Package ‘PSAgraphics’

February 19, 2015

Version 2.1.1
Date 2012-03-18
Title Propensity Score Analysis Graphics
Author James E. Helmreich <James.Helmreich@Marist.edu> and Robert M. Pruzek <RMPruzek@yahoo.com>. We are grateful to KuangNan Xiong for significant work on the functions new to version 2.0: cstrata.psa, cv.bal.psa, and cv.trans.psa.
Maintainer James E. Helmreich <James.Helmreich@Marist.edu>
Depends R (>= 2.14.0), rpart
Description A collection of functions that primarily produce graphics to aid in a Propensity Score Analysis (PSA). Functions include: cat.psa and box.psa to test balance within strata of categorical and quantitative covariates, circ.psa for a representation of the estimated effect size by stratum, loess.psa that provides a graphic and loess based effect size estimate, and various balance functions that provide measures of the balance achieved via a PSA in a categorical covariate.
License GPL (>= 2)
Repository CRAN
Date/Publication 2012-03-18 18:39:58
NeedsCompilation no

R topics documented:

granova-package .. 2
bal.cs.psa ... 2
bal.fe.psa ... 4
bal.ks.psa ... 5
bal.ms.psa ... 6
box.psa ... 8
cat.psa ... 10
circ.psa ... 12
Graphical Analysis of Variance

Description

A collection of functions that primarily produce graphics to aid in a Propensity Score Analysis (PSA). Functions include: cat.psa and box.psa to test balance within strata of categorical and quantitative covariates, circ.psa for a representation of the estimated effect size by stratum, loess.psa that provides a graphic and loess based effect size estimate, and various balance functions that provide measures of the balance achieved via a PSA in a categorical covariate.

Details

Package: PSAgraphics
Version: 2.0
License: GPL (>= 2)

Author(s)

James E. Helmreich <James.Helmreich@Marist.edu> and
Robert M. Pruzek <RMPruzek@yahoo.com>
Maintainer: James E. Helmreich <James.Helmreich@Marist.edu>

See Also

box.psa cat.psa circ.psa loess.psa bal.ks.psa bal.ms.psa
bal.fe.psa cstrata.psa cv.trans.psa cv.bal.psa
Description
Function provides a measure of the balance achieved between control and treatment groups for a
categorical covariate from user defined strata. This statistic is compared to the same measure for
randomly permuted strata.

Usage
bal.cs.psa(categorical, treatment = NULL, strata = NULL, B = 1000,
eps = .02, main = NULL, ...)

Arguments
categorical Categorical covariate that is being balanced within strata in a PSA. If categorical
has three columns, then the second and third are assumed to be the treatment and
strata respectively. Missing values are not allowed. May be factor or numeric.
treatment Binary variable of same length as categorical; generally 0 for ‘control,’ 1 for
‘treatment.’
strata Integer variable; a vector of same length as categorical indicating the derived
strata from estimated propensity scores.
B Numeric; number of randomly generated iterations of the balance measure are
created for the comparison distribution.
eps Numeric; ensures that weighting is reasonable for small categories.
main Title passed to histogram.
... Other graphical parameters passed to histogram.

Details
This function measures the balance achieved across K strata for a categorical covariate with J cate-
gories. If p_{ijk} is the proportion of cases in stratum k, category j, and treatment i, then the statistic
is the sum over all K, J of $|\sqrt{p_{0jk} + \epsilon} - \sqrt{p_{1jk} + \epsilon}|$. A permutation distribution is generated by
randomly assigning cases to strata, thus generating B permuted stratifications and the associated B
permutation statistics. The permutation stratifications are generated under a fixed marginals model
to retain comparability with the original stratification. A histogram of the permutation statistics is
produced with the original statistic referenced as a red dot.

Value
In addition to the histogram, a list with the following components is returned:

balance.orig Balance measure of user defined strata.
rank.orig Rank of original balance measure in comparison with the B randomly generated
values.

Author(s)
James E. Helmreich <James.Helmreich@Marist.edu>
Robert M. Pruzek <RMPruzek@yahoo.com>
bal.fe.psa

Fisher’s Exact Test for Independence of Treatments within Strata

Description

Simple function that calls fisher.test repeatedly for each strata, testing the independence of treatments for the given covariate within strata.

Usage

bal.fe.psa(categorical, treatment = NULL, strata = NULL, FB = 2000)

Arguments

categorical Categorical covariate that is being balanced within strata in a PSA. If categorical has three columns, then the second and third are assumed to be the treatment and strata respectively. Missing values are not allowed. May be factor or numeric.
treatment Binary variable of same length as categorical; generally 0 for ‘control,’ 1 for ‘treatment.’
strata Integer variable; a vector of same length as categorical indicating the derived strata from estimated propensity scores.
FB Numeric; number of replications sent to fisher.test.

Details

This function makes repeated calls to fisher.test, Fisher’s Exact test, to test whether the distribution of the covariate categorical is independent of treatment within each stratum; a list of p-values for the test for each stratum are returned.
Value

Returns list of the same length as the number of strata containing p-values for the independence of treatment within each stratum derived from Fisher’s Exact test.

