ACE Models with the NLSY

William Howard Beasley (Howard Live Oak LLC, Norman)
Joseph Lee Rodgers (Vanderbilt University, Nashville)
David Bard (University of Oklahoma Health Sciences Center, OKC)
Kelly Meredith (Oklahoma City University, OKC)
Michael D. Hunter (University of Oklahoma, Norman)

March 5, 2016

Abstract
We describe how to use the NlsyLinks package to examine various biometric models, using the NLSY79.

Contents
1 Terminology 1
2 Example: DF analysis with a Simple Outcome for Gen2 Subjects, Using a Package Variable 3
3 Example: DF analysis with a univariate outcome from a Gen2 Extract 6
4 Example: Multiple Group SEM of a Simple Outcome for Gen2 Subjects 8
5 Example: Multiple Group SEM of a Simple Outcome for Gen1 Subjects 10
6 Example: Multiple Group SEM of a Simple Outcome all pairs in Gen1 and Gen2 12
7 Example: Midstream data manipulation with SAS 14
A Appendix: Receiving Help for the NlsyLinks Package 14
B Appendix: Creating and Saving R Scripts 15
C Appendix: Installing and Loading the NlsyLinks Package 15
D Appendix: References 15
E Notes 16
F Version Information 16

1 Terminology

This package considers both Gen1 and Gen2 subjects. Gen1 refers to subjects in the original NLSY79 sample (http://www.bls.gov/nls/nlsy79.htm). Gen2 subjects are the biological offspring of the Gen1 females -i.e., those in the NLSY79 Children and Young Adults sample (http://www.bls.gov/nls/nlsy79ch.htm).
The NLSY97 is a third dataset that can be used for behavior genetic research (http://www.bls.gov/nls/nlsy97.htm), although this vignette focuses on the two generations in the NLSY79.

Standard terminology is to refer Gen2 subjects as ‘children’ when they are younger than age 15 (NSLY79-C), and as ‘young adults’ when they are 15 and older (NLSY79-YA); though they are the same respondents, different funding mechanisms and different survey items necessitate the distinction. This cohort is sometimes abbreviated as ‘NLSY79-C’, ‘NLSY79C’, ‘NLSY-C’ or ‘NLSYC’.

Within our own team, we’ve mostly stopped using terms like ‘NLSY79’, ‘NLSY79-C’ and ‘NLSY79-YA’, because we conceptualize it as one big sample containing two related generations. It many senses, the responses collected from the second generation can be viewed as outcomes of the first generation. Likewise, the parents in the first generation provide many responses that can be viewed as explanatory variables for the 2nd generation. Depending on your research, there can be big advantages of using one cohort to augment the other. There are also survey items that provide information about the 3rd generation and the 0th generation.

The SubjectTag variable uniquely identify NLSY79 subjects when a dataset contains both generations. For Gen2 subjects, the SubjectTag is identical to their CID (i.e., C00001.00 -the ID assigned in the NLSY79-Children files). However for Gen1 subjects, the SubjectTag is their CaseID (i.e., R00001.00), with “00” appended. This manipulation is necessary to identify subjects uniquely in inter-generational datasets. A Gen1 subject with an ID of 43 becomes 4300. The SubjectTags of her four children remain 4301, 4302, 4303, and 4304.

The expected coefficient of relatedness of a pair of subjects is typically represented by the statistical variable \(R \). Examples are: Monozygotic twins have \(R=1 \); dizygotic twins have \(R=0.5 \); full siblings (i.e., those who share both biological parents) have \(R=0.5 \); half-siblings (i.e., those who share exactly one biological parent) have \(R=0.25 \); adopted siblings have \(R=0.0 \). Other uncommon possibilities are mentioned the documentation for Links79Pair. The font (and hopefully their context) should distinguish the variable \(R \) from the software R. To make things slightly more confusing the computer variable for \(R \) in the Links79Pair dataset is written with a monospace font: \(R \).

A subject’s ExtendedID indicates their extended family. Two subjects will be in the same extended family if either: [1] they are Gen1 housemates, [2] they are Gen2 siblings, [3] they are Gen2 cousins (i.e., they have mothers who are Gen1 sisters in the NLSY79), [4] they are mother and child (in Gen1 and Gen2, respectively), or [5] they are (aunt—uncle) and (niece—nephew) (in Gen1 and Gen2, respectively).

An outcome variable is directly relevant to the applied researcher; these might represent constructs like height, IQ, and income. A plumbing variable is necessary to manage BG datasets; examples are \(R \), a subject’s ID, and the date of a subject’s last survey.

An ACE model is the basic biometrical model used by Behavior Genetic researchers, where the genetic and environmental effects are assumed to be additive. The three primary variance components are (1) the proportion of variability due to a shared genetic influence (typically represented as \(a^2 \), or sometimes \(h^2 \)), (2) the proportion of variability due to shared common environmental influence (typically \(c^2 \)), and (3) the proportion of variability due to unexplained/residual/error influence (typically \(e^2 \)).

