Package ‘MRCE’

January 5, 2017

Type Package
Title Multivariate Regression with Covariance Estimation
Version 2.1
Date 2017-01-04
Author Adam J. Rothman
Maintainer Adam J. Rothman <arothman@umn.edu>
Depends R (>= 2.10.1), QUIC
Description Compute and select tuning parameters for the MRCE estimator proposed by Rothman, Levina, and Zhu (2010) <doi:10.1198/jcgs.2010.09188>. This estimator fits the multiple output linear regression model with a sparse estimator of the error precision matrix and a sparse estimator of the regression coefficient matrix.
License GPL-2
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-01-05 10:39:24

R topics documented:

 MRCE-package ... 1
 mrce ... 2
 stock04 ... 6

Index 7

Description

 Computes the MRCE estimators (Rothman, Levina, and Zhu, 2010) and has the dataset stock04 used in Rothman, Levina, and Zhu (2010), originally analyzed in Yuan et al. (2007).
Details

The primary function is mrce. The dataset is stock04.

Author(s)

Adam J. Rothman
Maintainer: Adam J. Rothman <arothman@umn.edu>

References

mrce

Do multivariate regression with covariance estimation (MRCE)

Description

Let S_q^+ be the set of q by q symmetric and positive definite matrices and let $y_i \in \mathbb{R}^q$ be the measurements of the q responses for the ith case/observation ($i = 1, \ldots, n$). The model assumes that $y_i \in \mathbb{R}^q$ is a realization of the q-variate random vector

$$Y_i = \mu + B_0'x_i + E_i, \quad i = 1, \ldots, n$$

where $\mu \in \mathbb{R}^q$ is an unknown intercept vector, $B_0 \in \mathbb{R}^{p \times q}$ is an unknown regression coefficient matrix, $x_i \in \mathbb{R}^p$ is a known vector of values for ith case’s p predictors, and E_1, \ldots, E_n are n independent copies of a q-variate Normal random vector with mean 0 and unknown inverse covariance matrix $\Omega_0 \in S_q^+$.

This function computes penalized likelihood estimates of the unknown parameters μ, B_0, and Ω_0. Let $\bar{y} = n^{-1}\sum_{i=1}^n y_i$ and $\bar{x} = n^{-1}\sum_{i=1}^n x_i$. These estimates are

$$(\hat{B}, \hat{\Omega}) = \arg\min_{B \in \mathbb{R}^{p \times q}, \Omega \in S_q^+} \left\{ g(B, \Omega) + \lambda_1 \sum_{j \neq k} |\omega_{jk}| + 2\lambda_2 \sum_{j=1}^p \sum_{k=1}^q |b_{jk}| \right\}$$

and $\hat{\mu} = \bar{y} - \hat{B}'\bar{x}$, where

$$g(B, \Omega) = \text{tr}\{n^{-1}(Y - XB)'(Y - XB)\Omega\} - \log |\Omega|,$$

$Y \in \mathbb{R}^{n \times q}$ has ith row $(y_i - \bar{y})'$, and $X \in \mathbb{R}^{n \times p}$ has ith row $(x_i - \bar{x})'$.

Y in R^{n x q} has ith row (y_i - \bar{y})', and X in R^{n x p} has ith row (x_i - \bar{x})'.
Usage

mrce(X,Y, lam1=NULL, lam2=NULL, lam1.vec=NULL, lam2.vec=NULL,
method=c("single", "cv", "fixed.omega"),
cov.tol=1e-4, cov.maxit=le3, omega=NULL,
maxit.out=le3, maxit.in=le3, tol.out=le-8,
tol.in=le-8, kfold=5, silent=TRUE, eps=1e-5)

Arguments

X
An n by p matrix of the values for the prediction variables. Do not center its columns, the ith row of X is \(x_i \) defined above (\(i = 1, \ldots, n \)). Do not include a column of ones.

Y
An n by q matrix of the observed responses. Do not center its columns, the ith row of Y is \(y_i \) defined above (\(i = 1, \ldots, n \)).

lam1
A single value for \(\lambda_1 \) defined above. This argument is only used if method="single".

lam2
A single value for \(\lambda_2 \) defined above (or a p by q matrix with (j, k)th entry \(\lambda_{2jk} \) in which case the penalty \(2 \lambda_2 \sum_{j=1}^{p} \sum_{k=1}^{q} |b_{jk}| \) becomes \(2 \sum_{j=1}^{p} \sum_{k=1}^{q} \lambda_{2jk} |b_{jk}| \). This argument is not used if method="cv".

lam1.vec
A vector of candidate values for \(\lambda_1 \) from which the cross validation procedure searches: only used when method="cv" and must be specified by the user when method="cv". Please arrange in decreasing order.

lam2.vec
A vector of candidate values for \(\lambda_2 \) from which the cross validation procedure searches: only used when method="cv" and must be specified by the user when method="cv". Please arrange in decreasing order.

method
There are three options:

- method="single" computes the MRCE estimate of the regression coefficient matrix with penalty tuning parameters lam1 and lam2;
- method="cv" performs kfold cross validation using candidate tuning parameters in lam1.vec and lam2.vec;
- method="fixed.omega" computes the regression coefficient matrix estimate for which \(\Omega \) (defined above) is fixed at omega.