Author(s)

James E. Helmreich <James.Helmreich@Marist.edu>
Robert M. Pruzek <RMPruzek@yahoo.com>

See Also

bal.cs.psa, bal.ms.psa, bal.ks.psa

Examples

#Everything random
categorical <- sample(4, 1000, replace = TRUE)
treatment <- sample(c(0,1), 1000, replace = TRUE)
strata <- sample(5, 1000, replace = TRUE)
bal.fe.psa(categorical, treatment, strata)

#Perfect balance on 80%, random on last 20%
categorical <- rep(sample(5, 1000, replace = TRUE), 2)
treatment <- c(rep(0, 1000), rep(1, 1000))
strata <- sample(6, 1200, replace = TRUE)
strata <- c(strata[1:1000], strata[1:800], strata[1001:1200])
bal.fe.psa(categorical, treatment, strata)

bal.ks.psa

Kolgomorov-Smirnov 2 sample tests for multiple strata

Description

Automates the Kolgomorov-Smirnov 2-sample nonparametric test of equivalence of two distributions across multiple pairs of sample distributions.

Usage

bal.ks.psa(continuous, treatment = NULL, strata = NULL)

Arguments

- **continuous**: Quantitative covariate that is being balanced within strata in a PSA. If continuous has three columns, then the second and third are assumed to be the treatment and strata respectively. Missing values are not allowed.
- **treatment**: Binary variable of same length as continuous; generally 0 for 'control,' 1 for 'treatment.'
strata Integer variable (usually 1 - 5); A vector of same length as continuous indicating the derived strata from estimated propensity scores. Generally 5 or 6 strata are used, but graph works reasonably well at least up to 10 strata.

Details

Makes multiple calls to ks.test, returning a vector of p-values associated with strata from a Propensity Score Analysis.

Value

Returns a vector of same length as the number of strata containing the p-values from the KS-test of equivalence of distributions for each stratum-treatment pair.

Author(s)

James E. Helmreich <James.Helmreich@Marist.edu>
Robert M. Pruzek <RMPruzek@yahoo.com>

See Also

bal.ms.psa, bal.cs.psa, bal.cws.psa

Examples

continuous<-rnorm(1000)
treatment<-sample(c(0,1), 1000, replace=TRUE)
strata<-sample(5,1000,replace=TRUE)
bal.kS.psa(continuous, treatment, strata)
Arguments

continuous Quantitative covariate that is being balanced within strata in a PSA. If continuous
has three columns, then the second and third are assumed to be the treatment and
strata respectively. Missing values are not allowed.

treatment Binary variable of same length as continuous; generally 0 for 'control,' 1 for 'treatment.'

strata Integer variable; a vector of same length as continuous indicating the derived
strata from estimated propensity scores.

trim Fraction (0 to 0.5) of observations to be trimmed from each end of stratum-
treatment level before the mean is computed. See mean.

B Numeric; number of randomly generated iterations of the balance measure are
created for the comparison distribution.

main Title passed to histogram.

Details

This function measures the balance achieved across K strata for a continuous covariate. If \(\mu_{ik} \)
is the covariate trimmed (as specified by user) mean of cases in stratum k, treatment i, then the
statistic is the sum over all K of \(|\mu_{0k} - \mu_{1k}| \). A permutation distribution is generated by randomly
assigning cases to strata, thus generating B permuted stratifications and the associated B permuta-
tion statistics. The permutation stratifications are generated under a fixed marginals model to retain
comparability with the original stratification. A histogram of the permutation statistics is produced
with the original statistic referenced as a red dot.

Value

In addition to the histogram, a list with the following components is returned:

balance.orig Balance measure of user defined strata.

rank.orig Rank of original balance measure in comparison with the B randomly generated
values.

Author(s)

James E. Helmreich < James.Helmreich@Marist.edu>

Robert M. Pruzek <RMPruzek@yahoo.com>

See Also

bal.ks.psa, bal.cws.psa, bal.cs.psa

Examples

#Balance stat should be close to zero
meas<-rnorm(500)
continuous<-c(meas, meas+rnorm(500, 0, .1))
treatment<-c(rep(0, 500), rep(1, 500))
strata<-rep(c(rep(1, 100), rep(2, 100), rep(3, 100), rep(4, 100), rep(5, 100)), 2)
bal.ms.psa(continuous, treatment, strata)

#Balance stat should be close to .4
meas<-rnorm(500)
continuous<-c(meas, meas[1:250] + runif(250,0,.2), meas[251:500]-runif(250,0,.2))
treatment<-c(rep(0,500),rep(1,500))
strata<-rep(c(rep(1,100), rep(2,100), rep(3,100), rep(4,100),rep(5,100)),2)
bal.ms.psa(continuous, treatment, strata, B=200)

box.psa

Description

Given predefined strata and two level treatment for a continuous covariate from a propensity score analysis, box.psa draws pairs of side by side boxplots corresponding to control and treatment for each stratum.

Usage

box.psa(continuous, treatment = NULL, strata = NULL, boxwex = 0.17,
offset = 0.17,
col = c("yellow", "orange", "black", "red", "darkorange3"),
xlab = "Stratum", legend.xy = NULL,
legend.labels = NULL, pts = TRUE,
balance = FALSE, trim = 0, B = 1000, ...)