The variables are scaled so that they account for all observed variability in the outcome variable; specifically: \(a^2 + c^2 + e^2 = 1 \). Using appropriate designs that can logically distinguish these different components (under carefully specified assumptions), the basic biometrical modeling strategy is to estimate the magnitude of \(a^2 \), \(c^2 \), and \(e^2 \) within the context of a particular model. For gentle introductions to Behavior Genetic research, we recommend Plomin (1990) and Carey (2003). For more in-depth ACE model-fitting strategies, we recommend Neale & Maes, (1992).

The NLS Investigator (http://www.nlsinfo.org/investigator/) is the best way to obtain the NLSY79 and NLSY97 datasets. See our vignette dedicated to the NLS Investigator by typing vignette("NlsInvestigator") or by visiting http://cran.r-project.org/package=NlsyLinks.

Before starting the real examples, first verify that the NlsyLinks package is installed correctly. If not, please refer to Appendix C.
2 Example: DF analysis with a Simple Outcome for Gen2 Subjects, Using a Package Variable

The vignette’s first example uses a simple statistical model and all available Gen2 subjects. The `CreatePairLinksDoubleEntered` function will create a data frame where each represents one pair of siblings, respective of order (i.e., there is a row for Subjects 201 and 202, and a second row for Subjects 202 and 201). This function examines the subjects’ IDs and determines who is related to whom (and by how much). By default, each row it produces has at least six values/columns: (i) ID for the older member of the kinship pair: `Subject1Tag`, (ii) ID for the younger member: `Subject2Tag`, (iii) ID for their extended family: `ExtendedID`, (iv) their estimated coefficient of genetic relatedness: R, (v and beyond) outcome values for the older member; (vi and beyond) outcome values for the younger member.

A DeFries-Fulker (DF) Analysis uses linear regression to estimate the a^2, c^2, e^2 of a univariate biometric system. The interpretations of the DF analysis can be found in Rodgers & Kohler (2005) and Rodgers, Rowe, & Li (1999). This vignette example uses the newest variation, which estimates two parameters; the corresponding function is called `DeFriesFulkerMethod3`. The steps are:

1. Use the NLS Investigator to select and download a Gen2 dataset.
2. Open R and create a new script (see Appendix B) and load the NlsyLinks package. If you haven’t done so, first install the NlsyLinks package (see Appendix C).
3. Within the R script, load the linking dataset. Then select only Gen2 subjects. The ‘Pair’ version of the linking dataset is essentially an upper triangle of a symmetric sparse matrix.
4. Load and assign the `ExtraOutcomes79` dataset.
5. Specify the outcome variable name and filter out all subjects who have a negative value in this variable. The NLSY typically uses negative values to indicate different types of missingness (see ‘Further Information’ below).
6. Create a double-entered file by calling the `CreatePairLinksDoubleEntered` function. At minimum, pass the (i) outcome dataset, the (ii) linking dataset, and the (iii) name(s) of the outcome variable(s). (There are occasions when a single-entered file is more appropriate for a DF analysis. See Rodgers & Kohler, 2005, for additional information.)
7. Use `DeFriesFulkerMethod3` function (i.e., general linear model) to estimate the coefficients of the DF model.

R Code for Example DF analysis with a simple outcome and Gen2 subjects

```r
library(NlsyLinks)

dsLinking <- subset(Links79Pair, RelationshipPath=='Gen2Siblings')

summary(dsLinking) # Notice there are 11,088 records (one for each unique pair).
```
Step 4: Load the OUTCOMES dataset, and then examine the summary.

dsOutcomes <- ExtraOutcomes79 # 'ds' stands for 'Data Set'
summary(dsOutcomes)

Step 5: This step isn't necessary for this example, because Kelly Meredith already
groomed the values. If the negative values (which represent NLSY missing or
skip patterns) still exist, then:
dsOutcomes$MathStandardized[dsOutcomes$MathStandardized < 0] <- NA
Step 6: Create the double entered dataset.

```r
dsDouble <- CreatePairLinksDoubleEntered(
  outcomeDataset = dsOutcomes,
  linksPairDataset = dsLinking,
  outcomeNames = c('MathStandardized'))
summary(dsDouble)  # Notice there are 22176=(2*11088) records now (two for each unique pair).
```

