Package ‘MiST’

February 19, 2015

Type Package

Title Mixed effects Score Test for continuous outcomes

Version 1.0

Date 2013-03-18

Author Jianping Sun, Yingye Zheng, and Li Hsu

Maintainer Jianping Sun <jsun@fhcrc.org>

Depends CompQuadForm

Description Test for association between a set of SNPS/genes and continuous or binary outcomes by including variant characteristic information and using (weighted) score statistics.

License LGPL (>= 2.0)

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2013-12-14 17:01:19

R topics documented:

MiST-package ... 2
linear.test ... 2
linear.weight.test .. 4
logit.test ... 6
logit.weight.test .. 7
MiST.data ... 9

Index 10
MiST-package
Mixed effects Score Test

Description
Test for association between a set of SNPS/genes and continuous or binary outcomes by including variant characteristic information and using score statistics.

Details

Package: MiST
Type: Package
Version: 1.0
Date: 2013-03-18
License: LGPL (>= 2.0)
LazyLoad: yes

```
linear.test(y, X, G, Z, method = "liu")
linear.weight.test(y, X, G, Z, maf, weight.beta = c(1, 25), method = "liu")
logit.test(y, X, G, Z, method = "liu")
logit.weight.test(y, X, G, Z, maf, weight.beta = c(1, 25), method = "liu")
```

Author(s)
Jianping Sun, Yingye Zheng, and Li Hsu.

References

Description
Test for association between a set of SNPS/genes and continuous outcomes by including variant characteristic information and using score statistics.
Usage

linear.test(y, X, G, Z, method = "liu")

Arguments

y
a numeric vector of the continuous outcome variables. Missing values are not allowed.

X
a numeric matrix of covariates with rows for individuals and columns for covariates.

G
a numeric genotype matrix with rows for individuals and columns for SNPs. Each SNP should be coded as 0, 1, and 2 for AA, Aa, aa, where A is a major allele and a is a minor allele. Missing genotypes are not allowed.

Z
a numeric matrix of second level covariates for variant characteristics. Each row corresponds to a variant and each column corresponds to a variant characteristic. If there is no second level covariates, a vector of 1 should be used.

method
a method to compute the p-value and the default value is "liu". Method "davies" represents an exact method that computes the p-value by inverting the characteristic function of the mixture chisq. Method "liu" represents an approximation method that matches the first 3 moments.

Value

S.tau
score statistic for the variant heterogeneous effect.

S.pi
score statistic for the variant mean effect.

p.value.S.tau
p-value for testing the variant heterogeneous effect.

p.value.S.pi
p-value for testing the variant mean effect.

p.value.overall
overall p-value for testing the association between the set of SNPS/genes and outcomes. It combines p.value.S.pi and p.value.S.tau by using Fisher’s procedure.

Author(s)

Jianping Sun, Yingye Zheng, and Li Hsu.

References

linear.weight.test

Examples

```r
data(MiST.data)
attach(MiST.data)

#########################################################################
# test the association between a set of SNPs and continuous outcomes
# M without information about SNP characteristics. Z is a vector of 1's.
out <- linear.test(y,con, X, g, Z)

#########################################################################
# test the association between a set of SNPs and continuous outcomes
# M including SNP characteristics
out <- linear.test(y,con, X, g, Z.func)
```

linear.weight.test

Weighted Mixed effects Score Test for continuous outcomes

Description

Test for association between a set of SNPS/genes and continuous outcomes by including variant characteristic information and using weighted score statistics.

Usage

```r
linear.weight.test(y, X, G, Z, maf, weight.beta = c(1, 25), method = "liu")
```

Arguments

- **y**: a numeric vector of the continuous outcome variables. Missing values are not allowed.
- **X**: a numeric matrix of covariates with rows for individuals and columns for covariates.
- **G**: a numeric genotype matrix with rows for individuals and columns for SNPs. Each SNP should be coded as 0, 1, and 2 for AA, Aa, aa, where A is a major allele and a is a minor allele. Missing genotypes are not allowed.
- **Z**: a numeric matrix of second level covariates for variant characteristics. Each row corresponds to a variant and each column corresponds to a variant characteristic. If there is no second level covariates, a vector of 1 should be used.
- **maf**: a numeric vector of MAF (minor allele frequency) for each SNP.
weight.beta: a numeric vector of parameters of beta function which is the weight for score statistics. The default value is "c(1,25)".

method: a method to compute the p-value and the default value is "liu". Method "davies" represents an exact method that computes the p-value by inverting the characteristic function of the mixture chisq. Method "liu" represents an approximation method that matches the first 3 moments.

Value

- S.tau: score statistic for the variant heterogenous effect.
- S.pi: score statistic for the variant mean effect.
- p.value.S.tau: p-value for testing the variant heterogenous effect.
- p.value.S.pi: p-value for testing the variant mean effect.
- p.value.overall: overall p-value for testing the association between the set of SNPS/genes and outcomes. It combines p.value.S.pi and p.value.S.tau by using Fisher’s procedure.

Author(s)

Jianping Sun, Yingye Zheng, and Li Hsu.

References

Examples

data(MiST.data)
attach(MiST.data)

Test the association between a set of SNPs and continuous outcomes
- without information about SNP characteristics. Z is a vector of 1's.

out <- linear.weight.test(y.con, X, G, Z, maf)

Test the association between a set of SNPs and continuous outcomes
- including SNP characteristics

out <- linear.weight.test(y.con, X, G, Z.func, maf)
logit.test

Mixed effects Score Test for binary outcomes

Description

Test for association between a set of SNPS/genes and binary outcomes by including variant characteristic information and using score statistics.

