Package ‘Mcomp’

February 23, 2017

Title Data from the M-Competitions

Description The 1001 time series from the M-competition (Makridakis et al. 1982) <DOI:10.1002/for.3980010202> and the 3003 time series from the IJF-M3 competition (Makridakis and Hibon, 2000) <DOI:10.1016/S0169-2070(00)00057-1>.

Version 2.6

Depends R (>= 2.10), forecast (>= 8.0)

Imports ggplot2

LazyData yes

LazyLoad yes

Author Rob J Hyndman with assistance from Muhammad Akram, Christoph Bergmeir and Mitchell O’Hara-Wild

Maintainer Rob J Hyndman <Rob.Hyndman@monash.edu>

License GPL (>= 2)

URL http://robjhyndman.com/software/mcomp/

NeedsCompilation no

Repository CRAN

Date/Publication 2017-02-23 17:31:01

R topics documented:

Mcomp-package .. 2
M1 ... 2
M3Forecast .. 4
plot.Mdata .. 5
subset.Mcomp ... 6

Index 8
Mcomp-package

Data from the M-competitions

Description

The 1001 time series from the M-competition (Makridakis et al. 1982), and the 3003 time series and forecasts from the IJF-M3 competition (Makridakis and Hibon, 2000).

Author(s)

Rob J Hyndman. <Rob.Hyndman@monash.edu>, with assistance from Muhammad Akram and Christoph Bergmeir.

Source

http://forecasters.org/resources/time-series-data/m3-competition/.

References

M1

M-Competition data

Description

The time series from the M1 and M3 forecasting competitions.

Usage

```r
data(M1)
data(M3)
```
Format

M1 is a list of 1001 series and M3 is a list of 3003 series. Each list is of class mcomp. Each series within M1 and M3 is of class mdata with the following structure:

- **sn** Name of the series
- **st** Series number and period. For example "Y1" denotes first yearly series, "Q20" denotes 20th quarterly series and so on.
- **n** The number of observations in the time series
- **h** The number of required forecasts
- **period** Interval of the time series. Possible values are "YEARLY", "QUARTERLY", "MONTHLY" & "OTHER".
- **type** The type of series. Possible values for M1 are "DEMOGR", "INDUST", "MACRO1", "MACRO2", "MICRO1", "MICRO2" & "MICRO3". Possible values for M3 are "DEMOGRAPHIC", "FINANCE", "INDUSTRY", "MACRO", "MICRO", "OTHER".
- **description** A short description of the time series
- **x** A time series of length n (the historical data)
- **xx** A time series of length h (the future data)

Author(s)

Muhammad Akram and Rob Hyndman

Source

http://forecasters.org/resources/time-series-data/m3-competition/.

Detailed results from M3 competition at http://www.insead.edu/facultyresearch/research/doc.cfm?id=1094.

References

See Also

subset.Mcomp, plot.Mdata

Examples

```r
M1
plot(M1$YAF2)
subset(M1, "monthly")
```
Description
The forecasts from all the original participating methods in the M3 forecasting competition.

Usage
data(M3Forecast)

Format
M3Forecast is a list of data.frames. Each list element is the result of one forecasting method. The data.frame then has the following structure: Each row is the forecast of one series. Rows are named accordingly. In total there are 18 columns, i.e., 18 forecasts. If fewer forecasts than 18 exist, the row is filled up with NA values.

Author(s)
Christoph Bergmeir and Rob Hyndman

Source
http://forecasters.org/resources/time-series-data/m3-competition/.
Detailed results from M3 competition at http://www.insead.edu/facultyresearch/research/doc.cfm?did=1094.