<table>
<thead>
<tr>
<th>SubjectTag_S1</th>
<th>SubjectTag_S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. 201.000000000000</td>
<td>Min. 201.000000000000</td>
</tr>
<tr>
<td>1st Qu. 3155.000000000000</td>
<td>1st Qu. 3155.000000000000</td>
</tr>
<tr>
<td>Median 6114.000000000000</td>
<td>Median 6114.000000000000</td>
</tr>
<tr>
<td>Mean 593658.76185999997</td>
<td>Mean 593658.76185999997</td>
</tr>
<tr>
<td>3rd Qu. 851102.250000000000</td>
<td>3rd Qu. 851102.250000000000</td>
</tr>
<tr>
<td>Max. 1267302.000000000000</td>
<td>Max. 1267302.000000000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ExtendedID</th>
<th>R</th>
<th>RelationshipPath</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. 2.000000000000000</td>
<td>Min. 0.250000000000000</td>
<td>Gen1Housemates: 0</td>
</tr>
<tr>
<td>1st Qu. 3155.000000000000</td>
<td>1st Qu. 0.250000000000000</td>
<td>Gen2Siblings :22176</td>
</tr>
<tr>
<td>Median 6114.000000000000</td>
<td>Median 0.500000000000000</td>
<td>Gen2Cousins : 0</td>
</tr>
<tr>
<td>Mean 5933.2231240999999</td>
<td>Mean 0.41700487012999993</td>
<td>ParentChild : 0</td>
</tr>
<tr>
<td>3rd Qu. 8511.000000000000</td>
<td>3rd Qu. 0.500000000000000</td>
<td>AuntNiece : 0</td>
</tr>
<tr>
<td>Max. 12673.0000000000000</td>
<td>Max. 1.000000000000000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MathStandardized_S1</th>
<th>MathStandardized_S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. 65.000000000000000</td>
<td>Min. 65.000000000000000</td>
</tr>
<tr>
<td>1st Qu. 90.000000000000000</td>
<td>1st Qu. 90.000000000000000</td>
</tr>
<tr>
<td>Median 98.500000000000000</td>
<td>Median 98.500000000000000</td>
</tr>
<tr>
<td>Mean 98.395467716400006</td>
<td>Mean 98.395467716400006</td>
</tr>
<tr>
<td>3rd Qu. 107.000000000000000</td>
<td>3rd Qu. 107.000000000000000</td>
</tr>
<tr>
<td>Max. 135.000000000000000</td>
<td>Max. 135.000000000000000</td>
</tr>
<tr>
<td>NA's 3885</td>
<td>NA's 3885</td>
</tr>
</tbody>
</table>

Step 7: Estimate the ACE components with a DF Analysis

```r
ace <- DeFriesFulkerMethod3(
  dataSet = dsDouble,
  oName_S1 = "MathStandardized_S1",
  oName_S2 = "MathStandardized_S2")
ace
```

```
# [1] "Results of ACE estimation: [show]"
# ASquared CSquared ESquared
# 7.7347318178769308-01 1.4684979300680353620e-01 7.9677025205503348992e-02
# CaseCount
# 1.6680000000000000e+04
```

Further Information: If the different reasons of missingness are important, further work is necessary. For instance, some analyses that use item `Y19940000` might need to distinguish a response of “Don’t Know” (which is coded as -2) from “Missing” (which is coded as -7). For this vignette example, we’ll assume it’s safe to clump the responses together.
3 Example: DF analysis with a univariate outcome from a Gen2 Extract

The vignette’s second example differs from the previous example in two ways. First, the outcome variables are read from a CSV (comma separated values file) that was downloaded from the NLS Investigator. Second, the DF analysis is called through the function `AceUnivariate`; this function is a wrapper around some simple ACE methods, and will help us smoothly transition to more techniques later in the vignette.

The steps are:

1. Use the NLS Investigator to select and download a Gen2 dataset. Select the variables ‘length of gestation of child in weeks’ (C03280.00), ‘weight of child at birth in ounces’ (C03286.00), and ‘length of child at birth’ (C03288.00), and then download the *.zip file to your local computer.

2. Open R and create a new script (see Appendix B) and load the NlsyLinks package.

3. Within the R script, load the linking dataset. Then select only Gen2 subjects.

4. Read the CSV into R as a data.frame using `ReadCsvNlsy79Gen2`.

5. Verify the desired outcome column exists, and rename it something meaningful to your project. It is important that the data.frame is reassigned (i.e., `ds <- RenameNlsyColumn(...)`). In this example, we rename column C0328800 to BirthWeightInOunces.

6. Filter out all subjects who have a negative BirthWeightInOunces value. See the ‘Further Information’ note in the previous example.

7. Create a double-entered file by calling the `CreatePairLinksDoubleEntered` function. At minimum, pass the (i) outcome dataset, the (ii) linking dataset, and the (iii) name(s) of the outcome variable(s).

8. Call the `AceUnivariate` function to estimate the coefficients.

R Code for Example of a DF analysis with a simple outcome and Gen2 subjects

```r
library(NlsyLinks)
dsLinking <- subset(Links79Pair, RelationshipPath=="Gen2Siblings")

dsOutcomes <- ReadCsvNlsy79Gen2(filePathOutcomes)
summary(dsOutcomes)
```
Max. :12675.0000000000000 Max. :2 Max. :1267500.000000
NA's :2
C0005300 C0005400 C0005700
Min. :1.0000000000000000 Min. :-3.00000000000 Min. : -3.0000000000000
1st Qu.:2.0000000000000000 1st Qu.: 1.00000000000 1st Qu.:1981.0000000000000
Median :3.0000000000000000 Median :1.00000000000 Median :1985.0000000000000
Mean :2.3384080034800001 Mean : 1.48890822097 Mean :1985.7074380199999
3rd Qu.:3.0000000000000000 3rd Qu.: 2.00000000000 3rd Qu.:1990.0000000000000
Max. :3.0000000000000000 Max. : 2.00000000000 Max. :2008.0000000000000
C0328000 C0328600 C0328800
Min. :-7.000000000000000 Min. : -7.000000000 Min. : -7.0000000000
1st Qu.:37.000000000000000 1st Qu.: 99.000000000 1st Qu.:18.0000000000
Mean :33.509525880799998 Mean :103.905350152 Mean :16.5124836886
3rd Qu.:39.000000000000000 3rd Qu.:128.000000000 3rd Qu.:21.0000000000
Max. :51.000000000000000 Max. :768.000000000 Max. :48.0000000000