Arguments

- **continuous**: Vector or N X 3 dataframe or matrix. If a vector, then represents the quantitative covariate that is being balanced within strata in a PSA. If `continuous` has three columns, then the second and third are assumed to be the treatment and strata respectively. Missing values are not allowed.
- **treatment**: Binary vector of same length as `continuous` representing the two treatments; can be a character vector or factor.
- **strata**: A vector or factor of same length as `continuous` indicating the derived strata from estimated propensity scores. May be numeric or character vector, or factor. Strata are ordered lexicographically in plot.
- **boxwex**: Numeric; controls width of boxes. Default = 0.17
- **offset**: Numeric; controls distance between the two boxes in each stratum. Default = 0.17

box.psa

Compare balance graphically of a continuous covariate as part of a PSA

Description

Given predefined strata and two level treatment for a continuous covariate from a propensity score analysis, box.psa draws pairs of side by side boxplots corresponding to control and treatment for each stratum.

Usage

box.psa(continuous, treatment = NULL, strata = NULL, boxwex = 0.17,
offset = 0.17,
col = c("yellow", "orange", "black", "red", "darkorange3"),
xlab = "Stratum", legend.xy = NULL,
legend.labels = NULL, pts = TRUE,
balance = FALSE, trim = 0, B = 1000, ...)

Arguments

- **continuous**: Vector or N X 3 dataframe or matrix. If a vector, then represents the quantitative covariate that is being balanced within strata in a PSA. If `continuous` has three columns, then the second and third are assumed to be the treatment and strata respectively. Missing values are not allowed.
- **treatment**: Binary vector of same length as `continuous` representing the two treatments; can be a character vector or factor.
- **strata**: A vector or factor of same length as `continuous` indicating the derived strata from estimated propensity scores. May be numeric or character vector, or factor. Strata are ordered lexicographically in plot.
- **boxwex**: Numeric; controls width of boxes. Default = 0.17
- **offset**: Numeric; controls distance between the two boxes in each stratum. Default = 0.17
col Default = c("yellow", "orange", "black", "red", "darkorange3"). Color vector for the control boxes, treatment boxes, and line connecting their means.

xlab Label for the x-axis; default = "Stratum". Other standard labels may be used as well.

legend.xy Binary vector giving coordinates of the legend. By default the legend is placed to the top left.

legend.labels Vector of labels for the legend; default is essentially c("Treatment (first)", "Treatment (second)", "Treatment means compared", "KS p-values", "strata M treatment size"). Where treatment names are taken from treatment. Vector has four elements if balance = FALSE, omitting "KS p-values".

pts Logical; if TRUE then (jittered) points are added on top of the boxplots.

balance Logical; if TRUE then bal.ms.psa provides a histogram of a permutation distribution and reference statistic to assess balance across strata; bal.ks.psa adds p-values to the graph derived from 2-sample Kolomorov-Smirnov tests of equivalence of control/treatment distributions within each stratum.

trim If balance=TRUE, defines fraction (0 to 0.5) of observations to be trimmed from each end of stratum-treatment level before the mean is computed. See mean, bal.ms.psa.

B Passed to bal.ms.psa if necessary, determines number of randomly generated comparison statistics. Default = 1000.

... Other graphical parameters passed to boxplot.

Details

Draws a pair of side by side boxplots for each stratum of a propensity score analysis. This allows visual comparisons within strata of the distribution of the given continuous covariate, and comparisons between strata as well. The number of observations in each boxplot are given below each box, and the means of paired treatment and control groups are connected.

Author(s)

James E. Helmreich <James.Helmreich@Marist.edu>
Robert M. Pruzek <RMPruzek@yahoo.com>

See Also

bal.ks.psa, bal.ms.psa, cat.psa

Examples

c <- rnorm(500)
treatment <- sample(c(0, 1), 500, replace=TRUE)
strata <- sample(5, 1000, replace=TRUE)
box.psa(c, treatment, strata)
data(lindner)
attach(lindner)
lindner.ps <- glm(abcix ~ stent + height + female +
 diabetic + acute + ejecfrac + ves1proc,
 data = lindner, family = binomial)
ps<-lindner.ps$fitted
lindner.s5 <- as.numeric(cut(ps, quantile(ps, seq(0, 1, 1/5)),
 include.lowest = TRUE, labels = FALSE))
box.psa(ejecfrac, abcix, lindner.s5, xlab = " ejecfrac",
 legend.xy = c(3.5,110))

lindner.s10 <- as.numeric(cut(ps, quantile(ps, seq(0, 1, 1/5)),
 include.lowest = TRUE, labels = FALSE))
box.psa(height, abcix, lindner.s10, xlab=" height",
 boxwex = .15, offset = .15, legend.xy = c(2,130), balance = TRUE)

cat.psa

Description

Given predefined strata and two level treatment for a categorical covariate from a propensity score analysis, `cat.psa` draws pairs of side by side barplots corresponding to control and treatment for each stratum.