Usage

logit.test(y, X, g, Z, method = "liu")

Arguments

- **y**
 a numeric (0 or 1) vector of the binary outcome variables. Missing values are not allowed.
- **X**
 a numeric matrix of covariates with rows for individuals and columns for covariates.
- **g**
 a numeric genotype matrix with rows for individuals and columns for SNPs. Each SNP should be coded as 0, 1, and 2 for AA, Aa, aa, where A is a major allele and a is a minor allele. Missing genotypes are not allowed.
- **Z**
 a numeric matrix of second level covariates for variant characteristics. Each row corresponds to a variant and each column corresponds to a variant characteristic. If there is no second level covariates, a vector of 1 should be used.
- **method**
 a method to compute the p-value and the default value is "liu". Method "davies" represents an exact method that computes the p-value by inverting the characteristic function of the mixture chisq. Method "liu" represents an approximation method that matches the first 3 moments.

Value

- **S.tau**
 score statistic for the variant heterogenous effect.
- **S.pi**
 score statistic for the variant mean effect.
- **p.value.S.tau**
 p-value for testing the variant heterogenous effect.
- **p.value.S.pi**
 p-value for testing the variant mean effect.
- **p.value.overall**
 overall p-value for testing the association between the set of SNPS/genes and outcomes. It combines p.value.S.pi and p.value.S.tau by using Fisher’s procedure.

Author(s)

Jianping Sun, Yingye Zheng, and Li Hsu.
logit.weight.test

References

Examples

data(MiST.data)
attach(MiST.data)

Test the association between a set of SNPs and binary outcomes
- without information about SNP characteristics. Z is a vector of 1's.

out <- logit.test(y.bin, X, G, Z)

Test the association between a set of SNPs and binary outcomes
- including SNP characteristics

out <- logit.test(y.bin, X, G, Z.func)

logit.weight.test Weighted Mixed effects Score Test for binary outcomes

Description

Test for association between a set of SNPs/genes and binary outcomes by including variant characteristic information and using weighted score statistics.

Usage

logit.weight.test(y, X, G, Z, maf, weight.beta = c(1, 25), method = "liu")

Arguments

y a numeric vector (0 or 1) of the binary outcome variables. Missing values are not allowed.

X a numeric matrix of covariates with rows for individuals and columns for covariates.

G a numeric genotype matrix with rows for individuals and columns for SNPs. Each SNP should be coded as 0, 1, and 2 for AA, Aa, aa, where A is a major allele and a is a minor allele. Missing genotypes are not allowed.
logit.weight.test

Z a numeric matrix of second level covariates for variant characteristics. Each row corresponds to a variant and each column corresponds to a variant characteristic. If there is no second level covariates, a vector of 1 should be used.

maf a numeric vector of MAF (minor allele frequency) for each SNP.

weight.beta a numeric vector of parameters of beta function which is the weight for score statistics. The default value is "c(1,25)".

method a method to compute the p-value and the default value is "liu". Method "davies" represents an exact method that computes the p-value by inverting the characteristic function of the mixture chisq. Method "liu" represents an approximation method that matches the first 3 moments.

Value

S.tau score statistic for the variant heterogenous effect.
S.pi score statistic for the variant mean effect.
p.value.S.tau p-value for testing the variant heterogenous effect.
p.value.S.pi p-value for testing the variant mean effect.
p.value.overall overall p-value for testing the association between the set of SNPS/genes and outcomes. It combines p.value.S.pi and p.value.S.tau by using Fisher's procedure.

Author(s)

Jianping Sun, Yingye Zheng, and Li Hsu.

References

Examples

data(MiST.data)
attach(MiST.data)

##
Test the association between a set of SNPs and binary outcomes
- without information about SNP characteristics. Z is a vector of 1's.
out <- logit.weight.test(y.bin, X, G, Z, maf)

##
Test the association between a set of SNPs and binary outcomes
MiST.data

- including SNP characteristics

out <- logit.weight.test(y.bin, X, G, Z.func, maf)

<table>
<thead>
<tr>
<th>MiST.data</th>
<th>Data Example for MiST</th>
</tr>
</thead>
</table>

Description

A numerical data example for MiST

Usage

data(MiST.data)

Format

MiST.data contains the following objects:

- **G**: a numeric genotype matrix of 3400 individuals and 93 SNPs. Each row represents an individual, and each column represents a SNP marker.
- **X**: a numeric matrix of covariates with the first column representing intercept, the second column representing a continuous covariate, and the third column representing a binary covariate.
- **Z**: a numeric vector of 1s for the second level covariate.
- **Z.func**: a numeric matrix for the second level covariate. The first column contains all 1s, representing the intercept, and the second column is 0 or 1, representing whether a SNP marker is functional or non-functional.
- **maf**: a numeric vector for the Minor Allele Frequency of 93 SNPs.
- **y.con**: a numeric vector of continuous outcomes.
- **y.bin**: a numeric vector of binary outcomes.

Examples

data(MiST.data)
Index

*Topic **datasets**
 MiST.data, 9

*Topic **package**
 MiST-package, 2

linear.test, 2
linear.weight.test, 4
logit.test, 6
logit.weight.test, 7

MiST (MiST-package), 2
MiST-package, 2
MiST.data, 9