#Step 5: Verify and rename an existing column.
VerifyColumnExists(dsOutcomes, "C0328600") #Should return '10' in this example.
[1] 10
dsOutcomes <- RenameNlsyColumn(dsOutcomes, "C0328600", "BirthWeightInOunces")

#Step 6: For this item, a negative value indicates the parent refused, didn’t know, # invalidly skipped, or was missing for some other reason.
For our present purposes, we’ll treat these responses equivalently.
Then clip/Winsorized/truncate the weight to something reasonable.
dsOutcomes$BirthWeightInOunces[dsOutcomes$BirthWeightInOunces < 0] <- NA
ndsOutcomes$BirthWeightInOunces <- pmin(ndsOutcomes$BirthWeightInOunces, 200)

#Step 7: Create the double entered dataset.
dsDouble <- CreatePairLinksDouble Entered(
 outcomeDataset = dsOutcomes,
 linksPairDataset = dsLinking,
 outcomeNames = c("BirthWeightInOunces")
)

#Step 8: Estimate the ACE components with a DF Analysis
ace <- AceUnivariate(
 method = "DeFriesFulkerMethod3",
 dataSet = dsDouble,
 oName_S1 = "BirthWeightInOunces_S1",
 oName_S2 = "BirthWeightInOunces_S2"
)

ace
[1] "Results of ACE estimation: [show]"
ASquared CSquared ESquared
5.0416077475337696e-01 1.7766127265953279846e-01 3.1817804986193343186e-01
CaseCount
1.7440000000000000000e+04

For another example of incorporating CSVs downloaded from the NLS Investigator, please see the “Race
4 Example: Multiple Group SEM of a Simple Outcome for Gen2 Subjects

The example differs from the first one by the statistical mechanism used to estimate the components. The first example uses multiple regression to estimate the influence of the shared genetic and environmental factors, while this example uses structural equation modeling (SEM).

The CreatePairLinksSingleEntered function will create a data.frame where each row represents one unique pair of siblings, irrespective of order. Other than producing half the number of rows, this function is identical to CreatePairLinksDoubleEntered.

The steps are:

1. Create a single-entered file by calling the CreatePairLinksSingleEntered function. At minimum, pass the (i) outcome dataset, the (ii) linking dataset, and the (iii) name(s) of the outcome variable(s).
2. Declare the names of the outcome variables corresponding to the two members in each pair. Assuming the variable is called ‘ZZZ’ and the preceding steps have been followed, the variable ‘ZZZ_S1’ corresponds to the first members and ‘ZZZ_S2’ corresponds to the second members.
3. Create a GroupSummary data.frame, which identifies the R groups that should be considered by the model. Inspect the output to see if the groups show unexpected or fishy differences.
4. Create a data.frame with cleaned variables to pass to the SEM function. This data.frame contains only the three necessary rows and columns.
5. Estimate the SEM with the lavaan package. The function returns an S4 object, which shows the basic ACE information.
6. Inspect details of the SEM, beyond the ACE components. In this example, we look at the fit stats and the parameter estimates. The lavaan package has additional methods that may be useful for your purposes.

```r
### R Code for Example lavaan estimation analysis with a simple outcome and Gen2 subjects
#Steps 1-5 are explained in the vignette's first example:
library(NlsyLinks)
dsLinking <- subset(Links79Pair, RelationshipPath=="Gen2Siblings")
dsOutcomes <- ExtraOutcomes79
dsOutcomes$MathStandardized[dsOutcomes$MathStandardized < 0] <- NA

#Step 6: Create the single entered dataset.
dsSingle <- CreatePairLinksSingleEntered(
    outcomeDataset = dsOutcomes,
    linksPairDataset = dsLinking,
    outcomeNames = c('MathStandardized')
)

#Step 7: Declare the names for the two outcome variables.
oName_S1 <- "MathStandardized_S1" #Stands for Outcome1
oName_S2 <- "MathStandardized_S2" #Stands for Outcome2

#Step 8: Summarize the R groups and determine which groups can be estimated.
dsGroupSummary <- RGroupSummary(dsSingle, oName_S1, oName_S2)
```
<table>
<thead>
<tr>
<th>R</th>
<th>Included</th>
<th>PairCount</th>
<th>O1Mean</th>
<th>O2Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>TRUE</td>
<td>2691</td>
<td>95.114269788182383283</td>
<td>95.981047937569670125</td>
</tr>
<tr>
<td>0.375</td>
<td>TRUE</td>
<td>133</td>
<td>93.541353383458641702</td>
<td>93.413533834586459648</td>
</tr>
<tr>
<td>0.500</td>
<td>TRUE</td>
<td>5493</td>
<td>99.888312397596948244</td>
<td>100.023393409794280728</td>
</tr>
<tr>
<td>0.750</td>
<td>FALSE</td>
<td>2</td>
<td>108.500000000000000000</td>
<td>106.023809523809518396</td>
</tr>
<tr>
<td>1.000</td>
<td>TRUE</td>
<td>21</td>
<td>98.214285714285708195</td>
<td>96.023809523809518396</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O1Variance</th>
<th>O2Variance</th>
<th>O1O2Covariance</th>
</tr>
</thead>
<tbody>
<tr>
<td>126.89056209670400222</td>
<td>150.10540276758959521</td>
<td>42.0434303937536252652</td>
</tr>
<tr>
<td>163.07214057871951240</td>
<td>131.56875484164957356</td>
<td>46.560420938710414873</td>
</tr>
<tr>
<td>168.73492892496827267</td>
<td>172.91665039090338496</td>
<td>90.12465438054840555</td>
</tr>
<tr>
<td>220.500000000000000000</td>
<td>18.000000000000000000</td>
<td>63.000000000000000000</td>
</tr>
<tr>
<td>289.43928571428568830</td>
<td>215.23690476190475351</td>
<td>229.107142857142861203</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Determinant</th>
<th>PosDefinite</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30463887361638264384</td>
<td>17279.3088916571650770</td>
<td>TRUE</td>
</tr>
<tr>
<td>0.31788287687476463050</td>
<td>19285.694965908786575</td>
<td>TRUE</td>
</tr>
<tr>
<td>0.5276217721993104810</td>
<td>21054.6253864742757287</td>
<td>TRUE</td>
</tr>
<tr>
<td>1.00000000000000000000</td>
<td>0.00000000000000000000</td>
<td>FALSE</td>
</tr>
<tr>
<td>0.91791300183571600257</td>
<td>9807.9330654761924961</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

