Package ‘MetaQC’

February 19, 2015

Type Package

Title MetaQC: Objective Quality Control and Inclusion/Exclusion Criteria for Genomic Meta-Analysis

Version 0.1.13

Author Don Kang <donkang75@gmail.com> and George Tseng <ctseng@pitt.edu>

Maintainer Don Kang <donkang75@gmail.com>

Description MetaQC implements our proposed quantitative quality control measures: (1) internal homogeneity of co-expression structure among studies (internal quality control; IQC); (2) external consistency of co-expression structure correlating with pathway database (external quality control; EQC); (3) accuracy of differentially expressed gene detection (accuracy quality control; AQCg) or pathway identification (AQCp); (4) consistency of differential expression ranking in genes (consistency quality control; CQCg) or pathways (CQCp). (See the reference for detailed explanation.) For each quality control index, the p-values from statistical hypothesis testing are minus log transformed and PCA biplots were applied to assist visualization and decision. Results generate systematic suggestions to exclude problematic studies in microarray meta-analysis and potentially can be extended to GWAS or other types of genomic meta-analysis. The identified problematic studies can be scrutinized to identify technical and biological causes (e.g. sample size, platform, tissue collection, preprocessing etc) of their bad quality or irreproducibility for final inclusion/exclusion decision.

Depends R (>= 2.10.0), proto, foreach, iterators

Suggests doMC, doSNOW, FactoMineR, matrixStats, gdata, gtools, survival

License GPL-2

URL https://github.com/donkang75/MetaQC

LazyLoad yes
MetaQC-package

Description

MetaQC implements our proposed quantitative quality control measures: (1) internal homogeneity of co-expression structure among studies (internal quality control; IQC); (2) external consistency of co-expression structure correlating with pathway database (external quality control; EQC); (3) accuracy of differentially expressed gene detection (accuracy quality control; AQCg) or pathway identification (AQCp); (4) consistency of differential expression ranking in genes (consistency quality control; CQCg) or pathways (CQCp). (See the reference for detailed explanation.) For each quality control index, the p-values from statistical hypothesis testing are minus log transformed and PCA biplots were applied to assist visualization and decision. Results generate systematic suggestions to exclude problematic studies in microarray meta-analysis and potentially can be extended to GWAS or other types of genomic meta-analysis. The identified problematic studies can be scrutinized to identify technical and biological causes (e.g. sample size, platform, tissue collection, preprocessing etc) of their bad quality or irreproducibility for final inclusion/exclusion decision.

Details

Package:	MetaQC
Type:	Package
Version:	0.1.13
Date:	2012-12-21
License:	GPL-2
LazyLoad:	yes
Author(s)

Don Kang (donkang75@gmail.com) and George Tseng (ctseng@pitt.edu)

References

Examples

```r
## Not run:
  requireAll(c("proto", "foreach"))

## Toy Example
  data(brain) #already hugely filtered
  #Two default gmt files are automatically downloaded,
  #otherwise it is required to locate it correctly.
  #Refer to http://www.broadinstitute.org/gsea/downloads.jsp
  brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
                   filterGenes=FALSE, verbose=TRUE)
  #B is recommended to be >= 1e4 in real application
  runQC(brainQC, B=1e2, fileForCQCP="c2.all.v3.0.symbols.gmt")
  brainQC
  plot(brainQC)

## For parallel computation with only 2 cores
  #R >= 2.11.0 in windows to use parallel computing
  brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
                    filterGenes=FALSE, verbose=TRUE, isParallel=TRUE, nCores=2)
  #B is recommended to be >= 1e4 in real application
  runQC(brainQC, B=1e2, fileForCQCP="c2.all.v3.0.symbols.gmt")
  plot(brainQC)

## For parallel computation with all cores
  #In windows, only 2 cores are used if not specified explicitly
  brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
                    filterGenes=FALSE, verbose=TRUE, isParallel=TRUE)
  #B is recommended to be >= 1e4 in real application
  runQC(brainQC, B=1e2, fileForCQCP="c2.all.v3.0.symbols.gmt")
  plot(brainQC)

## Real Example which is used in the paper
  #download the brainFull file
  #from https://github.com/downloads/donkang75/MetaQC/brainFull.rda
  load("brainFull.rda")
  brainQC <- MetaQC(brainFull, "c2.cp.biocarta.v3.0.symbols.gmt", filterGenes=TRUE,
                   verbose=TRUE, isParallel=TRUE)
  runQC(brainQC, B=1e4, fileForCQCP="c2.all.v3.0.symbols.gmt") #B was 1e5 in the paper
```
```r
plot(brainQC)

## Survival Data Example
#download Breast data
#from https://github.com/downloads/donkang/MetaQC/Breast.rda
load("Breast.rda")
breastQC <- MetaQC(Breast, "c2.cp.biocarta.v3.0.symbols.gmt", filterGenes=FALSE,
verbose=TRUE, isParallel=TRUE, resp.type="Survival")
runQC(breastQC, B=1e4, fileForCQGp="c2.all.v3.0.symbols.gmt")
plot(breastQC)

## End(Not run)
```

