Component Object of Type mvPCA

Description

Prints an object of class mvPCA.

Usage

```r
## S3 method for class 'mvPCA'
print(x, ...)
```

Arguments

- `x` object of type 'mvPCA'
- `...` needed for other printing methods.

Author(s)

Klaus Nordhausen

residuals.mvl1lm
Residuals of an mvl1lm Object

Description

Extracts the residuals of an mvl1lm object.

Usage

```r
## S3 method for class 'mvl1lm'
residuals(object, ...)
```

Arguments

- `object` an object of class mvl1lm.
- `...` needed for other methods.

Author(s)

Klaus Nordhausen
Function to obtain random samples from a multivariate power exponential distribution.

Usage

```r
rmvpowerexp(n, Location = rep(0, nrow(Scatter)),
             Scatter = diag(length(Location)), Beta = 1)
```

Arguments

- `n`: number of random samples.
- `Location`: Location vector of the distribution.
- `Scatter`: Scatter matrix of the distribution.
- `Beta`: shape parameter of the distribution.

Details

The power exponential distribution is an elliptical distribution which can have light or heavy tails.
`Beta = 1` yields a multivariate normal distribution, `Beta = 0.5` the multivariate Laplace distribution and with increasing `Beta` converges to a multivariate uniform distribution.

Value

a matrix.

Author(s)

Klaus Nordhausen

References

See Also

`rmvnorm`, `rmvt`

Examples

```r
X1 <- rmvpowerexp(100, c(0,0,0), Beta = 0.5)
pairs(X1)
X2 <- rmvpowerexp(100, c(0,0,0), Beta = 1)
pairs(X2)
X3 <- rmvpowerexp(100, c(0,0,0), Beta = 10)
pairs(X3)
```
runifsphere

Description

Function to sample uniformly distributed observations on the unit sphere.

Usage

```r
runifsphere(n, p)
```

Arguments

- `n`: number of random samples.
- `p`: dimension of the unit sphere.

Value

A matrix.

Author(s)

Klaus Nordhausen

References

Examples

```r
X <- runifsphere(100, 2)
plot(X, pty = "s")
```

screeplot.mvPCA

Plotting Method for a Principal Component Object of Type mvPCA

Description

Creates a screeplot for an object of class mvPCA. Works analogously to a normal screeplot for a classical principal component analysis. Here however the y-axis gives the proportion of the variation explained by the components.
Usage

```r
## S3 method for class 'mvPCA'
plot(x, main = deparse(substitute(x)), ...)
## S3 method for class 'mvPCA'
screepplot(x,npcs = min(10, length(x$EigenV)),
  type = c("barplot", "lines"),
  main = deparse(substitute(x)), ...)
```

Arguments

- **x**: an object to type `mvPCA`.
- **npcs**: the number of components to be plotted.
- **type**: the type of plot.
- **main**: title of the plot.
- **...**: other graphical parameters passed to or from other methods.

Value

A screeplot.

Author(s)

Klaus Nordhausen

See Also

`mvPCA`

Examples

```r
data(iris)
IRIS <- iris[,1:4]
iris.pca <- mvPCA(IRIS, "sign", "i")
plot(iris.pca, type="lines")
```

Description

The function computes the spatial signs for a data set. This function differs from the function `spatial.sign` in the way how observations with small norms are treated. For details see below.

Usage

```r
spatial.sign2(X, center = TRUE, shape = TRUE, eps.S = 1e-05,
  na.action = na.fail, ...)
```
spatial.sign2 39

Arguments

X a numeric data frame or matrix.
center either a logical value or a numeric vector of length equal to the number of
columns of ‘X’. See below for more information.
shape either a logical value or a square numeric matrix with number of columns equal
to the number of columns of ‘X’. See below for more information.
eps.S threshold value which defines which observations are considered to have a small
norm.
nan.action a function which indicates what should happen when the data contain ‘NA’s. Default is to fail.
... arguments that can be passed on to functions used for the estimation of location
and shape.