Step 9: Create a cleaned dataset

```r
dsClean <- CleanSemAceDataset(dsDirty=dsSingle, dsGroupSummary, oName_S1, oName_S2)
```

Step 10: Run the model

```r
ace <- AceLavaanGroup(dsClean)
ace
```

```
## [1] "Results of ACE estimation: [show]"
## ASquared CSquared ESquared
## 0.62109766246091779873 0.21003560391652922879 0.16886673362255288922
## CaseCount
## 8338.00000000000000000000
```

Step 11: Inspect the output further

```r
library(lavaan) #Load the package to access methods of the lavaan class.
GetDetails(ace)
```

```
# lavaan (0.5-20) converged normally after 54 iterations
##
## Number of observations per group
## 1 2691
## 2 133
## 3 5493
## 4 21
##
## Estimator ML
## Minimum Function Test Statistic 447.303
## Degrees of freedom 16
## P-value (Chi-square) 0.000
##
## Chi-square for each group:
```
Examine fit stats like Chi-Squared, RMSEA, CFI, etc.

```r
fitMeasures(GetDetails(ace))
#'fitMeasures' is defined in the lavaan package.
```

<table>
<thead>
<tr>
<th></th>
<th>npar</th>
<th>fmin</th>
<th>chisq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.0000000000000000000e+00</td>
<td>2.699999999999999965e-02</td>
<td>4.473029999999999727e+02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>pvalue</th>
<th>baseline.chisq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.6000000000000000000e+01</td>
<td>0.0000000000000000000e+00</td>
<td>2.1072519999999999527e+03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>baseline.df</th>
<th>baseline.pvalue</th>
<th>cfi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.0000000000000000000e+00</td>
<td>0.0000000000000000000e+00</td>
<td>7.9500000000000003997e-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>tli</th>
<th>nnfi</th>
<th>rfi</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>nfi</th>
<th>pfi</th>
<th>ifi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.8800000000000000000e-01</td>
<td>3.1509999999999999600e+00</td>
<td>7.9400000000000003997e-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>rni</th>
<th>logl</th>
<th>unrestricted.logl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.9500000000000000000e-01</td>
<td>-6.5103976000000000000e+04</td>
<td>-6.4880324000000000000e+04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>aic</th>
<th>bic</th>
<th>ntotal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.3021595200000000000e+05</td>
<td>1.3024406600000000000e+05</td>
<td>8.3380000000000003997e+03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>bic2</th>
<th>rmsea</th>
<th>rmsea.ci.lower</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.3023135499999999953e+05</td>
<td>1.1400000000000000411e-01</td>
<td>1.04999999999999611e-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>rmsea.ci.upper</th>
<th>rmsea.pvalue</th>
<th>rmr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.22999999999999998222e+01</td>
<td>0.0000000000000000000e+00</td>
<td>1.009500000000000639e+01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>rnr_nomean</th>
<th>srmr</th>
<th>srmr_bentler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2900999999999999801e+01</td>
<td>1.3000000000000000044e-01</td>
<td>1.3000000000000000044e-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>srmr_bentler_nomean</th>
<th>srmr_bollen</th>
<th>srmr_bollen_nomean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.9999999999999999666e-02</td>
<td>1.40999999999999998646e-01</td>
<td>1.4999999999999999945e-02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>srmr_mplus</th>
<th>srmr_mplus_nomean</th>
<th>cn_05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5599999999999999978e-01</td>
<td>8.4000000000000000000e+00</td>
<td>4.9117799999999999727e+02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>cn_01</th>
<th>gfi</th>
<th>agfi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.7499999999999999985e+02</td>
<td>9.98999999999999999911e-01</td>
<td>9.98999999999999999911e-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>pfi</th>
<th>mfi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.9900000000000000000e+01</td>
<td>9.73999999999999997691e-01</td>
</tr>
</tbody>
</table>