Description

7 brain cancer studies comparing Anaplastic Astrocytoma (AA) and Glioblastoma multiforme (GBM) samples.

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Published Year</th>
<th>Array Platform</th>
<th>Sample Size</th>
<th>GEO Accession ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freije</td>
<td>2004</td>
<td>HG-U133A,B</td>
<td>85</td>
<td>GSE4412</td>
</tr>
<tr>
<td>Phillips</td>
<td>2006</td>
<td>HG-U133A,B</td>
<td>100</td>
<td>GSE4271</td>
</tr>
<tr>
<td>Sun</td>
<td>2006</td>
<td>HG-U133 Plus 2</td>
<td>100</td>
<td>GSE4290</td>
</tr>
<tr>
<td>Yamanaka</td>
<td>2006</td>
<td>Agilent</td>
<td>29</td>
<td>GSE4381</td>
</tr>
<tr>
<td>Petalidis</td>
<td>2008</td>
<td>HG-U133A</td>
<td>58</td>
<td>GSE1993</td>
</tr>
<tr>
<td>Gravendeel</td>
<td>2009</td>
<td>HG-U133 Plus 2</td>
<td>175</td>
<td>GSE16011</td>
</tr>
<tr>
<td>Sun</td>
<td>2010</td>
<td>HG-U133 Plus 2</td>
<td>42</td>
<td>GSE19578</td>
</tr>
</tbody>
</table>

Usage

```r
brain
```

Format

A list containing 7 matrices. Each matrix is gene expression data after gene filtering.

Source

Gene Expression Omnibus (GEO)

References

cleanup Cleaning up resources.

Description

It is to shutdown the workers used for parallel processing and release resources. It is only necessary in windows. (Deprecated)

Usage

cleanup(QC)

Arguments

QC A proto R object which obtained by MetaQC function.

Value

NA

Author(s)

Don Kang (donkang75@gmail.com) and George Tseng (ctseng@pitt.edu)

References

See Also

MetaQC

Examples

```r
## Not run:
requireAll(c("proto", "foreach"))

## Toy Example
data(brain) # already hugely filtered
# Two default gmt files are automatically downloaded, otherwise it is required to locate it correctly.
# Refer to http://www.broadinstitute.org/gsea/downloads.jsp
## For parallel computation with only 2 cores
## R >= 2.11.0 in windows to use parallel computing
brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
filterGenes=FALSE, verbose=TRUE, isParallel=TRUE, nCores=2)
# is recommended to be >= 1e4 in real application
runQC(brainQC, B=1e2, fileForCQCp="c2.all.v3.0.symbols.gmt")
plot(brainQC)
cleanup(brainQC) # necessary for windows after using parallel processing
```

Usage

```r
MetaQC(DList, GList, isParallel = FALSE, nCores = NULL,
useCache = TRUE, filterGenes = TRUE,
```

