Package ‘PDSCE’

February 19, 2015

Type Package
Title Positive definite sparse covariance estimators
Version 1.2
Date 2012-06-12
Author Adam J. Rothman
Maintainer Adam J. Rothman <arothman@umn.edu>
Depends R (>= 2.10)
Description A package to compute and tune some positive definite and sparse covariance estimators
License GPL-2
NeedsCompilation yes
Repository CRAN
Date/Publication 2013-06-13 07:39:01

R topics documented:

PDSCE-package .. 1
band.chol .. 2
band.chol.cv ... 3
pdsoft ... 5
pdsoft.cv .. 7

Index 10

PDSCE-package Positive definite sparse covariance estimators

Description

A package to compute and tune some positive definite and sparse covariance estimators
Details

The main functions are `pdsoft`, `pdsoft.cv`, `band.chol`, and `band.chol.cv`.

Author(s)

Adam J. Rothman

Maintainer: Adam J. Rothman <arothman@umn.edu>

References

band.chol

Computes the banded covariance estimator by banding the covariance Cholesky factor

Description

Computes the k-banded covariance estimator by k-banding the covariance Cholesky factor as described by Rothman, Levina, and Zhu (2010).

Usage

`band.chol(x, k, centered = FALSE, method = c("fast", "safe"))`

Arguments

- **x**: A data matrix with n rows and p columns. The rows are assumed to be a realization of n independent copies of a p-variate random vector.
- **k**: The banding parameter (the number of sub-diagonals to keep as non-zero). Should be a non-negative integer.
- **centered**: Logical: `centered=TRUE` should be used if the columns of `x` have already been centered.
- **method**: The method to use. The default is `method="fast"`, which uses the Grahm-Schmidt style algorithm and must have $k \leq \min(n-2, p-1)$. Alternatively, `method="safe"` uses an inverse or generalized inverse to compute estimates of the regression coefficients and is more numerically stable (and capable of handling $k \in \{0, \ldots, p-1\}$ regardless of n).

Details

`method="fast"` is much faster than `method="safe"`. See Rothman, Levina, and Zhu (2010).
Value

The banded covariance estimate (a \(p \) by \(p \) matrix).

Author(s)

Adam J. Rothman

References

See Also

\texttt{band.chol.cv}

Examples

```r
set.seed(1)
n = 50
p = 20
true.cov = diag(p)
true.cov[cbind(1:(p-1), 2:p)] = 0.4
true.cov[cbind(2:p, 1:(p-1))] = 0.4
eo = eigen(true.cov, symmetric = TRUE)
z = matrix(rnorm(n*p), nrow = n, ncol = p)
x = z %*% tcrossprod(eo$vec * rep(eo$val^((0.5)) , each = p), eo$vec)
sigma = band.chol(x = x, k = 1)
sigma
```

\texttt{band.chol.cv}
\textit{Banding parameter selection for banding the covariance Cholesky factor.}

Description

Selects the banding parameter and computes the banded covariance estimator by banding the covariance Cholesky factor as described by Rothman, Levina, and Zhu (2010).

Usage

\texttt{band.chol.cv(x, k.vec = NULL, method = c("fast", "safe"), nsplits = 10, n.tr = NULL, quiet = TRUE)}
Arguments

x A data matrix with \(n \) rows and \(p \) columns. The rows are assumed to be a realization of \(n \) independent copies of a \(p \)-variate random vector.

k.vec An optional vector of candidate banding parameters (the possible number of sub-diagonals to keep as non-zero). The default is the long vector \(\emptyset: \min(n-2, p-1) \).

method The method to use. The default is \texttt{method="fast"}, which uses the Grahm-Schmidt style algorithm and must have \(k \leq \min(n-2, p-1) \). Alternatively, \texttt{method="safe"} uses an inverse or generalized inverse to compute estimates of the regression coefficients and is more numerically stable (and capable of handling \(k \in \{0, \ldots, p-1\} \) regardless of \(n \)).

nsplits Number of random splits to use for banding parameter selection.

n.tr Optional number of cases to use in the training set. The default is the nearest integer to \(n(1 - 1/\log(n)) \). The value must be in \(\{3, \ldots, n-2\} \).

quiet Logical: \texttt{quiet=TRUE} suppresses the printing of progress updates.