Examine low-level details like each group's individual parameter estimates and standard errors. Uncomment the next line to view the entire output (which is roughly 4 pages).

```r
summary(GetDetails(ace))
```

5 Example: Multiple Group SEM of a Simple Outcome for Gen1 Subjects

The example differs from the previous one in three ways. First, Gen1 subjects are used. Second, standardized height is used instead of math. Third, pairs are dropped if their R is zero; we return to this last issue after the code is run.

```r
### R Code for Example lavaan estimation analysis with a simple outcome and Gen1 subjects
Steps 1-5 are explained in the vignette's first example:
library(NlsyLinks)
dsLinking <- subset(Links79Pair, RelationshipPath=="Gen1Housemates")
```
dsOutcomes <- ExtraOutcomes79
#The HeightZGenderAge variable is already groomed

#Step 6: Create the single entered dataset.
dsSingle <- CreatePairLinksSingleEntered(
 outcomeDataset = dsOutcomes,
 linksPairDataset = dsLinking,
 outcomeNames = c('HeightZGenderAge'))

#Step 7: Declare the names for the two outcome variables.
oName_S1 <- "HeightZGenderAge_S1"
oName_S2 <- "HeightZGenderAge_S2"

#Step 8: Summarize the R groups and determine which groups can be estimated.
dsGroupSummary <- RGroupSummary(dsSingle, oName_S1, oName_S2)
dsGroupSummary
R Included PairCount O1Mean O2Mean
1 0.25 TRUE 280 0.0483004136867417395 0.0560496713523819731217
2 0.50 TRUE 3894 -0.049868990272852013745 -0.027888465283610547924
3 1.00 TRUE 11 -0.086520058570255659047 -0.009039755400108848829
O1Variance O2Variance O1O2Covariance
1 1.01815787192538476091 1.18472138825615620720 0.26556320501139352164
2 0.97356168690240774133 1.01937889493603450752 0.4660285583871582707
3 0.3171246571157719758 0.35833062637213869417
Correlation Determinant PosDefinite
1 0.24179773323514175409 1.13570959163545182058 TRUE
2 0.467802970343472232528 0.77524561931422497629 TRUE
3 0.65221372484402106995 0.17344694504624055820 TRUE

#Step 9: Create a cleaned dataset
dsClean <- CleanSemAceDataset(dsDirty=dsSingle, dsGroupSummary, oName_S1, oName_S2)

#Step 10: Run the model
ace <- AceLavaanGroup(dsClean)
ace
[1] "Results of ACE estimation: [show]"
ASquared CSquared ESquared
0.70401491022084394800 0.11236581616709975795 0.18361927361205623854
CaseCount
4185.00000000000000000000

#Step 11: Inspect the output further (see the final step in the previous example).

Most of them responded they were Non-relatives to the explicit items asked in 1979 (i.e., NLSY79 variables R00001.50 through R00001.59). Yet their height’s observed correlations is far larger than would be expected for a sample of unrelated subjects. Since our team began BG research with the NLSY in the mid-1990s, the $R=0$ group has consistently presented higher than expected correlations, across many domains of outcome variables. For a long time, we have substantial doubts that subject pairs in this group share a low proportion of their selective genes. Consequently, we suggest applied researchers consider excluding this group from their biometric analyses.

If you wish to exclude additional groups from the analyses, Step 8 should change slightly. For instance, to MZ twins, replace the two lines in Step 8 with the following four. This is most for demonstration. It is unlikely to be useful idea in the current example, and is more likely to be useful when using the RFull
variable, which includes all values of R we were able to determine.

