Package ‘PropScrRand’

February 19, 2015

Type Package

Title Propensity score methods for assigning treatment in randomized trials

Version 1.1

Date 2013-11-14

Author Travis M. Loux

Maintainer Travis M. Loux <loux@slu.edu>

Description This package contains functions to run propensity-biased allocation to balance covariate distributions in sequential trials and propensity-constrained randomization to balance covariate distributions in trials with known baseline covariates at time of randomization. Currently this package only supports trials comparing two groups.

License GPL-3

NeedsCompilation no

Repository CRAN

Date/Publication 2013-11-15 19:38:56

R topics documented:

PropScrRand-package .. 2
genPerms ... 2
getVar ... 3
pba ... 4
pcr ... 5
piFunction ... 7
plotpi ... 8

Index 9
PropScrRand-package

Propensity score methods for assigning treatment in randomized trials

Description

Provides propensity score-based methods for allocating units to treatment experiments with two treatment levels (e.g., treatment and control).

Details

Package: PropScrRand
Type: Package
Version: 1.1
Date: 2013-11-14
License: GPL-3

For sequential allocation, the functions the user will interact with directly are pba and pbaAgain. Both of these functions perform propensity-biased allocation, producing a treatment assignment for the current unit, among other information. The function plotpi can be used to investigate the strength of balance forced by various values of the tuning parameter k, with curves for new values of k added to the plot via addpi. For randomization when all baseline covariates are known, use pcr, which will conduct propensity-constrained randomization. The remaining functions are called from these internally.

Author(s)

Travis M. Loux

Maintainer: Travis M. Loux <loux@slu.edu>

genPerms

Generate Treatment Permutations

Description

Used within calls to pcr to generate a set of unique treatment permutations for randomization.

Usage

genPerms(n, n1, nPerms)
Arguments

- **n**: Total number of units to be randomized.
- **n1**: Number of units to receive treatment.
- **nPerms**: Number of permutations to generate.

Details

This function randomly samples `nPerms` of the `choose(n, n1)` possible treatment permutations. If `nPerms > choose(n, n1)`, then all `choose(n, n1)` permutations are generated systematically. Also, in the case of 1-to-1 allocation, the complement treatment vectors are also produced, so the returned matrix has `2*nPerms` permutations. Uniqueness is checked throughout and duplicate permutations disregarded.

Value

The result is an `n1 x nPerms` (or `n1 x choose(n, n1)` or `n1 x 2*nPerms`) matrix. Each column represents one treatment permutation, with the values in the column giving the index of the treated units.

Author(s)

Travis M. Loux

Examples

```r
genPerms(n=50, n1=25, nPerms=500)
genPerms(n=50, n1=35, nPerms=500)
```

getVar
Compute Propensity Score Variance

Description

Given a data set and vector of indices for treated units, computes the variance of the propensity score fitted via logistic regression.

Usage

```r
covs, tIndex)
```

Arguments

- **covs**: A data frame of baseline covariates.
- **tIndex**: A vector indicating which units are to receive treatment.
Value

Returns the variance of the fitted propensity scores.

Author(s)

Travis M. Loux

Description

Performs propensity-biased allocation for assigning a new unit to treatment in a sequential design with two treatment levels (i.e., treatment and control).

Usage

pba(x, tr, newx, k = 1, global = 0.5)
pbaAgain(previous, newx, k = NA)

Arguments

x A data frame of the covariate values of previously assigned units.
tr A vector of treatment assignments (0 or 1) for previously assigned units.
newx Data frame of covariate values of the new unit.
k Balancing parameter.
global Global target proportion to be treated.
previous The output of a previous call to pba or pbaAgain

Details

The function pba generates a treatment assignment for a new unit. The steps of the process include regressing tr on x by logistic regression, computing the fitted value of the new unit using covariate values in newx, and transforming the fitted propensity score into the probability of treatment by a call to pifunction using k and global as parameters. The balancing parameter k must be one of 0, Inf, or the ratio of two positive odd integers. Small values of k result in less restrictive randomization while larger values of k result in more forced balance. In particular, k = 0 is equivalent to pure randomization and k = Inf results in deterministic allocation. Finally, a treatment assignment for the new unit is generated via a Bernoulli trial with probability from pifunction.

The function pbaAgain takes as input the output from a previous call to pba or pbaAgain and runs pba for the new unit using the values of newx. If k = NA (the default), the value of k from previous is used; otherwise, the provided value of k is used. The parameter global is assumed to stay the same throughout the trial. The output of pbaAgain contains the same information as pba.
Value

results A list of results from the PBA procedure.
phat The fitted propensity score for the new unit.
ptreat The probability of assignment to the treatment group for the new unit.
newtr Result of random assignment using ptreat.
input A list of inputs to PBA procedure. Used in future calls to pbaAgain.
x Input x.
tr Input tr.
ewx Input newx.
k Input k.
global Input global.