Usage

```r
cat.psa(categorical, treatment = NULL, strata = NULL,
    catnames = NULL, catcol = "terrain.colors", width = 0.25,
    barlab = c("A","B"), barnames = NULL,
    rtmar = 1.5, balance = FALSE, B = 1000, tbl = TRUE,
    cex.leg = 1, ...)
```

Arguments

- `categorical`: Vector or N X 3 dataframe or matrix. If a vector, then represents a categorical covariate that is being balanced within strata in a PSA. If categorical has three columns, then the second and third are assumed to be the treatment and strata respectively. Missing values are not allowed. May be factor or numeric.
- `treatment`: Binary vector or factor of same length as continuous representing the two treatments.
- `strata`: A vector or factor of same length as continuous indicating the derived strata from estimated propensity scores. Strata are ordered lexicographically in plot.
- `catnames`: List of names in order of the categories; used in the plot legend. Default is `1:n`.
- `catcol`: List of colors used for the categories, default is `terrain.colors`.
- `width`: Controls width of bars, default = 0.25.
cat.psa

barlab Binary list of single treatment character labels for the bars, default is c("A", "B"). These are defined in a legend by barnames.

barnames Binary list of treatment names used in the legend; by default names are taken from treatment.

rtmar Numeric. Governs size of right margin allocated for legend. Default = 1.5

balance Logical. If TRUE a call is made to functions bal.cs.psa and bal.cws.psa. The former provides a reference histogram and ad hoc balance statistic, the second provides bootstrapped p-values for the two-way table formed in each stratum. Default is FALSE.

B Numeric; passed to bal.cs.psa governing size of reference histogram generated. Default is 100.

tbl Logical; if TRUE, then a matrix of the proportions used in the creation of the bargraph is returned.

cex.leg Numeric; value of cex (governing font size) passed to legend. Default = 1.

Details

Pairs of bars are graphed side by side so that comparisons may be made within each stratum and across strata. If balance is TRUE, then the histogram represents an ad hoc balance measure of the given strata as compared to randomly generated strata. The p-values provided on the bargraph are bootstrapped in a standard fashion via randomly generated treatment divisions within given strata. For continuous covariates use box.psa.

Value

If tbl is TRUE, then a matrix is returned containing the proportions of each category, and in each treatment level and stratum that were used to draw the bargraph.

Author(s)

James E. Helmreich <James.Helmreich@Marist.edu>
Robert M. Pruzek <RMPruzek@yahoo.com>

See Also

bal.cs.psa, bal.cws.psa, box.psa

Examples

```r
categorical<-sample(1:7,1000,replace=TRUE)
treatment<-sample(c(0,1),1000,replace=TRUE)
strata<-sample(5,1000,replace=TRUE)
cat.psa(categorical,treatment,strata)

data(lindner)
attach(lindner)
lindner.ps <- glm(abcix ~ stent + height + female +...
diabetic + acutemi + ejecfrac + ves1proc,
data = lindner, family = binomial)
ps <- lindner.ps$fitted
lindner.s5 <- as.numeric(cut(ps, quantile(ps, seq(0, 1, 1/5)),
include.lowest = TRUE, labels = FALSE))
cat.psa(stent, abcix, lindner.s5, xlab = "stent")

lindner.s10 <- as.numeric(cut(ps, quantile(ps, seq(0, 1, 1/10)),
include.lowest = TRUE, labels = FALSE))
cat.psa(ves1proc, abcix, lindner.s10, balance = TRUE, xlab = "ves1proc")

# Using a rpart tree for strata
library(rpart)
lindner.rpart <- rpart(abcix ~ stent + height + female + diabetic +
acutemi + ejecfrac + ves1proc, data = lindner, method = "class")
lindner.tree <- factor(lindner.rpart$node, labels = 1:6)
cat.psa(stent, abcix, lindner.tree, xlab = "stent")
cat.psa(ves1proc, abcix, lindner.tree, xlab = "ves1proc")

---

**circ.psa**

Generates a Propensity Score Assessment Plot

**Description**

Displays a graphic that summarizes outcomes in a propensity score analysis, based on strata that have been defined in the first Phase of a propensity score analysis (PSA). The graphic displays contributions of individual strata to the overall effect, weighing contributions of individual strata according to the relative sizes of the respective strata. The overall effect is plotted as a heavy dashed diagonal line that runs parallel to the identity diagonal.

**Usage**

circ.psa(response, treatment = NULL, strata = NULL,
summary = FALSE, statistic = "mean", trim = 0, revc = FALSE,
confint = TRUE, sw = 0.4, ne = 0.5, inc = 0.25, pw = 0.4,
lab = TRUE, labcex = 1, xlab = NULL, ylab = NULL, main = NULL)

**Arguments**

- **response**: Either a numeric vector containing the response of interest in a propensity score analysis, or a three column array containing response, treatment and strata.
- **treatment**: Binary variable of same length as response; generally 0 for 'control,' 1 for 'treatment'. A character vector with two labels or factor with two levels are also accepted.
- **strata**: Generally integer variable; a vector of same length as response indicating the derived strata from estimated propensity scores. Generally 5 or 6 strata used, but function is effective for more strata. In the case when strata are defined via unique propensity scores (as from a tree), user may wish to define strata using factor.
Logical (default FALSE). If TRUE then response must have rows corresponding to number of strata; the first two columns should contain treatment and control group sizes for each stratum, and the pair of columns should contain the appropriate summary statistics for each stratum. For example, the four summary columns might have been generated by the \texttt{strata.summary} output of \texttt{loess.psa}.

statistic

A scalar summary of the center of the response distribution. Seen next item below. Default = "mean". Note that to generate this statistic the full vector of responses must have been input, not summaries.

trim

Allows for a trimmed mean as outcome measure, where trim is from 0 to .5 (.5 implying median).

revc

Logical; if TRUE then X and Y axes are interchanged in plot.

confint

Logical; if TRUE adds an approximate 95\% confidence interval for the mean. The interval may not be realistic it the \texttt{trim} argument exceeds zero.

sw

Numerical argument (default = 0.4); extends axes on lower ends, effectively moving circles to lower left.

ne

Numerical argument (default = 0.5); extends axes on upper ends, effectively moving circles to upper right.

inc

Numerical argument (default = 0.35); controls circle sizes, but relative circle sizes are controlled via \texttt{pw}. In general one wants circle areas to appear subjectively to be sized in accordance with strata sizes.

pw

Numerical argument (default = 0.4); controls relative circle sizes. \texttt{pw} denotes power or exponent for radius of circle.

lab

Logical (default TRUE); labels circles with stratum labels.

labcex

Numerical argument (default = 1); controls the size of the circle labels.

xlab

Label for horizontal axis, by default taken from \texttt{treatment}.

ylab

Label for vertical axis, by default taken from \texttt{treatment}.

main

Main label for graph.

Details

A circle is plotted for each stratum, centered on the means for the treatment and control groups (for the X and Y axes) respectively. The sizes of the circles correspond to the relative sizes of the strata. A diagonal line (lower left to upper right) shows the identity, X=Y, so that circles on, say, the lower side of this line show that the corresponding X mean is larger than the Y mean for that stratum, and vice-versa. Parallel projections are made from the centers of the strata-cum-circles to difference scores that are plotted on a line segment on the lower-left corner of the graphic; the average difference, which corresponds to the average treatment effect (ATE) for the overall treatment effect, is plotted as a heavy (dark blue) dashed line parallel to the identity diagonal. Rug plots are shown on the upper and right margins of the graphic, for the X and Y marginal distributions. A 95\% confidence interval for the overall effect is plotted to the left of the distribution of the stratum difference scores, centered on the ATE. Trimmed means can replace the conventional mean for both the ATE and the marginal distributions (however, the confidence interval calculations are likely to become less trustworthy as larger values of the \texttt{trim} argument are used).
Value

Generate a Propensity Assessment Plot, as well as numerical data for

- **summary.strata**: An array with rows corresponding to strata and four columns; these show counts for control and treatment groups, as well as (possibly trimmed) mean response values for control and treatment.

- **wtd.Mn.(Name1)**: Weighted mean of response for (Name1) group. Name taken from treatment.

- **wtd.Mn.(Name2)**: Weighted mean of response for (Name2) group. Name taken from treatment.

- **ATE**: Average Treatment Effect.

- **se.wtd**: Weighted standard error for ATE.

- **approx.t**: Ratio of the average treatment effect and a standard error based on weighting of stratum variances.

- **df**: Estimate of degree of freedom; response vector length minus twice number of strata.

- **CI.95**: Approximate 95\% confidence interval for overall effect size.

Author(s)

James E. Helmreich <James.Helmreich@Marist.edu>

Robert M. Pruzek <RMPruzek@yahoo.com>

See Also

- **loess.psa**

Examples