Description

MetaQC implements our proposed quantitative quality control measures: (1) internal homogeneity of co-expression structure among studies (internal quality control; IQC); (2) external consistency of co-expression structure correlating with pathway database (external quality control; EQC); (3) accuracy of differentially expressed gene detection (accuracy quality control; AQCg) or pathway identification (AQCp); (4) consistency of differential expression ranking in genes (consistency quality control; CQCg) or pathways (CQCp). (See the reference for detailed explanation.) For each quality control index, the p-values from statistical hypothesis testing are minus log transformed and PCA biplots were applied to assist visualization and decision. Results generate systematic suggestions to exclude problematic studies in microarray meta-analysis and potentially can be extended to GWAS or other types of genomic meta-analysis. The identified problematic studies can be scrutinized to identify technical and biological causes (e.g. sample size, platform, tissue collection, preprocessing etc) of their bad quality or irreproducibility for final inclusion/exclusion decision.
maxNApctAllowed=.3, cutRatioByMean=.4, cutRatioByVar=.4, minNumGenes=5,
verbose = FALSE, resp.type = c("TwoClass", "Multiclass", "Survival")

Arguments

DList
Either a list of all data matrices (Case 1) or a list of lists (Case 2); The first case is simplified input data structure only for two classes comparison. Each data name should be set as the name of each list element. Each data should be a numeric matrix that has genes in the rows and samples in the columns. Row names should be official gene symbols and column names be class labels. For the full description of input data, you can use the second data format. Each data is represented as a list which should have x, y, and geneid (geneid can be replaced to row names of matrix x) elements, representing expression data, outcome or class labels, and gene ids, respectively. Additionally, in the survival analysis, censoring.status should be set.

GList
The location of a file which has sets of gene symbol lists such as gmt files. By default, the gmt file will be converted to list object and saved with the same name with ".rda". Alternatively, a list of gene sets is allowed; the name of each element of the list should be set as a unique pathway name, and each pathway should have a character vector of gene symbols.

isParallel
Whether to use multiple cores in parallel for fast computing. By default, it is false.

nCores
When isParallel is true, the number of cores can be set. By default, all cores in the machine are used in the unix-like machine, and 2 cores are used in windows.

useCache
Whether imported gmt file should be saved for the next use. By default, it is true.

filterGenes
Whether to use gene filtering (recommended).

maxNApctAllowed
Filtering out genes which have missing values more than specified ratio (Default .3). Applied if filterGenes is TRUE.

cutRatioByMean
Filtering out specified ratio of genes which have least expression value (Default .4). Applied if filterGenes is TRUE.

cutRatioByVar
Filtering out specified ratio of genes which have least sample wise expression variance (Default .4). Applied if filterGenes is TRUE.

minNumGenes
Minimum number of genes in a pathway. A pathway which has members smaller than the specified value will be removed.

verbose
Whether to print out logs.

resp.type
The type of response variable. Three options are: "TwoClass" (unpaired), "Multiclass", "Survival." By default, TwoClass is used

Value

A proto R object. Use RunQC function to run QC procedure. Use Plot function to plot PCA figure. Use Print function to view various information. See examples below.
Author(s)

Don Kang (donkang75@gmail.com) and George Tseng (ctseng@pitt.edu)

References

See Also

runQC

Examples

Not run:
requireAll(c("proto", "foreach"))

Toy Example
data(brain) #already hugely filtered
#Two default gmt files are automatically downloaded,
#otherwise it is required to locate it correctly.
#Refer to http://www.broadinstitute.org/gsea/downloads.jsp
brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
filterGenes=FALSE, verbose=TRUE)

#B is recommended to be >= 1e4 in real application
runQC(brainQC, B=1e2, fileForCQCP="c2.all.v3.0.symbols.gmt")

brainQC
plot(brainQC)

For parallel computation with only 2 cores
R >= 2.11.0 in windows to use parallel computing
brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
filterGenes=FALSE, verbose=TRUE, isParallel=TRUE, nCores=2)

#B is recommended to be >= 1e4 in real application
runQC(brainQC, B=1e2, fileForCQCP="c2.all.v3.0.symbols.gmt")

plot(brainQC)

For parallel computation with all cores
In windows, only 2 cores are used if not specified explicitly
brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
filterGenes=FALSE, verbose=TRUE, isParallel=TRUE)