Details

\texttt{method="fast"} is much faster than \texttt{method="safe"}. See Rothman, Levina, and Zhu (2010).

Value

A list with

\begin{itemize}
 \item \texttt{sigma} the covariance estimate at the selected banding parameter
 \item \texttt{best.k} the selected banding parameter
 \item \texttt{cv.err} the vector of validation errors, one for each entry in \texttt{k.vec}
 \item \texttt{k.vec} the vector of candidate banding parameters
 \item \texttt{n.tr} The number of cases used for the training set
\end{itemize}

Author(s)

Adam J. Rothman

References

See Also

\texttt{band.chol}
Examples

```r
set.seed(1)
n=50
p=20
true.cov=diag(p)
true.cov[cbind(1:(p-1), 2:p)]=0.4
true.cov[cbind(2:p, 1:(p-1))]=0.4
eo=eigen(true.cov, symmetric=TRUE)
z=matrix(rnorm(n*p), nrow=n, ncol=p)
x=z%*%tcrossprod(eo$vec*rep(eo$val^((0.5)), each=p), eo$vec)
plot(cv.out$k.vec, cv.out$cv.err)
cv.out$best.k
cv.out$sigma
```

pdsoft

A permutation invariant positive definite and sparse covariance matrix estimate

Description

Computes the sparse and positive definite covariance matrix estimator proposed by Rothman (2012).

Usage

```r
pdsoft(s, lam, tau = 1e-04, init = c("soft", "diag", "dense", "user"),
      s0 = NULL, i0 = NULL, standard = TRUE, tolin = 1e-08,
      tolut = 1e-08, maxitin = 10000, maxitout = 1000, quiet = TRUE)
```

Arguments

- `s` : A realization of the p by p sample covariance matrix. More generally, any symmetric p by p matrix with positive diagonal entries.
- `lam` : The tuning parameter λ on the penalty $\lambda \sum_{i\neq j} |\sigma_{ij}|$. Could be either a scalar or a p by p symmetric matrix with an irrelevant diagonal. When a matrix is used, the penalty has the form $\sum_{i\neq j} \lambda_{ij} |\sigma_{ij}|$.
- `tau` : The logarithmic barrier parameter. The default is $\tau=1e-4$, which works well when standard=TRUE.
- `init` : The type of initialization. The default option `init="soft"` uses a positive definite version of the soft thresholded covariance or correlation estimate, depending on standard. The second option `init="diag"` uses diagonal starting values. The third option `init="dense"` uses the closed-form solution when lam=0. The fourth option `init="user"` allows the user to specify the starting point (one must then specify s0 and i0, ensuring that i0 is positive definite).
- `s0` : Optional user supplied starting point for $\Sigma^{(0)}$; see Rothman (2012)
- `i0` : Optional user supplied starting point for $\Omega^{(0)}$; see Rothman (2012)
standard Logical: standard=TRUE first computes the observed sample correlation matrix from s, then computes the sparse correlation matrix estimate, and finally rescales to return the sparse covariance matrix estimate. The strongly recommended default is standard=TRUE.

tolin Convergence tolerance for the inner loop of the algorithm that solves the lasso regression.

tolout Convergence tolerance for the outer loop of the algorithm.

maxitin Maximum number of inner-loop iterations allowed

maxitout Maximum number of outer-loop iterations allowed

quiet Logical: quiet=TRUE suppresses the printing of progress updates.

Details

See Rothman (2012) for the objective function and more information.

Value

A list with

sigma covariance estimate

omega inverse covariance estimate

theta correlation matrix estimate, will be NULL if standard=FALSE

theta.inv inverse correlation matrix estimate, will be NULL if standard=FALSE

Note

So long as s is symmetric with positive diagonal entries and init is not set to "user" (or init is set to "user" and i0 as a positive definite matrix), then omega is positive definite. If tolin and tolout are too large, or maxitin and maxitout are too small, then sigma may be indefinite.