```r
##Random data with effect size 0
response <- rnorm(1000)
treatment <- sample(c(0,1), 1000, replace = TRUE)
strata <- sample(1:6, 1000, replace = TRUE)
circ.psa(response, treatment, strata)

##Random data with effect size -.2
response <- c(rnorm(500, 0, 12), rnorm(500, 6, 12))
treatment <- c(rep(0, 500), rep(1,500))
strata <- sample(1:5, 1000, replace = TRUE)
aaa <- cbind(response, treatment, strata)
circ.psa(aaa)

##Random data with effect size -2
response <- c(rt(100,3) * 2 + 20, rt(100,12) * 2 + 18)
treatment <- rep(c("A","B"), each = 100)
strata <- sample(c("X","Y","Z","U","V"), 200, replace = TRUE)
circ.psa(response, treatment, strata)

##Tree derived strata
library(rpart)
```
cstrata.psa

Supports Multiple Methods for Defining and Visualizing (PS) Strata

Description

Given propensity scores, allows strata to be directly user defined, possibly to: equalize sizes of strata, equalize the ranges of propensity scores, or to specify cut points on the unit interval. Once strata are created, a simple graphic is generated to visualize or judge strata for overlap and appropriateness. If a regression tree has been used, propensity scores are defined for each leaf of the tree.

Usage

cstrata.psa(treatment, propensity, strata = NULL, int = NULL, tree = FALSE, minsize = 2, graphic = TRUE, colors = c("dark blue", "dark green"), xlab = "Estimated Propensity Scores with Random Heights", pch = c(16, 16))

Arguments

treatment Binary vector or factor defining the two treatments
propensity Vector of same length as treatment containing estimated propensity scores.
strata Either a vector of same length as treatment of predefined stratum number, or one integer \( n \) used to assign rows to \( n \) strata propensity scores, each of approximately the same number of cases. If relatively few unique propensity scores have been defined (as from a classification tree) then the logical tree should be set equal to TRUE.
int Either a number \( m \) used to divide \([0,1]\) into \( m \) equal length subintervals, or a vector containing cut points between 0 and 1 that define subintervals (perhaps as suggested by loess.psa). In either case the subintervals define strata, for which sizes can differ.
tree Logical, default FALSE. If there are few unique propensity scores, say from a recursively partitioned tree, then TRUE forces strata to be defined by the unique propensity scores.

minsize Smallest allowable stratum-treatment size. If violated, rows in the stratum are removed. User may wish to redefine strata.

graphic Logical, default TRUE. If set to FALSE the graphic is not provided.

colors 2-ary color vector. Sets the colors of the points in the graphic. Default = c("blue", "orange")

taxlab Label for the x axis; default = "Estimated Propensity Scores with Random Heights".

pch 2-ary vector; determines the shape of points in the graphic. Default = c(16, 16).

Value

Original.Strata Table of strata-treatment sizes before minsize evaluation.

Used.Strata Table of strata-treatment sizes after minsize evaluation.

strata Vector of the same length as treatment, indicating either the strata input by user or those created by the function.

Author(s)

James E. Helmreich <James.Helmreich@Marist.edu>

Robert M. Pruzek <RMPruzek@yahoo.com>

KuangNan Xiong <harryxkn@yahoo.com>

See Also

cv.bal.psa, loess.psa

Examples

data(lindner)
attach(lindner)
lindner.ps <- glm(abcix ~ stent + height + female +
    diabetic + acutemi + ejecfrac + ves1proc,
    data = lindner, family = binomial)
ps <- lindner.ps$fitted
cstrata.psa(abcix, ps, strata = 5)
cstrata.psa(abcix, ps, strata = 10)
cstrata.psa(abcix, ps, int = c(.37, .56, .87, 1))
cv.bal.psa

Multiple Covariate Balance Assessment Plot

Description

Provides a graphic that depicts covariate effect size differences between treatment groups both before and after stratification. Function will create stata internally if desired, and returns numerical output used to create graphic.

Usage

cv.bal.psa(covariates, treatment, propensity, strata = NULL, 
int = NULL, tree = FALSE, minsize = 2, universal.psd = TRUE, 
trM = 0, absolute.es = TRUE, trt.value = NULL, 
use.trt.var = FALSE, verbose = FALSE, xlim = NULL, 
plot.strata = TRUE, ...)

Arguments

covariates   Dataframe of covariates. Factors should be recoded using cv.trans.psa 
treatment    Binary vector or factor defining the two treatments 
propensity   Vector of same length as treatment containing estimated propensity scores. 