Step 8: Summarize the R groups and determine which groups can be estimated.

dsGroupSummary <- RGroupSummary(dsSingle, oName_S1, oName_S2)

```r
rGroupsToDrop <- c(1)

dsGroupSummary[dsGroupSummary$R %in% rGroupsToDrop, "Included"] <- FALSE
dsGroupSummary
```

R Code for Example lavaan estimation analysis with a simple outcome and Gen1 subjects

#Steps 1-5 are explained in the vignette's first example:

```r
library(NlsyLinks)
dsLinking <- subset(Links79Pair, RelationshipPath %in% c("Gen1Housemates", "Gen2Siblings", "Gen2Cousins", "ParentChild", "AuntNiece"))

#Because all five paths are specified, the line above is equivalent to:
#dsLinking <- Links79Pair

dsOutcomes <- ExtraOutcomes79

#The HeightZGenderAge variable is already groomed

#Step 6: Create the single entered dataset.

dsSingle <- CreatePairLinksSingleEntered(
  outcomeDataset = dsOutcomes,
  linksPairDataset = dsLinking,
  outcomeNames = c('HeightZGenderAge'))

#Step 7: Declare the names for the two outcome variables.
oName_S1 <- "HeightZGenderAge_S1"
```

Example: Multiple Group SEM of a Simple Outcome all pairs in Gen1 and Gen2

The example differs from the previous example in one way – all possible pairs are considered for the analysis. Pairs are only excluded (a) if they belong to one of the small R groups that are difficult to estimate, or (b) if the value for adult height is missing. This includes all 42,773 relationships in the follow five types of NLSY79 relationships.

<table>
<thead>
<tr>
<th>RelationshipPath</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen1Housemates</td>
<td>5,302</td>
</tr>
<tr>
<td>Gen2Siblings</td>
<td>11,088</td>
</tr>
<tr>
<td>Gen2Cousins</td>
<td>4,995</td>
</tr>
<tr>
<td>ParentChild</td>
<td>11,504</td>
</tr>
<tr>
<td>AuntNiece</td>
<td>9,884</td>
</tr>
</tbody>
</table>

Table 1: Number of NLSY79 relationship, by RelationshipPath. (Recall that ‘AuntNiece’ also contains uncles and nephews.)

In our opinion, using the intergenerational links is one of the most exciting new opportunities for NLSY researchers to pursue. We will be happy to facilitate such research through consult or collaboration, or even by generating new data structures that may be of value. The complete kinship linking file facilitates many different kinds of cross-generational research, using both biometrical and other kinds of modeling methods.
Step 8: Summarize the R groups and determine which groups can be estimated.

dsGroupSummary <- RGroupSummary(dsSingle, oName_S1, oName_S2)

dsGroupSummary
R Included PairCount O1Mean O2Mean
1 0.0625 TRUE 202 0.22968753664064302830 -0.075753951224085513960
2 0.1250 TRUE 2422 -0.02213185910068276993 0.01502572304669035851
3 0.2500 TRUE 7135 -0.054401901840306514380 -0.038880262721545100213
4 0.3750 TRUE 46 0.220021938792836491139 -0.1059829817886974159
5 0.5000 TRUE 14865 -0.057626883712690236961 -0.017392973415971589579
6 0.7500 FALSE 0 NA NA
7 1.0000 TRUE 27 -0.110921128234758969988 -0.126012062126287821551
##
O1Variance O2Variance O1O2Covariance
1 1.0509234877141130987 0.82714872807018424705 0.11211575720696094680
2 1.0334693567961366075 0.98098449951853006201 0.14875393267062911318
3 1.01908428125972649880 1.02959414822308408720 0.272144846231846352
4 1.0651875761652740215 0.9615538700552976348 0.42934390670290575054
5 0.96035206088202396124 0.9492975209053557073 0.4146052458413724880
6 NA NA NA
7 0.69344184377533035768 0.98911460321557531650 0.68638944598347928494
##
Correlation Determinant PosDefinite
1 0.11928706101274860751 0.8568835964611243055 TRUE
2 0.1477367633967601633 0.9916896725941719633 TRUE
3 0.2656822889696079934 0.9751776131052113833 TRUE
4 0.42403394031345575943 0.8406562933513020468 TRUE
5 0.42630156613248965103 0.77398180736496957621 TRUE
6 NA NA FALSE
7 0.827857361818285164 0.21476298260140527785 TRUE

Step 9: Create a cleaned dataset
dsClean <- CleanSemAceDataset(dsDirty=dsSingle, dsGroupSummary, oName_S1, oName_S2)

Step 10: Run the model
ace <- AceLavaanGroup(dsClean)
ace

Step 11: Inspect the output further (see the final step two examples above).

Notice the ACE estimates are very similar to the previous version, but the number of pairs has increased by 6x—from 4,185 to 24,700. The number of subjects doubles when Gen2 is added, and the number of relationship pairs really takes off. When an extended family’s entire pedigree is considered by the model, many more types of links are possible than if just nuclear families are considered. This increased statistical power is even more important when the population’s a^2 is small or moderate, instead of something large like 0.7.

You may notice that the analysis has 24,697 relationships instead of the entire 42,773. This is primarily because not all subjects have a value for ‘adult height (and that’s mostly because a lot of Gen2 subjects are too young). There are 42,025 pairs with a nonmissing value in RFull, meaning that 98.3% are classified. We
feel comfortable claiming that if a researcher has a phenotype for both members of a pair, there’s a 99+% chance we have an \texttt{RFull} for it. For a description of the \texttt{R} and \texttt{RFull} variables, please see the \texttt{Links79Pair} entry in the package reference manual.