Author(s)

Travis M. Loux

References

Examples

x0 = data.frame(matrix(rnorm(60), ncol=3))
t0 = rbinom(nrow(x0), size=1, prob=0.5)
x1 = data.frame(matrix(rnorm(3), ncol=3))
trial1 = pba(x=x0, tr=t0, newx=x1, k=Inf)
x2 = data.frame(matrix(rnorm(3), ncol=3))
trial2 = pbaAgain(previous=trial1, newx=x2)
x3 = data.frame(matrix(rnorm(3), ncol=3))
trial3 = pbaAgain(previous=trial2, newx=x3, k=5/3)

Description

Performs propensity-constrained randomization on a given data set with measured covariates on all units.

Usage

pcr(x, nTreat, M, m)
Arguments

\(x\) Data frame of covariates.
\(n\text{Treat}\) Number of units to be treated.
\(M\) Number of candidate permutations to create.
\(m\) Number of permutations to keep.

Details

Given the parameters, \texttt{pcr} generates \(M\) unique permutations by calling \texttt{genPerms}. For each permutation, the empirical propensity scores are computed and the variance returned by \texttt{getVar}. Finally, the \(m\) permutations with the smallest propensity score variance are found. The \(m\) permutations returned in \texttt{best} can then be used to perform randomization and randomization inference. We suggest \(M \geq 10000\) and \(m/M \leq 0.10\).

Value

\texttt{treatments} The (approximately) \(M\) permutations generated by \texttt{genPerms}.
\texttt{variance} A vector of the propensity score variances for all \(M\) permutations in \texttt{treatments}.
\texttt{cutoff} The calculated \(m/M\) quantile of propensity score variances.
\texttt{best} The column indices of the permutations in \texttt{treatments} with propensity score variance below \texttt{cutoff}.

Author(s)

Travis M. Loux

Examples

1:1 allocation, M small
dat1 = data.frame(x1=rnorm(50),
 x2=rnorm(50),
 x3=sample(c('a','b','c'), size=50, replace=TRUE))
trial1 = pcr(x=dat1, nTreat=50, M=500, m=50)

1:1 allocation, M large
dat2 = data.frame(x1=rnorm(10),
 x2=rnorm(10),
 x3=sample(c('a','b','c'), size=10, replace=TRUE))
trial2 = pcr(x=dat2, nTreat=5, M=200, m=20)

non-1:1 allocation, M small
dat3 = data.frame(x1=rnorm(50),
 x2=rnorm(50),
 x3=sample(c('a','b','c'), size=50, replace=TRUE))
trial3 = pcr(x=dat3, nTreat=35, M=200, m=20)

non-1:1 allocation, M large
dat4 = data.frame(x1=rnorm(10),
 x2=rnorm(10),
piFunction

\[
x3 = \text{sample(c('a', 'b', 'c'), size=10, replace=TRUE))}
\]

\[
\text{trial4} = \text{pcr(x=dat4, nTreat=6, M=300, m=30)}
\]

piFunction
Get PBA Treatment Probability

Description

Used within calls to `pba` and `pbaAgain` to obtain the probability a unit is assigned treatment given its fitted propensity score.

Usage

\[
\text{piFunction(fit, kparam, qparam)}
\]

Arguments

- **fit**: Fitted propensity score.
- **kparam**: Balancing parameter.
- **qparam**: Global target for proportion of units treated.

Details

The input `kparam` must be one of 0, Inf, or the ratio of two positive odd integers. Both `fit` and `qparam` must be between 0 and 1.

Value

A numeric object. In the context of PBA, the probability of assignment to treatment for the current unit.

Author(s)

Travis M. Loux

Examples

\[
\text{piFunction(fit=0.6, kparam=1, qparam=0.5)}
\]

\[
\text{piFunction(fit=0.6, kparam=5, qparam=0.5)}
\]

\[
\text{piFunction(fit=0.6, kparam=1/5, qparam=0.5)}
\]

\[
\text{piFunction(fit=0.6, kparam=1, qparam=2/3)}
\]

\[
\text{piFunction(fit=0.6, kparam=5, qparam=2/3)}
\]

\[
\text{piFunction(fit=0.6, kparam=1/5, qparam=2/3)}
\]
plotpi

Plots of piFunction

Description

Can be used to investigate the strength of balance forced by various values of the tuning parameter k.

Usage

plotpi(k, global = 0.5)
addpi(k, global = 0.5, ...)

Arguments

 k Balancing parameter.
 global Global target for proportion of units treated.
 ... Parameters in addpi passed to lines function.

Details

The function plotpi creates a plot of treatment probability against fitted propensity score for values of k and global. The function addpi adds a curve for a new combination of k and global to an existing plot.

Author(s)

Travis M. Loux

Examples

plotpi(k=3, global=0.5)
addpi(k=5/3, lty=2, col='red')
plotpi(k=1/3, global=2/3)
Index

*Topic design
 genPerms, 2
 pba, 4
 pcr, 5
 PropScrRand-package, 2
*Topic multivariate
 pba, 4
 pcr, 5
 PropScrRand-package, 2

addpi(plotpi), 8

genPerms, 2, 6
getVar, 3, 6

pba, 4
pbaAgain(pba), 4
pcr, 5
piFunction, 4, 7
plotpi, 8
PropScrRand(PropScrRand-package), 2
PropScrRand-package, 2