Details

The spatial signs U of X with location μ and shape V are given by transforming the data points
$z_i = (x_i - \mu)V^{-\frac{1}{2}}$ and then computing
$$u_i = \frac{z_i}{\|z_i\|}.$$

If a numeric value is given as ‘center’ and/or ‘shape’ these are used as μ and/or V in the above
formula. If ‘center’ and/or ‘shape’ are ‘TRUE’ the values for μ and/or V are estimated, if ‘FALSE’
the origin is used as the value of μ and/or the identity matrix as the value of V.
When the norm $\|z_i\|$ is 0 then the spatial sign is set usually to 0 as for example in the function spatial.sign. Here however if the spatial designs are defined as
$$u_i = \frac{z_i}{\|z_i\|}I(\|z_i\| > eps.S) + \frac{z_i}{eps.S}I(\|z_i\| \leq eps.S).$$

Value

a matrix with the spatial signs of the data as rows or the univariate signs as a px1 matrix. The
centering vector and scaling matrix used are returned as attributes ‘center’ and ‘shape’.

Author(s)

Klaus Nordhausen

See Also

spatial.sign, HR. Mest

Examples

comparing spatial.sign and spatial.sign2
data(pulmonary)
head(spatial.sign2(pulmonary, c(-0.1099999,-0.12,-4.3),FALSE))
head(spatial.sign(pulmonary, c(-0.1099999,-0.12,-4.3),FALSE))
summary.mvcloc

Summarizing an 'mvcloc' Object

Description
Summarizing an 'mvcloc' object.

Usage
```r
## S3 method for class 'mvcloc'
summary(object,..., digits = 4)
```

Arguments
- `object`: an object of class mvcloc.
- `...`: needed for other summary methods.
- `digits`: number of digits for rounding.

Author(s)
Jyrki Möttönen <jyrki.mottonen@helsinki.fi>

summary.mvl1lm

Summary for an mvl1lm Object

Description
Gives a detailed output for an object of class mvl1lm. Note that the output will differ for different score functions used.

Usage
```r
## S3 method for class 'mvl1lm'
summary(object, ..., digits = 3)
```

Arguments
- `object`: an object of class mvl1lm.
- `...`: needed for other methods.
- `digits`: minimal number of _significant_ digits.

Author(s)
Klaus Nordhausen
Summary for an 'mvloc' Object

Description
Summarizing an 'mvloc' object.

Usage
```
## S3 method for class 'mvloc'
summary(object, ..., digits = 4)
```

Arguments
- `object`: an object of class mvloc.
- `...`: needed for other summary methods.
- `digits`: number of digits for rounding.

Author(s)
Klaus Nordhausen

Summary for an object of class mvPCA.

Description
Summary method for an object of class mvPCA.

Usage
```
## S3 method for class 'mvPCA'
summary(object, loadings = FALSE, cutoff = 0.1, ...)

## S3 method for class 'summary.mvPCA'
print(x, digits = 3, loadings = x$print.loadings,
     cutoff = x$cutoff, ...)
```

Arguments
- `object`: an object to type mvPCA.
- `loadings`: logical. Should the loadings be returned.
- `cutoff`: numeric. Loadings below this cutoff in absolute value are shown as blank in the output.
- `x`: an object of class "summary.mvPCA".
- `digits`: the number of significant digits to be used in listing of loadings.
- `...`: arguments to be passed to or from other methods.
Value

'object' with additional components 'cutoff' and 'print.loadings'.

Author(s)

Klaus Nordhausen

See Also

mvpca

Examples

data(iris)
IRIS <- iris[,1:4]
iris.pca <- mvPCA(IRIS, "sign", "i")
summary(iris.pca, loadings = TRUE)

vcov.mvl1lm

Variance-Covariance Matrix of an mvl1lm Object

Description

Extracts the variance-covariance matrix of an mvl1lm Object.

Usage

S3 method for class 'mvl1lm'
vcov(object, ...)

Arguments

object an object of class mvl1lm.