#B is recommended to be >= 1e4 in real application
runQC(brainQC, B=1e2, fileForCQCP="c2.all.v3.0.symbols.gmt")

plot(brainQC)

Real Example which is used in the paper
#download the brainFull file
#from https://github.com/downloads/donkang75/MetaQC/brainFull.rda
load("brainFull.rda")

brainQC <- MetaQC(brainFull, "c2.cp.biocarta.v3.0.symbols.gmt", filterGenes=TRUE,
verbose=TRUE, isParallel=TRUE)
```
runQC(brainQC, B=1e4, fileForCQCp="c2.all.v3.0.symbols.gmt")  #B was 1e5 in the paper
plot(brainQC)

## Survival Data Example
#download Breast data
load("Breast.rda")
breastQC <- MetaQC(Breast, "c2.cp.biocarta.v3.0.symbols.gmt", filterGenes=FALSE,
verbose=TRUE, isParallel=TRUE, resp.type="Survival")
runQC(breastQC, B=1e4, fileForCQCp="c2.all.v3.0.symbols.gmt")
breastQC
plot(breastQC)

## End(Not run)
```

plot.proto

Plot MetaQC results.

Description

It draws a PCA biplot which shows the four QC measures. CQCg and AQCg are combined to be CAQCg, and CQCp and AQCP are combined to be CAQCp to reduce the dominance of CQC and AQC due to their greater correlation.

Usage

```r
## S3 method for class 'proto'
plot(x, ...)
```

Arguments

- `x` A proto R object which obtained by MetaQC function.
- `...` Further arguments to print function.

Value

NA

Author(s)

Don Kang (donkang75@gmail.com) and George Tseng (ctseng@pitt.edu)

References

print.proto

See Also

MetaQC

Examples

```r
## Not run:
requireAll(c("proto", "foreach"))

## Toy Example
data(brain) #already hugely filtered
#Two default gmt files are automatically downloaded, 
#otherwise it is required to locate it correctly.
#Refer to http://www.broadinstitute.org/gsea/downloads.jsp
brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt", 
filterGenes=FALSE, verbose=TRUE)
#B is recommended to be >= 1e4 in real application
runQC(brainQC, B=1e2, fileForCQCp="c2.all.v3.0.symbols.gmt")
plot(brainQC)

## End(Not run)
```

print.proto

Print MetaQC results.

Description

It prints out the results of all QC measures and standardized mean rank of each study. CQCg and
AQCg are combined to be CAQCg, and CQCp and AQCp are combined to be CAQCp to reduce the
dominance of CQC and AQC due to their greater correlation.

Usage

```r
## S3 method for class 'proto'
print(x, ...)
```

Arguments

- `x` A proto R object which obtained by MetaQC function.
- `...` Further arguments to print function.

Value

NA

Author(s)

Don Kang (donkang75@gmail.com) and George Tseng (ctseng@pitt.edu)
requireAll

References

See Also
MetaQC

Examples

```r
## Not run:
requireAll(c("proto", "foreach"))

## Toy Example
data(brain) #already hugely filtered
#Two default gmt files are automatically downloaded,
#otherwise it is required to locate it correctly.
#Refer to http://www.broadinstitute.org/gsea/downloads.jsp
brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
filterGenes=FALSE, verbose=TRUE)
#B is recommended to be >= 1e4 in real application
runQC(brainQC, B=1e2, fileForCQCP=c2.all.v3.0.symbols.gmt")
brainQC

## End(Not run)
```

requireAll MetaQC: Quantitative Quality Assessment for Inclusion/Exclusion Criteria of Genomic Meta-Analysis

Description
requireAll description

Usage
requireAll(packages)

Arguments
packages A character vector of required packages. Unavailable packages are going to be installed.

Value
None
Author(s)

Don Kang (donkang75@gmail.com) and George Tseng (ctseng@pitt.edu)

Examples

```r
## Not run:
libs <- c("proto", "foreach", ifelse(.Platform$OS.type == "unix", "doMC", "doSNOW"))
requireAll(libs)
## End(Not run)
```

Description

It is a utility function to RunQC method in MetaQC object.