\textbf{References:}

The standard errors (but not the coefficients) are biased downward in these analyses, because individuals are included in multiple pairs. Our MDAN article presents a \textit{GEE} method for handling this (p. 572). The CARB model (or any model that treats the full pedigree as a single unit of analysis in the multivariate or multilevel sense) also would produce more accurate standard error estimates.

One of our 2013 BGA presentations discusses these benefits in the context of the current \texttt{NlsyLinks} package, and our 2008 MDAN article accomplishes something similar using a GEE with females in both generations.

7 Example: Midstream data manipulation with SAS

\textit{Mike Hunter is writing a separate vignette for this example. The SAS code is complete, and the surrounding text is the only thing remaining. Contact us if you’re interested in a pre-release version. We’ll post the polished version in the ‘other-software’ location in our online forums within the next 2-4 weeks.}

The example differs from the previous example in one substantial way: After \texttt{R} is used to link the related pairs, and connect them to their outcome values, the dataset is exported so that the user can further manipulate the data in SAS.

After a presentation, several audience members at the 2012 BGA meeting informed us that this vignette example would help them be more efficient. This approach is also consistent with our feeling that analysts should use the workflow tools that are best suited to their needs and capabilities.

A Appendix: Receiving Help for the NlsyLinks Package

A portion of our current grant covers a small, part-time support staff. If you have questions about BG research with our kinship links, or questions about our package, we’d like to hear from you.

We provide personal support for researchers in several ways. Perhaps the best place to start are the forums on R-Forge (http://r-forge.r-project.org/forum/?group_id=1330); there are forums for people using R, as well as other software such as SAS. \textit{This post} is a good overview of the current project is, which originally was an email Joe sent to previous users of our kinship links (many of them are/were SAS users).
B Appendix: Creating and Saving R Scripts

There are several options and environments for executing R code. Our current recommendation is RStudio, because it is easy to install, and has features targeting beginner and experienced R users. We've had good experiences with it on Windows, OS X, and Ubuntu Linux.

RStudio allows you to create and save R files; these are simply text files that have an file extension of ‘.R’. RStudio will execute the commands written in the file. Help documentation for RStudio can be found at http://www.rstudio.com/ide/docs/.

C Appendix: Installing and Loading the NlsyLinks Package

There are three operations you’ll typically do with a package: (a) install, (b) load, and (c) update.

The simplest way to install NlsyLinks is to type install.packages("NlsyLinks"). You may be asked to select a CRAN mirror to download the package from; if so, choose a close location.

R then will download NlsyLinks on your local computer. It may try to save and install the package to a location that you don’t have permission to write files in. If so, R will ask if you would like to install it to a better location (i.e., somewhere you do have permission to write files). Approve this decision (which is acceptable for everyone except for some network administrators).

For a given computer, you’ll need to install a package only once for each version of R (new versions of R are released every few months). However, you’ll need to load a package in every session that you call its functions. To load NlsyLinks, type either library(NlsyLinks) or require(NlsyLinks); (the difference between the two commands is likely irrelevant for most uses.) Loading reads NlsyLinks information from the hard drive and places it in temporary memory. Once it’s loaded, you won’t need to load it again until R is closed and reopened later.

Developers are continually improving their packages by adding functions and documentation. These newer versions are then uploaded to the CRAN servers. You may update all your installed packages at once by typing update.packages(). The command checks a CRAN server for newer versions of the packages installed on your local machine. Then they are automatically downloaded and installed.

The grant supporting NlsyLinks extends until Summer 2014. Until then, we’ll be including new features and documentation, as we address additional user needs (if you have suggestions, we’d like to hear from you). When the NLSY periodically updates its data, we’ll update our kinship links (embedded in NlsyLinks) with the newest information.

D Appendix: References

A list of some articles that have used the NLSY for behavior genetics is available at: http://liveoak.github.io/NlsyLinks/research_publications.html.

E Notes

This package’s development was largely supported by the NIH Grant 1R01HD65865, “NLSY Kinship Links: Reliable and Valid Sibling Identification” (PI: Joe Rodgers; Vignette Construction by Will Beasley)

F Version Information

- R version 3.2.3 (2015-12-10), x86_64-pc-linux-gnu
- Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=en_US.UTF-8, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
- Base packages: base, datasets, graphics, grDevices, methods, stats, utils
- Other packages: devtools 1.10.0, ggplot2 2.0.0, knitr 1.12.3, lavaan 0.5-20, NlsyLinks 2.0.4.9001, plyr 1.8.3, testthat 0.11.0, xtable 1.8-2
- Loaded via a namespace (and not attached): colorspace 1.2-6, crayon 1.3.1, digest 0.6.9, evaluate 0.8.3, formatR 1.2.1, grid 3.2.3, gtable 0.1.2, highr 0.5.1, magrittr 1.5, MASS 7.3-45, memoise 1.0.0, mnormt 1.5-3, munsell 0.4.3, pbivnorm 0.6.0, quadprog 1.5-5, Rcpp 0.12.3, rsconnect 0.4.1.4, scales 0.3.0, stats4 3.2.3, stringi 1.0-1, stringr 1.0.0.9000, tools 3.2.3