Author(s)

Adam J. Rothman

References

See Also

pdsoft.cv
pdsoft.cv

Examples

```
set.seed(1)
n=50
p=20
true.cov=diag(p)
true.cov[cbind(1:(p-1), 2:p)]=0.4
true.cov[cbind(2:p, 1:(p-1))]=0.4
eo=eigen(true.cov, symmetric=TRUE)
z=matrix(rnorm(n*p), nrow=n, ncol=p)
x=z%*%tcrossprod(eo$vec*rep(eo$val^((0.5)), each=p),eo$vec)
s=sigma(x)*(n-1)/n
output=pdsoft(s=s, lam=0.3)
output$sigma
```

pdsoft.cv
Tuning parameter selection and computation for the positive definite and sparse covariance matrix estimator

Description

Computes and selects the tuning parameter for the sparse and positive definite covariance matrix estimator proposed by Rothman (2012).

Usage

```
pdsoft.cv(x, lam.vec = NULL, standard = TRUE,
         init = c("diag", "soft", "dense"), tau = 1e-04,
         nsplits = 10, n.tr = NULL, tolin = 1e-08, tolout = 1e-08,
         maxitin = 10000, maxitout = 1000, quiet = TRUE)
```

Arguments

- **x**
 A data matrix with `n` rows and `p` columns. The rows are assumed to be a realization of `n` independent copies of a `p`-variate random vector.

- **lam.vec**
 An optional vector of candidate lasso-type penalty tuning parameter values. The default for `standard=TRUE` is `seq(from=0, to=1, by=0.05)` and the default for `standard=FALSE` is `seq(from=0, to=m, length.out=20)`, where `m` is the maximum magnitude of the off-diagonal entries in `s`. Both of these default choices are far from excellent and are time consuming, particularly for values close to zero. The user should consider refining this set by increasing its resolution in a narrower range.

- **standard**
 Logical: `standard=TRUE` first computes the observed sample correlation matrix from `s`, then computes the sparse correlation matrix estimate, and finally rescales to return the sparse covariance matrix estimate. The strongly recommended default is `standard=TRUE`.

The type of initialization used for the estimate computed at the maximum element in `lam.vec`. Subsequent initializations use the final iterates for `sigma` and `omega` at the previous value in `lam.vec`. The default option `init="diag"` uses diagonal starting values. The second option `init="soft"` uses a positive definite version of the soft thresholded covariance or correlation estimate, depending on `standard`. The third option `init="dense"` uses the closed-form solution when `lam=0`.

The logarithmic barrier parameter. The default is `tau=1e-4`, which works well when `standard=TRUE` with the default choices for the convergence tolerances.

Optional number of cases to use in the training set. The default is the nearest integer to $n(1 - 1/\log(n))$. The value must be in $\{3, \ldots, n - 2\}$.

Convergence tolerance for the inner loop of the algorithm that solves the lasso regression.

Convergence tolerance for the outer loop of the algorithm.

Maximum number of inner-loop iterations allowed

Maximum number of outer-loop iterations allowed

Logical: `quiet=TRUE` suppresses the printing of progress updates.

See Rothman (2012) for the objective function and more information.

A list with

- `sigma`: covariance estimate at the selected tuning parameter
- `omega`: inverse covariance estimate at the selected tuning parameter
- `best.lam`: the selected value of the tuning parameter
- `cv.err`: a vector of the validation errors, one for each element in `lam.vec`
- `lam.vec`: the vector of candidate tuning parameter values
- `n.tr`: the number of cases used for the training set

It is always the case that `omega` is positive definite. If `tolin` and `tolout` are too large, or `maxitin` and `maxitout` are too small, then `sigma` may be indefinite.

Adam J. Rothman

See Also

pdsoft

Examples

```r
set.seed(1)
n=50
p=20
true.cov=diag(p)
true.cov[cbind(1:(p-1), 2:p)]=0.4
true.cov[cbind(2:p, 1:(p-1))]=0.4
ee=eigen(true.cov, symmetric=TRUE)
z=matrix(rnorm(n*p), nrow=n, ncol=p)
x=z%*% tcrossprod(eo$vec*rep(eo$val*(0.5), each=p), eo$vec)
output=pdsoft.cv(x=x)
plot(output$lam.vec, output$cv.err)
output$best.lam
output$sigma
```
Index

band.chol, 2, 2, 4
band.chol.cv, 2, 3, 3

PDSCE (PDSCE-package), 1
PDSCE-package, 1
pdsoft, 2, 5, 9
pdsoft.cv, 2, 6, 7