strata       Either a vector of same length as treatment of predefined stratum number, or one integer n used to assign rows to n strata propensity scores, each of approximately the same number of cases. If relatively few unique propensity scores have been defined (as from a classification tree) then the logical tree should be set equal to TRUE. 
int          Either a number m used to divide [0,1] into m equal length subintervals, or a vector containing cut points between 0 and 1 that define subintervals (perhaps as suggested by loess.psa). In either case the subintervals define strata, for which sizes can differ. 
tree         Logical, default FALSE. If there are few unique propensity scores, say from a recursively partitioned tree, then TRUE forces strata to be defined by the unique propensity scores. 
minsize      Smallest allowable stratum-treatment size. If violated, rows in the stratum are removed. User may wish to redefine strata. 
universal.psd Logical, default = TRUE. Forces standard deviations used to be unadjusted for stratification. 
trM          Numeric, default = 0; passed to mean for trimming purposes. 
absolute.es   Logical, default TRUE. If TRUE, graphic depicts absolute values of all effect sizes. Note that the adjusted effect size plotted is the absolute value of weighted averages of the signed by-stratum effect size values when absolute.es is TRUE. 
trt.value    Character string; if desired allows the name of an active treatment to be given. Should be a level (value) of the treatment factor (vector).
use.trt.var Logical, default FALSE. If TRUE, uses just active treatment standard deviations for effect size, as per a suggestion of Rubin and Stuart (see reference below).

verbose Logical, default FALSE. Numerical output is returned invisibly.

xlim Binary vector passed to plot for overriding default choices. Default NULL.

plot.strata Logical, default TRUE. Adds effect size values for individual strata to graphic.

... Other graphical parameters passed to plot.

Details

Effect sizes between treatments for each covariate are presented in one graphic, both before and after stratification.

Value

Graphic plots covariate balance before and after stratification on propensity scores. The default version (absolute.es = TRUE) plots the absolute values of effect sizes for each stratum, though the overall estimate is the weighted mean before taking the absolute values. Numerical output consists of seven addressable objects. If verbose is FALSE (default), output is not printed.

original.strata Matrix of strata-treatment counts as originally input.

strata.used Matrix of strata-treatment counts used in effectsize calculations after any minsize reductions.

mean.diff.strata.wtd Matrix of strata by covariate weighted (by strata size) average differences.

mean.diff.unadj Matrix of covariate effects sizes before stratification.

effect.sizes Matrix of effect sizes by covariate and stratum.

treatment.levels Names of treatments.

effects.strata.treatment Matrix of standard deviations and stratum-treatment covariate means used to calculate the effect.sizes.

Author(s)

Robert M. Pruzek <RMPruzek@yahoo.com>
James E. Helmreich <James.Helmreich@Marist.edu>
KuangNan Xiong <harryxkn@yahoo.com>

References


See Also

cv.bal.psa, loess.psa, cstrata.psa, cv.trans.psa
Examples

data(lindner)
attach(lindner)
lindner.ps <- glm(abcix ~ stent + height + female +
diabetic + acutemi + ejecfrac + ves1proc,
data = lindner, family = binomial)
ps<-lindner.ps$fitted
lindner.cv <- lindner[,4:10]
cv.bal.psa(lindner.cv, abcix, ps, strata = 5)
cv.bal.psa(lindner.cv, abcix, ps, strata = 10)
cv.bal.psa(lindner.cv, abcix, ps, int = c(.2,.5,.6,.75,.8))

---

cv.trans.psa  
Transformation of Factors to Individual Levels

Description

The function cv.trans.psa takes a covariate data frame and replaces each categorical covariate of n >=3 levels with n new binary covariate columns, one for each level. Transforms covariate dataframe for use with the function cv.bal.psa.

Usage

cv.trans.psa(covariates, fcol = NULL)

Arguments

covariates  A dataframe of covariates, presumably some factors.
fcol  An optional vector containing the factor columns in the covariate dataframe. In NULL (default) routine to identify factors internally.

Value

Returns a dataframe covariates.transformed containing new columns for each level of more than binary factors. The rest of the covariate dataframe stays unchanged.

Author(s)

James E. Helmreich <James.Helmreich@Marist.edu>
Robert M. Pruzek <RMPruzek@yahoo.com>
KuangNan Xiong <harryxkn@yahoo.com>

See Also

cv.bal.psa, loess.psa, cstrata.psa, cv.trans.psa
Examples