Details

For details see Chapter 13 of the MNM book.

Author(s)

Klaus Nordhausen

References

Index

*Topic datasets
beans, 5

*Topic distribution
rmvpowerexp, 36
runifspHERE, 37

*Topic hplot
pairs2, 25
plotMvloc, 28
plotShape, 30
screeplot.mvPCA, 37

*Topic htest
mv.1sample.test, 9
mv.2way.test, 13
mv.Csample.test, 15
mv.ind.test, 17
mv.shape.test, 23

*Topic methods
anova.mvl1lm, 4
coeff.mvl1lm, 6
fitted.mvl1lm, 7
plot.mvl1lm, 26
plot.mvloc, 27
predict.mvl1lm, 32
predict.mvPCA, 32
print.anovamvl1lm, 33
print.mvl1lm, 34
print.mvPCA, 35
residuals.mvl1lm, 35
screeplot.mvPCA, 37
summary.mvl1lm, 40
summary.mvPCA, 41
vcov.mvl1lm, 42

*Topic multivariate
affine.trans, 3
mv.1sample.est, 7
mv.1sample.test, 9
mv.2sample.est, 10
mv.2way.est, 12
mv.2way.test, 13
mv.Csample.test, 15
mv.ind.test, 17
mv.l1lm, 18
mv.shape.est, 21
mv.shape.test, 23
mvPCA, 24
rmvpowerexp, 36
runifspHERE, 37
spatial.sign2, 38

*Topic nonparametric
mv.1sample.est, 7
mv.1sample.test, 9
mv.2sample.est, 10
mv.2way.est, 12
mv.2way.test, 13
mv.Csample.test, 15
mv.ind.test, 17
mv.l1lm, 18
mv.shape.est, 21
mv.shape.test, 23
mvPCA, 24
spatial.sign2, 38

*Topic package
mnm-package, 2

*Topic print
print.mvloc, 33
print.mvPCA, 35
summary.mvloc, 40
summary.mvPCA, 41

*Topic regression
mv.l1lm, 18

affine.trans, 3
anova.mlm, 4
anova.mvl1lm, 4
beans, 5
cbind, 19
calc.mvl1lm, 6
cov, 22
duembgen.shape, 22
double, 29, 31
fitted.mvl1lm, 7
HotellingsT2, 9, 10, 16
HR.Mest, 8, 22, 39
lm, 19, 20
MNM (MNM-package), 2
MNM-package, 2
mv.1sample.est, 7, 13, 20
mv.1sample.test, 9, 14, 20
mv.2sample.est, 10, 13, 19, 20
mv.2way.est, 12, 14
mv.2way.test, 13, 13
mv.Csample.test, 14, 15, 20
mv.ind.test, 17
mv.l1lm, 4, 11, 18, 19
mv.shape.est, 21
mv.shape.test, 23
mvPCA, 24, 38, 42
pairs2, 25
par, 26
plot.mvl1lm, 26
plot.mvlcloc, 27
plot.mvPCA (screeplot.mvPCA), 37
plotMvloc, 27, 28, 31
plotShape, 29, 30
prcomp, 25
predict.mvl1lm, 32
predict.mvPCA, 32
princomp, 25
print.anovamvl1lm, 33
print.mvlcloc, 33
print.mvl1lm, 34
print.mvlcloc, 34
print.mvPCA, 35
print.summary.mvPCA (summary.mvPCA), 41
residuals.mvl1lm, 35
rmvnorm, 36
rmvpowerexp, 36
rmvt, 36
runifsphere, 37
screeplot.mvPCA, 37
spatial.median, 8
spatial.rank, 16
spatial.shape, 22
spatial.sign, 8, 11, 16, 38, 39
spatial.sign2, 38
spatial.signrank, 8, 11
sr.loc.test, 10
sr.sphere.test, 24
str, 20
summary.mvlcloc, 40
summary.mvl1lm, 40
summary.mvloc, 41
summary.mvPCA, 41

tyler.shape, 22
vcov.mvl1lm, 42