Usage

```r
runQC(QC, nPath=NULL, B=1e4, pvalCut=.05, pvalAdjust=FALSE, fileForCQCp="c2.all.v3.0.symbols.gmt")
```

Arguments

- `QC` A proto R object which obtained by MetaQC function.
- `nPath` The number of top pathways which would be used for EQC calculation. The top pathways are automatically determined by their mean rank of over significance among given studies. It is important that gene sets used for EQC are expected to have higher correlation than background. For better performance, this should be set as a reasonably small number.
- `B` The number of permutation tests used for EQC calculation. More than 1e4 is recommended.
- `pvalCut` P-value threshold used for AQC calculation.
- `pvalAdjust` Whether to apply p-value adjustment due to multiple testing (B-H procedure is used).
- `fileForCQCp` Gene set used for CQCp calculation. Usually larger gene set is used than EQC calculation.

Value

A data frame showing a summary of each quality control score.

Author(s)

Don Kang (donkang75@gmail.com) and George Tseng (ctseng@pitt.edu)
References

See Also

MetaQC

Examples

Not run:
```r
requireAll(c("proto", "foreach"))
```

Toy Example
```r
data(brain)
#already hugely filtered
#Two default gmt files are automatically downloaded, otherwise it is required to locate it correctly.
#Refer to http://www.broadinstitute.org/gsea/downloads.jsp
brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
filterGenes=FALSE, verbose=TRUE)
#B is recommended to be >= 1e4 in real application
runQC(brainQC, B=1e2, fileForCQCP="c2.all.v3.0.symbols.gmt")
plot(brainQC)
```

For parallel computation with only 2 cores
```r
# R >= 2.11.0 in windows to use parallel computing
brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
filterGenes=FALSE, verbose=TRUE, isParallel=TRUE, nCores=2)
#B is recommended to be >= 1e4 in real application
runQC(brainQC, B=1e2, fileForCQCP="c2.all.v3.0.symbols.gmt")
plot(brainQC)
```

For parallel computation with all cores
```r
# In windows, only 2 cores are used if not specified explicitly
brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
filterGenes=FALSE, verbose=TRUE, isParallel=TRUE)
#B is recommended to be >= 1e4 in real application
runQC(brainQC, B=1e2, fileForCQCP="c2.all.v3.0.symbols.gmt")
plot(brainQC)
```

Real Example which is used in the paper
```r
#download the brainFull file
#from https://github.com/downloads/donkang75/MetaQC/brainFull.rda
data(brainfull)
load("brainFull.rda")
brainQC <- MetaQC(brainfull, "c2.cp.biocarta.v3.0.symbols.gmt", filterGenes=TRUE,
verbose=TRUE, isParallel=TRUE)
runQC(brainQC, B=1e4, fileForCQCP="c2.all.v3.0.symbols.gmt") #B was 1e5 in the paper
plot(brainQC)
```

Survival Data Example
```r
#download Breast data
#from https://github.com/donkang75/MetaQC/Breast.rda
load("Breast.rda")
breastQC <- MetaQC(Breast, "c2.cp.biocarta.v3.0.symbols.gmt", filterGenes=FALSE,
                    verbose=TRUE, isParallel=TRUE, resp.type="Survival")
runQC(breastQC, B=1e4, fileForCQCP="c2.all.v3.0.symbols.gmt")
breastQC
plot(breastQC)

## End(Not run)
```
Index

*Topic **MetaAnalysis**

cleanup, 5
MetaQC, 6
MetaQC-package, 2
plot.proto, 9
print.proto, 10
runQC, 12

*Topic **MetaQC**

brain, 4

*Topic **Microarray**

cleanup, 5
MetaQC, 6
MetaQC-package, 2
plot.proto, 9
print.proto, 10
runQC, 12

*Topic **QualityControl**

cleanup, 5
MetaQC, 6
MetaQC-package, 2
plot.proto, 9
print.proto, 10
runQC, 12

*Topic **require**

requireAll, 11

brain, 4

cleanup, 5

MetaQC, 6, 6, 10, 11, 13
MetaQC-package, 2

plot.proto, 9
print.proto, 10
requireAll, 11
runQC, 8, 12

15