```r
Note reordering of columns, binary factor and numeric column are unchanged.
fn2 <- factor(sample(c(0, 1), 20, replace = TRUE))
fn4 <- factor(sample(c("a", "b", "c", "d"), 20, replace = TRUE))
cv <- rnorm(20)
X <- data.frame(fn2, fn4, cv)
cv.trans.psa(X)
#
fn2 <- factor(sample(c('c', 'C'), 20, replace = TRUE))
fn4 <- factor(sample(c("b", "A", "d", "CC"), 20, replace = TRUE))
cv <- rnorm(20)
X <- data.frame(fn2, fn4, cv)
cv.trans.psa(X)
```

---

**Description**

Data from an observational study of 996 patients receiving a PCI at Ohio Heart Health in 1997 and followed for at least 6 months by the staff of the Lindner Center. This is a landmark dataset in the literature on propensity score adjustment for treatment selection bias due to practice of evidence based medicine; patients receiving abciximab tended to be more severely diseased than those who did not receive a IIb/IIIa cascade blocker.

**Usage**

data(lindner)

**Format**

A data frame with 996 observations on the following 10 variables, no NAs.

- **lifepres**: Mean life years preserved due to survival for at least 6 months following PCI; numeric value of either 11.4 or 0.
- **cardbill**: Cardiac related costs incurred within 6 months of patient’s initial PCI; numeric value in 1998 dollars; costs were truncated by death for the 26 patients with lifepres == 0.
- **abcix**: Numeric treatment selection indicator; 0 implies usual PCI care alone; 1 implies usual PCI care deliberately augmented by either planned or rescue treatment with abciximab.
- **stent**: Coronary stent deployment; numeric, with 1 meaning YES and 0 meaning NO.
- **height**: Height in centimeters; numeric integer from 108 to 196.
- **female**: Female gender; numeric, with 1 meaning YES and 0 meaning NO.
diabetic  Diabetes mellitus diagnosis; numeric, with 1 meaning YES and 0 meaning NO.
acutemi  Acute myocardial infarction within the previous 7 days; numeric, with 1 meaning YES
         and 0 meaning NO.
ejecfrac  Left ejection fraction; numeric value from 0 percent to 90 percent.
ves1proc  Number of vessels involved in the patient’s initial PCI procedure; numeric integer from
         0 to 5.

Source
Package USPS, by R. L. Obenchain.

loess.psa  

Graphic for data and loess-based estimate of effect size after propensity score adjustment

Description
Plots data points using propensity scores vs. the response, separately for treatment and control
groups; points are distinguished by both type and color for the two groups. Also shows (non-linear,
loess-based) regression curves for both groups. The loess regression curves are then used to derive
an overall estimate of effect size (based on number and/or location of strata as set by the user).
Several other statistics are also provided, for both description and inference. Graphic motivated by
a suggestion of R. L. Obenchain.

Usage
loess.psa(response, treatment = NULL, propensity = NULL,
  family = "gaussian",
  span = 0.7, degree = 1, msize = 5, xlim = c(0, 1),
  colors = c(’dark blue’,’dark green’,’blue’,’dark green’),
  legend.xy = "topleft", legend = NULL,
  int = 10, lines = TRUE, strata.lines = TRUE, rg = TRUE,
  xlab = "Estimated Propensity Scores",
  ylab = "Response", pch = c(16,1), …)

Arguments
response  Either a numeric vector containing the response of interest in a propensity score
          analysis, or a three column array containing response, treatment and strata.
treatment  Binary variable of same length as response; 0 for 'control,’ 1 for 'treatment.'
propensity Numeric vector of estimated propensity scores.
family     Passed to loess. Either "gaussian" (default) or "symmetric".
span       Parameter passed to loess governing degree of smoothing. Default = 0.7.
degree     Parameter passed to loess governing degree of polynomials used. Default = 1
minsize  Integer. Determines the minimum number of observations in each stratum treatment group allowed. If one of the treatment groups in a given stratum does not meet this minsize, then all observations in this stratum are ignored as far as the effect size calculation is concerned.

xlim  Binary vector (min, max) providing the horizontal axis minimum and maximum. Default is c(0, 1).