cov.tol
Convergence tolerance for the QUIC algorithm that minimizes the objective function (defined above) with B fixed.

cov.maxit
The maximum number of iterations allowed for the QUIC algorithm that minimizes the objective function (defined above) with B fixed.

omega
A user-supplied fixed value of \(\Omega \). Only used when method="fixed.omega" in which case the minimizer of the objective function (defined above) with \(\Omega \) fixed at omega is returned.

maxit.out
The maximum number of iterations allowed for the outer loop of the exact MRCE algorithm.

maxit.in
The maximum number of iterations allowed for the algorithm that minimizes the objective function, defined above, with \(\Omega \) fixed.

tol.out
Convergence tolerance for outer loop of the exact MRCE algorithm.
tol.in Convergence tolerance for the algorithm that minimizes the objective function, defined above, with Ω fixed.

kfold The number of folds to use when method="cv".

silent Logical: when silent=FALSE this function displays progress updates to the screen.

eps The algorithm will terminate if the minimum diagonal entry of the current iterate’s residual sample covariance is less than eps. This may need adjustment depending on the scales of the variables.

Details

Please see Rothman, Levina, and Zhu (2010) for more information on the algorithm and model. This version of the software uses the QUIC algorithm (Hsieh et al., 2011) through the R package QUIC. If the algorithm is running slowly, track its progress with silent=FALSE. In some cases, choosing cov.tol=0.1 and tol.out=1e-10 allows the algorithm to make faster progress. If one uses a matrix for lam2, consider setting tol.in=1e-12.

When p > n and λ2 is too close to zero, a perfect fit will occur. The algorithm will terminate early and inform the user.

The algorithm that minimizes the objective function, defined above, with Ω fixed uses a similar update strategy and termination criterion to those used by Friedman et al. (2010) in the corresponding R package glmnet.

Value

A list containing

\(\hat{B} \in R^{p \times q} \) defined above. If method="cv", then best.lam1 and best.lam2 defined below are used for \(\lambda_1 \) and \(\lambda_2 \).

\(\hat{\mu} \in R^q \) defined above. If method="cv", then best.lam1 and best.lam2 defined below are used for \(\lambda_1 \) and \(\lambda_2 \).

\(\hat{\Omega} \in S_{++}^q \) defined above. If method="cv", then best.lam1 and best.lam2 defined below are used for \(\lambda_1 \) and \(\lambda_2 \).

\(\bar{x} \in R^p \) defined above.

\(\bar{y} \in R^q \) defined above.

The selected value for \(\lambda_1 \) by cross validation. Will be NULL unless method="cv".

The selected value for \(\lambda_2 \) by cross validation. Will be NULL unless method="cv".

Cross validation error matrix with length(lam1.vec) rows and length(lam2.vec) columns. Will be NULL unless method="cv".

Note

The algorithm is fastest when \(\lambda_1 \) and \(\lambda_2 \) are large. Please do not set these parameters to zero. Use silent=FALSE to check if the algorithm is converging before the total iterations exceeds maxit.out.
Author(s)

Adam J. Rothman

References

Examples

```r
set.seed(5)
n=50
p=10
q=5

Omega0.inv=diag(q)
for(i in 1:q)
  for(j in 1:q)
    Omega0.inv[i,j]=0.7*abs(i-j)
out=eigen(Omega0.inv, symmetric=TRUE)
Omega0.inv.sqrt=tcrossprod(out$vec*rep(out$val^(0.5), each=q),out$vec)
Omega0=tcrossprod(out$vec*rep(out$val^(-1), each=q),out$vec)

X=matrix(rnorm(n*p), nrow=n, ncol=p)
E=matrix(rnorm(n*p), nrow=n, ncol=q)%*%Omega0.inv.sqrt
B0=matrix(rbinom(p*q, size=1, prob=0.1)*runif(p*q, min=1, max=2), nrow=p, ncol=q)

Y=X%*%B0 + E

lam1.vec=rev(10^seq(from=-2, to=0, by=0.5))
lam2.vec=rev(10^seq(from=-2, to=0, by=0.5))
cvfit=mrce(Y=Y, X=X, lam1.vec=lam1.vec, lam2.vec=lam2.vec, method="cv")
cvfit

fit=mrce(Y=Y, X=X, lam1=10^(-1.5), lam2=10^(-0.5), method="single")
fit

lam2.mat=1000*(fit$bhat==0)
refit=mrce(Y=Y, X=X, lam2=lam2.mat, method="fixed.omega", omega=fit$omega, tol.in=1e-12)
refit
```
Description

Weekly log-returns of 9 stocks from 2004, analyzed in Yuan et al. (2007)

Usage

data(stock04)

Format

The format is: num [1:52, 1:9] 0.002275 -0.003795 0.012845 0.017489 -0.000369 ... - attr(*, "dimnames")=List of 2 ..$: NULL ..$: chr [1:9] "Walmart" "Exxon" "GM" "Ford" ...

Source

References

Index

*Topic **datasets**
 stock04, 6

*Topic **package**
 MRCE-package, 1

MRCE (MRCE-package), 1
mrce, 2, 2
MRCE-package, 1

stock04, 2, 6