References

Examples
M3Forecast[["NAIVE2"]][1,]

Not run:
calculate errors using the accuracy function
from the forecast package

errors <- lapply(M3Forecast, function(f) {
 res <- NULL
 for(x in 1:length(M3)) {
 curr_f <- unlist(f[x,])
 res <- c(res, accuracy(curr_f, M3)[1:length(M3)])
 }
 return(res)
})
plot.Mdata

if(any(!is.na(curr_f))) {
 curr_res <- accuracy(curr_f, M3[[x]]$xx)
} else {
 # if no results are available create NA results
 curr_res <- accuracy(M3[[x]]$xx, M3[[x]]$xx)
 curr_res <- rep(NA, length(curr_res))
}

res <- rbind(res, curr_res)

rownames(res) <- NULL
res
})

ind_yearly <- which(unlist(lapply(M3, function(x) {x$period == "YEARLY"})))
ind_quarterly <- which(unlist(lapply(M3, function(x) {x$period == "QUARTERLY"})))
ind_monthly <- which(unlist(lapply(M3, function(x) {x$period == "MONTHLY"})))
ind_other <- which(unlist(lapply(M3, function(x) {x$period == "OTHER"})))

yearly_errors <- t(as.data.frame(lapply(errors, function(x) {colMeans(x[ind_yearly,]])}))
quarterly_errors <- t(as.data.frame(lapply(errors, function(x) {colMeans(x[ind_quarterly,]])}))
monthly_errors <- t(as.data.frame(lapply(errors, function(x) {colMeans(x[ind_monthly,]])}))
other_errors <- t(as.data.frame(lapply(errors, function(x) {colMeans(x[ind_other,]])}))

yearly_errors
quarterly_errors
monthly_errors
other_errors

End(Not run)

plot.Mdata
Plotting M Competition data

Description

Functions to plot a time series from the M competition data sets, showing both the training and test sections of the series.

Usage

```r
## S3 method for class 'Mdata'
plot(x, xlim=c(tsp(x$x)[1],tsp(x$x)[2]), ylim=range(x$x,x$xx),
     main=x$s, xlab="", ylab="", ...)  
## S3 method for class 'Mdata'
autoplot(x, ...)
```
Arguments

- **x**: A series of M-competition data
- **xlim**: Limits on x-axis
- **ylim**: Limits on y-axis
- **main**: Main title
- **xlab**: Label on x-axis
- **ylab**: Label on y-axis
- **...**: Other plotting arguments passed to `plot`. Ignored for `autoplot`.

Value

`autoplot.Mcomp` returns a `ggplot2` object, while `plot.Mcomp` returns nothing. Both functions produce a time series plot of the selected series.

Author(s)

Rob Hyndman

See Also

- `mcomp`

Examples

```r
library(ggplot2)
plot(M1[[1]])
autoplot(M1$YAF3)
autoplot(M3[["N0647"]])
```

subset.Mcomp

Subset of time series from the M Competitions

Description

`subset.Mcomp` returns a subset of the time series data from the M Competitions. Subsets can be for specific periods, or specific types of data or both.

Usage

```r
## S3 method for class 'Mcomp'
subset(x, cond1, cond2, ...)
```
Arguments

- **x**: M-competition data or a subset of M-competition data
- **cond1**: Type or period of the data. Type is a character variable and period could be character or numeric.
- **cond2**: Optional second condition specifying type or period of the data, depending on cond1. If cond1 denotes type then cond2 would denote period, but if cond1 denotes period then cond2 would denote type.
- **...**: Other arguments.

Details

Possible values for cond1 and cond2 denoting period are 1, 4, 12, "yearly", "quarterly", "monthly" and "other".

If cond1 or cond2 equals 111, then the 111 series used in the extended comparisons in the 1982 M-competition are selected.

Possible values for cond1 and cond2 denoting type are "macro", "micro", "industry", "finance", "demographic", "allother", "macro1", "macro2", "micro1", "micro2", "micro3". These correspond to the descriptions used in the competitions. See the references for details.

Partial matching used for both conditions.

Value

An object of class `mcomp` consisting of the selected series.

Author(s)

Muhammad Akram and Rob Hyndman

References

See Also

- `M1`

Examples

```r
M3.quarterly <- subset(M3,4)
M1.yearly.industry <- subset(M1,1,"industry")
```
Index

*Topic **datasets**
 M1, 2
 M3Forecast, 4
*Topic **data**
 subset.Mcomp, 6
*Topic **hplot**
 plot.Mdata, 5
*Topic **package**
 Mcomp-package, 2

autoplot.Mdata (plot.Mdata), 5

M1, 2, 6, 7
M3 (M1), 2
M3Forecast, 4
Mcomp (Mcomp-package), 2
Mcomp-package, 2

plot.Mdata, 3, 5

subset.Mcomp, 3, 6