colors  List of four colors used for control points, treatment points, control loess line, treatment loess line respectively. Default = c("seagreen3", "goldenrod1", "seagreen4", "goldenrod1").

legend.xy  Coordinates for legend box, see legend. Default = "topleft".

legend  Binary character vector containing the text of the legend. Default is taken from treatment.

int  Integer or ordered vector. If an integer is used, it represents the maximum number of equally sized strata. Alternatively, it may be a vector of cuts of the unit interval. Lower and upper ends need not be included. See examples. Default = 10.

lines  Logical; fitted loess values are plotted by default as points. If true, values are plotted as two lines.

strata.lines  Logical; default = TRUE. Creates light vertical lines that delineate strata.

rg  Logical; if TRUE (default) then rug plots are given for treatment and control propensity score and response distributions.

xlab  X axis label, default = "Estimated Propensity Scores".

ylab  Y axis label, default = "Response".

pch  Character types for plotted points, default = c(16, 1). Note: must be of length 2 to allow different plotting points for each treatment.

Value

In addition to the plot, the function returns a list with the following components:

ATE  Estimated effect size based upon (number of) strata defined by int; that is, this is the Average Treatment Effect, after propensity-based adjustment.

se.wtd  Weighted standard error based on pooling of within-strata variance estimates.

CI.95  Approximate 95% confidence interval for the overall effect size (conditional on the specification of int).

summary.strata  A table with rows corresponding to strata; first two columns show counts (by stratum) for both control and treatment; followed by mean differences for all strata. for control and treatment, followed by mean differences for all strata. The weighted average difference yields the effect size noted above.

Author(s)

James E. Helmreich <James.Helmreich@Marist.edu>

Robert M. Pruzek <RMPruzek@yahoo.com>


See Also
circ.psa

Examples

# Artificial example where ATE should be 1 over all of (0,1).
response1 <- c(rep(1, 100), rep(2, 100), rep(3, 100)) + rnorm(300, 0, .5)
response0 <- c(rep(0, 100), rep(1, 100), rep(2, 100)) + rnorm(300, 0, .5)
treatment <- c(rep(1, 300), rep(0, 300))
propensity <- rep(seq(.01, .99, (.98/299)), 2)
a <- data.frame(response, treatment, propensity)
loess.psa(a, span = .15, degree = 1, int = c(0, .33, .67, 1))

# Artificial example where estimates are unstable with varying numbers of strata. Note: sometimes get empty treatment/strata error.
rr <- c(rnorm(150, 3, .75), rnorm(700, 0, .75), rnorm(150, 3, .75),
        rnorm(150, -3, .75), rnorm(700, 0, .75), rnorm(150, -3, .75))
tt <- c(rep(1, 1000), rep(0, 1000))
pp <- NULL
for(i in 1:1000)(pp <- c(pp, rnorm(1, 0, .05) + .00045*i + .25))
for(i in 1:1000)(pp <- c(pp, rnorm(1, 0, .05) + .00045*i + .4))
a <- data.frame(rr, tt, pp)
loess.psa(a, span=.5, cex = .6)

# Using strata of possible interest as determined by loess lines.
data(lindner)
attach(lindner)
lindner.ps <- glm(abcix ~ stent + height + female +
        diabetic + acutemi + ejecfrac + ves1proc,
        data = lindner, family = binomial)
loess.psa(log(cardbill), abcix, lindner.ps$fitted,
        int = c(.37, .56, .87, 1), lines = TRUE)
abline(v=c(.37, .56, .87))
Index

*Topic \textasciitilde kwd1
  cvNtransNpsa, 19

*Topic \textasciitilde kwd2
  cvNtransNpsa, 19

*Topic datasets
  lindner, 20

*Topic hplot
  boxNpsa, 8
  catNpsa, 10
  circNpsa, 12
  cstrataNpsa, 15
  cvNbalNpsa, 17
  granovaNpackage, 2
  loessNpsa, 21

*Topic htest
  balNcsNpsa, 2
  balNfeNpsa, 4
  balNksNpsa, 5
  balNmsNpsa, 6
  boxNpsa, 8
  catNpsa, 10
  balNcsNpsa, 2
  balNfeNpsa, 2, 4
  balNksNpsa, 2, 5
  balNmsNpsa, 2, 6, 9
  boxNpsa, 2, 8
  catNpsa, 2, 10
  circNpsa, 2, 12, 23
  cstrataNpsa, 2, 15, 18, 19
  cvNbalNpsa, 2, 16, 17, 18, 19
  cvNtransNpsa, 2, 18, 19, 19
  granovaNpackage, 2
  lindner, 20
  loessNpsa, 2, 14, 16, 18, 19, 21
  mean, 7, 9

PSAgraphics (granovaNpackage), 2
PSAgraphicsNpackage (granovaNpackage), 2